Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 283-301.DOI: 10.13745/j.esf.sf.2024.10.29
Previous Articles Next Articles
ZHENG Aoyue1(), FEI Jinna1, CHEN Yongqing1,*(
), NING Yanyun1,2, CAO Yilin1,3, ZHAO Pengda1
Received:
2024-08-05
Revised:
2024-10-10
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
ZHENG Aoyue, FEI Jinna, CHEN Yongqing, NING Yanyun, CAO Yilin, ZHAO Pengda. Quantitative delineation and evaluation of Sn-W and Pb-Zn polymetallic prospecting target areas in the Tengchong Block by SVD and PCA[J]. Earth Science Frontiers, 2025, 32(1): 283-301.
主成分 | Ag | As | Au | B | Ba | Bi | Cd | Co | Cr | Cu | F |
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.115 | 0.434 | 0.356 | 0.234 | 0.125 | -0.216 | 0.375 | 0.904 | 0.879 | 0.779 | 0.162 |
PC2 | 0.167 | 0.249 | 0.146 | 0.379 | -0.013 | 0.73 | 0.127 | -0.116 | -0.089 | 0.076 | 0.669 |
PC3 | 0.232 | 0.503 | 0.214 | 0.687 | -0.053 | 0.024 | 0.241 | 0.191 | 0.259 | 0.327 | 0.007 |
PC4 | 0.773 | 0.391 | 0.215 | 0.038 | -0.002 | 0.344 | 0.708 | 0.049 | -0.003 | 0.253 | 0.025 |
PC5 | -0.192 | -0.289 | -0.182 | -0.243 | 0.035 | -0.078 | 0.039 | 0.076 | -0.085 | -0.086 | 0.125 |
PC6 | -0.073 | -0.249 | -0.319 | -0.055 | 0.879 | -0.052 | -0.147 | 0.031 | -0.053 | -0.136 | 0.217 |
主成分 | Mn | Mo | Nb | Ni | Pb | Sb | Sn | Sr | Ti | V | W |
PC1 | 0.746 | 0.35 | -0.118 | 0.822 | -0.207 | 0.491 | -0.327 | 0.165 | 0.88 | 0.894 | -0.209 |
PC2 | -0.067 | 0.07 | 0.435 | -0.002 | 0.299 | 0.052 | 0.754 | -0.083 | -0.14 | -0.133 | 0.785 |
PC3 | -0.121 | -0.083 | -0.609 | 0.323 | -0.161 | 0.492 | -0.161 | -0.121 | -0.117 | 0.049 | 0.033 |
PC4 | 0.263 | 0.338 | -0.165 | 0.065 | 0.771 | 0.328 | 0.184 | -0.173 | -0.091 | -0.008 | 0.173 |
PC5 | 0.112 | -0.361 | -0.145 | -0.189 | -0.132 | -0.162 | -0.035 | 0.747 | -0.013 | 0.099 | -0.181 |
PC6 | 0.038 | -0.312 | -0.255 | -0.176 | 0.104 | -0.248 | -0.047 | 0.361 | 0.153 | 0.173 | -0.203 |
主成分 | Be | Zn | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | SiO2 | 特征值 | 方差累计 贡献/% |
PC1 | -0.043 | 0.645 | 0.087 | 0.429 | 0.923 | -0.715 | 0.628 | -0.414 | -0.54 | 10.123 | 32.656 |
PC2 | 0.305 | 0.117 | 0.183 | -0.198 | -0.072 | 0.325 | -0.147 | 0.203 | 0.109 | 4.859 | 48.331 |
PC3 | -0.426 | -0.167 | -0.705 | 0.151 | -0.061 | -0.286 | 0.38 | -0.228 | 0.321 | 2.882 | 57.627 |
PC4 | 0.043 | 0.543 | -0.01 | 0.005 | 0.039 | 0.013 | -0.044 | -0.139 | -0.287 | 1.79 | 63.401 |
PC5 | 0.266 | 0.135 | -0.212 | 0.739 | 0.064 | 0.037 | 0.441 | 0.638 | -0.212 | 1.539 | 68.365 |
PC6 | -0.249 | 0.203 | 0.349 | -0.237 | 0.123 | 0.268 | 0.127 | -0.059 | 0.204 | 1.344 | 72.701 |
Table 1 Principle component orthogonal rotation matrix of ore-forming elements in the Tengchong Block
主成分 | Ag | As | Au | B | Ba | Bi | Cd | Co | Cr | Cu | F |
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.115 | 0.434 | 0.356 | 0.234 | 0.125 | -0.216 | 0.375 | 0.904 | 0.879 | 0.779 | 0.162 |
