[1] |
GLEESON T, WADA Y, BIERKENS M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012, 488(7410): 197-200.
|
[2] |
LI P Y, QIAN H. Water resources research to support a sustainable China[J]. International Journal of Water Resources Development, 2018, 34(3): 327-336.
|
[3] |
HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al. Mapping the global threat of land subsidence[J]. Science, 2021, 371(6524): 34-36.
|
[4] |
SU G L, WU Y Q, ZHAN W, et al. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China Plain during the past six decades[J]. Journal of Hydrology, 2021, 600: 126678.
|
[5] |
于开宁, 廖安然. 基于生态位理论的河北平原地下水开采潜力评价[J]. 地学前缘, 2018, 25(1): 259-266.
DOI
|
[6] |
曹国亮. 华北平原地下水系统变化规律研究[D]. 北京: 中国地质大学(北京), 2013.
|
[7] |
ALLEY W M, HEALY R W, LABAUGH J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5575): 1985-1990.
DOI
PMID
|
[8] |
YANG W T, LONG D, SCANLON B R, et al. Human intervention will stabilize groundwater storage across the North China Plain[J]. Water Resources Research, 2022, 58(2): e2021wr030884.
|
[9] |
水利部. 水利部财政部国家发展改革委农业农村部关于印发《华北地区地下水超采综合治理行动方案》的通知[A]. 北京: 水利部, 2019.
|
[10] |
MTHEMBU PP, ELUMALAI V, SENTHILKUMAR M, et al. Investigation of geochemical characterization and groundwater quality with special emphasis on health risk assessment in alluvial aquifers, South Africa[J]. International Journal of Environmental Science and Technology, 2021, 18(12): 3711-3730.
|
[11] |
PONNUSAMY D, ELUMALAI V. Determination of potential recharge zones and its validation against groundwater quality parameters through the application of GIS and remote sensing techniques in uMhlathuze catchment, Kwa Zulu-Natal, South Africa[J]. Chemosphere, 2022, 307: 136121.
|
[12] |
康宏志, 陈亮, 郭祺忠, 等. 海绵城市建设地下水补给计算研究进展[J]. 地学前缘, 2019, 26(6): 58-65.
DOI
|
[13] |
杨永辉, 郝小华, 曹建生, 等. 太行山山前平原区地下水下降与降水、作物的关系[J]. 生态学杂志, 2001, 20(6): 4-7, 15.
|
[14] |
张光辉, 费宇红, 申建梅, 等. 降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报, 2007, 38(5): 611-617.
|
[15] |
杨会峰, 白华, 程彦培, 等. 基于氯离子示踪法深厚包气带地区地下水补给特征[J]. 南水北调与水利科技(中英文), 2022, 20(1): 30-39.
|
[16] |
薛禹群, 朱学愚. 地下水动力学[M]. 北京: 地质出版社, 1979.
|
[17] |
周志芳, 王锦国. 地下水动力学[M]. 北京: 科学出版社, 2013.
|
[18] |
张文喆, 王锦国, 徐烁. 河水位连续变化条件下潜水回水范围计算[J]. 水资源保护, 2013, 29(6): 41-43, 48.
|
[19] |
胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质, 2020, 47(5): 5-11.
|
[20] |
刘家宏, 梅超, 王佳, 等. 北京市门头沟流域“23·7” 特大暴雨洪水过程分析[J]. 中国防汛抗旱, 2023, 33(9): 50-55.
|
[21] |
李海明, 李梦娣, 肖瀚, 等. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178.
DOI
|
[22] |
侯国华, 高茂生, 叶思源, 等. 黄河三角洲浅层地下水盐分来源及咸化过程研究[J]. 地学前缘, 2022, 29(3): 145-154.
DOI
|
[23] |
水利部.水 利部办公厅关于印发《2019年度华北地区地下水超采综合治理河湖生态补水方案及试点河段后续补水计划》的通知[A]. 北京: 水利部, 2019.
|
[24] |
SHAH N, NACHABE M, ROSS M. Extinction depth and evapotranspiration from ground water under selected land covers[J]. Groundwater, 2007, 45(3): 329-338.
PMID
|
[25] |
ZHAO K Y, JIANG X W, WANG X S, et al. Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China[J]. Hydrogeology Journal, 2021, 29(2): 567-577.
|
[26] |
SHI J X, JIANG X W, ZHANG Z Y, et al. Interaction of focused recharge and deep groundwater discharge near a wetland: a study in the Ordos Basin, China[J]. Journal of Hydrology, 2023, 626: 130361.
|
[27] |
张蔚榛. 地下水非稳定流计算和地下水资源评价[M]. 武汉: 武汉大学出版社, 2013.
|
[28] |
CAO G L, ZHENG C M, SCANLON B R, et al. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain[J]. Water Resources Research, 2013, 49(1): 159-175.
|
[29] |
QIN H H, CAO G L, KRISTENSEN M, et al. Integrated hydrological modeling of the North China Plain and implications for sustainable water management[J]. Hydrology and Earth System Sciences, 2013, 17(10): 3759-3778.
|
[30] |
MARTINSEN G, HE X, KOCH J, et al. Large-scale hydrological modeling in a multi-objective uncertainty framework-assessing the potential for managed aquifer recharge in the North China Plain[J]. Journal of Hydrology: Regional Studies, 2022, 41: 101097.
|