PC2 | 0.167 | 0.249 | 0.146 | 0.379 | -0.013 | 0.73 | 0.127 | -0.116 | -0.089 | 0.076 | 0.669 |
PC3 | 0.232 | 0.503 | 0.214 | 0.687 | -0.053 | 0.024 | 0.241 | 0.191 | 0.259 | 0.327 | 0.007 |
PC4 | 0.773 | 0.391 | 0.215 | 0.038 | -0.002 | 0.344 | 0.708 | 0.049 | -0.003 | 0.253 | 0.025 |
PC5 | -0.192 | -0.289 | -0.182 | -0.243 | 0.035 | -0.078 | 0.039 | 0.076 | -0.085 | -0.086 | 0.125 |
PC6 | -0.073 | -0.249 | -0.319 | -0.055 | 0.879 | -0.052 | -0.147 | 0.031 | -0.053 | -0.136 | 0.217 |
主成分 | Mn | Mo | Nb | Ni | Pb | Sb | Sn | Sr | Ti | V | W |
PC1 | 0.746 | 0.35 | -0.118 | 0.822 | -0.207 | 0.491 | -0.327 | 0.165 | 0.88 | 0.894 | -0.209 |
PC2 | -0.067 | 0.07 | 0.435 | -0.002 | 0.299 | 0.052 | 0.754 | -0.083 | -0.14 | -0.133 | 0.785 |
PC3 | -0.121 | -0.083 | -0.609 | 0.323 | -0.161 | 0.492 | -0.161 | -0.121 | -0.117 | 0.049 | 0.033 |
PC4 | 0.263 | 0.338 | -0.165 | 0.065 | 0.771 | 0.328 | 0.184 | -0.173 | -0.091 | -0.008 | 0.173 |
PC5 | 0.112 | -0.361 | -0.145 | -0.189 | -0.132 | -0.162 | -0.035 | 0.747 | -0.013 | 0.099 | -0.181 |
PC6 | 0.038 | -0.312 | -0.255 | -0.176 | 0.104 | -0.248 | -0.047 | 0.361 | 0.153 | 0.173 | -0.203 |
主成分 | Be | Zn | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | SiO2 | 特征值 | 方差累计 贡献/% |
PC1 | -0.043 | 0.645 | 0.087 | 0.429 | 0.923 | -0.715 | 0.628 | -0.414 | -0.54 | 10.123 | 32.656 |
PC2 | 0.305 | 0.117 | 0.183 | -0.198 | -0.072 | 0.325 | -0.147 | 0.203 | 0.109 | 4.859 | 48.331 |
PC3 | -0.426 | -0.167 | -0.705 | 0.151 | -0.061 | -0.286 | 0.38 | -0.228 | 0.321 | 2.882 | 57.627 |
PC4 | 0.043 | 0.543 | -0.01 | 0.005 | 0.039 | 0.013 | -0.044 | -0.139 | -0.287 | 1.79 | 63.401 |
PC5 | 0.266 | 0.135 | -0.212 | 0.739 | 0.064 | 0.037 | 0.441 | 0.638 | -0.212 | 1.539 | 68.365 |
PC6 | -0.249 | 0.203 | 0.349 | -0.237 | 0.123 | 0.268 | 0.127 | -0.059 | 0.204 | 1.344 | 72.701 |
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素背 景值/10-6 | 剩余异常平均 含量/10-6 | 块体质量/109 t (按花岗岩密度 2.64 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Sn地球 化学块体 | I-1 | 300 | 900 | 20.29 | 2 | 18.29 | 2376 | 43.46 |
I-2 | 176 | 528 | 76.24 | 74.24 | 1 393.92 | 103.48 | ||
I-3 | 196 | 588 | 10.64 | 8.64 | 1 552.32 | 13.41 | ||
I-4 | 136 | 408 | 24.8 | 22.8 | 1 077.12 | 24.56 | ||
I-5 | 156 | 468 | 476.46 | 474.46 | 1 235.52 | 586.20 | ||
I-6 | 288 | 864 | 7.9 | 5.9 | 2 280.96 | 13.46 | ||
I-7 | 288 | 864 | 15.65 | 13.65 | 2 280.96 | 31.14 | ||
I-8 | 76 | 228 | 21.61 | 19.61 | 601.92 | 11.80 | ||
合计 | 815.71 | |||||||
W地球 化学块体 | I-1 | 300 | 900 | 22.09 | 1 | 21.09 | 2376 | 50.11 |
I-2 | 176 | 528 | 6.7 | 5.7 | 1 393.92 | 7.95 | ||
I-3 | 196 | 588 | 5.52 | 4.52 | 1 552.32 | 7.02 | ||
I-4 | 136 | 408 | 6.52 | 5.52 | 1 077.12 | 5.95 | ||
I-5 | 156 | 468 | 13.33 | 12.33 | 1 235.52 | 15.23 | ||
I-6 | 288 | 864 | 4.1 | 3.1 | 2 280.96 | 7.07 | ||
I-7 | 288 | 864 | 3.68 | 2.68 | 2 280.96 | 6.11 | ||
I-8 | 76 | 228 | 10.79 | 8.79 | 601.92 | 5.29 | ||
合计 | 99.44 |
Table 2 Assessment of Sn-W resource in Sn-W prospecting target areas, Tengchong Block
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素背 景值/10-6 | 剩余异常平均 含量/10-6 | 块体质量/109 t (按花岗岩密度 2.64 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Sn地球 化学块体 | I-1 | 300 | 900 | 20.29 | 2 | 18.29 | 2376 | 43.46 |
I-2 | 176 | 528 | 76.24 | 74.24 | 1 393.92 | 103.48 | ||
I-3 | 196 | 588 | 10.64 | 8.64 | 1 552.32 | 13.41 | ||
I-4 | 136 | 408 | 24.8 | 22.8 | 1 077.12 | 24.56 | ||
I-5 | 156 | 468 | 476.46 | 474.46 | 1 235.52 | 586.20 | ||
I-6 | 288 | 864 | 7.9 | 5.9 | 2 280.96 | 13.46 | ||
I-7 | 288 | 864 | 15.65 | 13.65 | 2 280.96 | 31.14 | ||
I-8 | 76 | 228 | 21.61 | 19.61 | 601.92 | 11.80 | ||
合计 | 815.71 | |||||||
W地球 化学块体 | I-1 | 300 | 900 | 22.09 | 1 | 21.09 | 2376 | 50.11 |
I-2 | 176 | 528 | 6.7 | 5.7 | 1 393.92 | 7.95 | ||
I-3 | 196 | 588 | 5.52 | 4.52 | 1 552.32 | 7.02 | ||
I-4 | 136 | 408 | 6.52 | 5.52 | 1 077.12 | 5.95 | ||
I-5 | 156 | 468 | 13.33 | 12.33 | 1 235.52 | 15.23 | ||
I-6 | 288 | 864 | 4.1 | 3.1 | 2 280.96 | 7.07 | ||
I-7 | 288 | 864 | 3.68 | 2.68 | 2 280.96 | 6.11 | ||
I-8 | 76 | 228 | 10.79 | 8.79 | 601.92 | 5.29 | ||
合计 | 99.44 |
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素 背景值/10-6 | 剩余异常平均含量 (异常平均含量-景)/ 10-6 | 块体质量/109 t (花岗闪长岩密度 2.73 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Pb地球 化学块体 | II-1 | 84 | 252 | 302.77 | 16 | 286.77 | 687.96 | 197.29 |
II-2 | 140 | 420 | 52.35 | 36.35 | 1 146.6 | 41.68 | ||
II-3 | 200 | 600 | 41.47 | 25.47 | 1 638 | 41.72 | ||
II-4 | 124 | 372 | 69.98 | 53.98 | 1 015.56 | 54.82 | ||
II-5 | 160 | 480 | 32.28 | 16.28 | 1 310.4 | 21.33 | ||
II-6 | 380 | 1 140 | 36.42 | 20.42 | 3 112.2 | 63.55 | ||
II-7 | 116 | 348 | 159.37 | 143.37 | 950.04 | 136.21 | ||
合计 | 556.60 | |||||||
Zn地球 化学块体 | II-1 | 84 | 252 | 222.83 | 61 | 161.83 | 687.96 | 111.33 |
II-2 | 140 | 420 | 78.36 | 17.36 | 1 146.6 | 19.90 | ||
II-3 | 200 | 600 | 61.05 | 0.05 | 1 638 | 0.08 | ||
II-4 | 124 | 372 | 115.13 | 54.13 | 1 015.56 | 54.97 | ||
II-5 | 160 | 480 | 62.5 | 1.5 | 1 310.4 | 1.97 | ||
II-6 | 380 | 1140 | 70.21 | 9.21 | 3 112.2 | 28.66 | ||
II-7 | 116 | 348 | 79.59 | 18.59 | 950.04 | 17.66 | ||
合计 | 234.58 | |||||||
Ag地球 化学块体 | II-1 | 84 | 252 | 0.772 8 | 0.05 | 0.723 8 | 687.96 | 0.50 |
II-2 | 140 | 420 | 0.081 76 | 0.032 76 | 1 146.6 | 0.04 | ||
II-3 | 200 | 600 | 0.080 47 | 0.031 47 | 1 638 | 0.05 | ||
II-4 | 124 | 372 | 0.114 53 | 0.065 53 | 1 015.56 | 0.07 | ||
II-5 | 160 | 480 | 0.056 03 | 0.007 03 | 1 310.4 | 0.01 | ||
II-6 | 380 | 1 140 | 0.077 12 | 0.028 12 | 3 112.2 | 0.09 | ||
II-7 | 116 | 348 | 0.148 82 | 0.099 82 | 950.04 | 0.09 | ||
合计 | 0.85 |
Table 3 Assessment of Sn-W resource in Pb-Zn-Ag prospecting target area, Tengchong Block
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素 背景值/10-6 | 剩余异常平均含量 (异常平均含量-景)/ 10-6 | 块体质量/109 t (花岗闪长岩密度 2.73 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Pb地球 化学块体 | II-1 | 84 | 252 | 302.77 | 16 | 286.77 | 687.96 | 197.29 |
II-2 | 140 | 420 | 52.35 | 36.35 | 1 146.6 | 41.68 | ||
II-3 | 200 | 600 | 41.47 | 25.47 | 1 638 | 41.72 | ||
II-4 | 124 | 372 | 69.98 | 53.98 | 1 015.56 | 54.82 | ||
II-5 | 160 | 480 | 32.28 | 16.28 | 1 310.4 | 21.33 | ||
II-6 | 380 | 1 140 | 36.42 | 20.42 | 3 112.2 | 63.55 | ||
II-7 | 116 | 348 | 159.37 | 143.37 | 950.04 | 136.21 | ||
合计 | 556.60 | |||||||
Zn地球 化学块体 | II-1 | 84 | 252 | 222.83 | 61 | 161.83 | 687.96 | 111.33 |
II-2 | 140 | 420 | 78.36 | 17.36 | 1 146.6 | 19.90 | ||
II-3 | 200 | 600 | 61.05 | 0.05 | 1 638 | 0.08 | ||
II-4 | 124 | 372 | 115.13 | 54.13 | 1 015.56 | 54.97 | ||
II-5 | 160 | 480 | 62.5 | 1.5 | 1 310.4 | 1.97 | ||
II-6 | 380 | 1140 | 70.21 | 9.21 | 3 112.2 | 28.66 | ||
II-7 | 116 | 348 | 79.59 | 18.59 | 950.04 | 17.66 | ||
合计 | 234.58 | |||||||
Ag地球 化学块体 | II-1 | 84 | 252 | 0.772 8 | 0.05 | 0.723 8 | 687.96 | 0.50 |
II-2 | 140 | 420 | 0.081 76 | 0.032 76 | 1 146.6 | 0.04 | ||
II-3 | 200 | 600 | 0.080 47 | 0.031 47 | 1 638 | 0.05 | ||
II-4 | 124 | 372 | 0.114 53 | 0.065 53 | 1 015.56 | 0.07 | ||
II-5 | 160 | 480 | 0.056 03 | 0.007 03 | 1 310.4 | 0.01 | ||
II-6 | 380 | 1 140 | 0.077 12 | 0.028 12 | 3 112.2 | 0.09 | ||
II-7 | 116 | 348 | 0.148 82 | 0.099 82 | 950.04 | 0.09 | ||
合计 | 0.85 |
[1] | 成秋明. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学: 中国地质大学学报, 2006, 31(3): 337-348. |
[2] | CHENG Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2): 314-324. |
[3] | MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266. |
[4] | KRIGE D. Two-dimensional weighted moving average trend surfaces for ore-evaluation[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 66: 13-38. |
[5] | HOULDING S. Practical geostatistics: modeling and spatial analysis. Manual[M]. Berlin: Springer Science and Business Media, 2000. |
[6] | MUGGLESTONE M A, RENSHAW E. Detection of geological lineations on aerial photographs using two-dimensional spectral analysis[J]. Computers and Geosciences, 1998, 24(8): 771-784. |
[7] | AGTERBERG F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1): 1-8. |
[8] | AGTERBERG F. New applications of the model of de wijs in regional geochemistry[J]. Mathematical Geology, 2007, 39(1): 1-25. |
[9] | AGTERBERG F P. Mixtures of multiplicative cascade models in geochemistry[J]. Nonlinear Processes in Geophysics, 2007, 14(3): 201-209. |
[10] | AGTERBERG F P. Multifractal simulation of geochemical map patterns[M]// MERRIAM D F, DAVIS J C. Computer applications in the Earth sciences. Boston, MA: Springer US, 2001: 327-346. |
[11] | GRUNSKY E C, KJARSGAARD B A. Classification of distinct eruptive phases of the diamondiferous Star kimberlite, Saskatchewan, Canada based on statistical treatment of whole rock geochemical analyses[J]. Applied Geochemistry, 2008, 23(12): 3321-3336. |
[12] | HARRIS J R, GRUNSKY E C. Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data[J]. Computers and Geosciences, 2015, 80: 9-25. |
[13] | DAVIS J C, SAMPSON R J. Statistics and data analysis in geology[M]. New York: Wiley, 1986. |
[14] | HUANG N E, WU Z H. A review on Hilbert-Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): e2007rg000228. |
[15] | XIAO F, CHEN J G, AGTERBERG F, et al. Element behavior analysis and its implications for geochemical anomaly identification: a case study for porphyry Cu-Mo deposits in eastern Tianshan, China[J]. Journal of Geochemical Exploration, 2014, 145: 1-11. |
[16] | 谢学锦. 区域化探全国扫面工作方法的讨论[J]. 物探与化探, 1979, 3(1): 18-26. |
[17] | REIMANN C, FILZMOSER P. Normal and lognormal data distribution in geochemistry: death of a myth. consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 2000, 39(9): 1001-1014. |
[18] | JAMES L, DOUGLAS C J, PAUL E. Analyzing multivariate data[M]. Pacific Grove, CA, USA: Thomson Brooks/Cole, 2003. |
[19] | CHEN Y Q, ZHAO B N, CHEN C, et al. Identification of ore-finding targets using the anomaly components of ore-forming element associations extracted by SVD and PCA in the Jiaodong gold cluster area, Eastern China[J]. Ore Geology Reviews, 2022, 144: 104866. |
[20] | 李庆谋, 成秋明. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J]. 地球科学: 中国地质大学学报, 2004, 29(1): 109-118. |
[21] | CHEN Y Q, LIANG Z, ZHEN, L. Geochemical characteristics and zonation of primary halos of Pulang porphyry copper deposit, Northwestern Yunnan Province, Southwestern China[J]. Journal of China University of Geosciences, 2008, 19(4): 371-377. |
[22] | 陈永清, 张生元, 夏庆霖, 等. 应用多重分形滤波技术提取致矿地球化学异常: 以西南 “三江” 南段Cu、Zn致矿异常提取为例[J]. 地球科学: 中国地质大学学报, 2006, 31(6): 861-866. |
[23] | BEHERA S, PANIGRAHI M K. Mineral prospectivity modelling using singularity mapping and multifractal analysis of stream sediment geochemical data from the auriferous Hutti-Maski schist belt, S. India[J]. Ore Geology Reviews, 2021, 131: 104029. |
[24] | FREIRE S L M, ULRYCH T J. Application of singular value decomposition to vertical seismic profiling[J]. Geophysics, 1988, 53(6): 778-785. |
[25] | LI Q M. GIS-based multifractal/inversion methods for feature extraction and applications in anomaly identification for mineral exploration[D]. Toronto: York University, 2005. |
[26] | 李庆谋, 刘少华. GIS环境下地球物理信号的奇异值分解、多维分形特征与应用[J]. 地球物理学进展, 2003, 18(1): 97-102. |
[27] | WANG Y J, LI S B, MA L Y, et al. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction[J]. Gondwana Research, 2015, 27(4): 1474-1486. |
[28] | CHEN Y Q, ZHANG L N, ZHAO B B. Identification of the anomaly component using BEMD combined with PCA from element concentrations in the Tengchong tin belt, SW China[J]. Geoscience Frontiers, 2019, 10(4): 1561-1576. |
[29] | GARDINER N J, SEARLE M P, MORLEY C K, et al. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: tectonic and metallogenic implications[J]. Gondwana Research, 2018, 62: 27-60. |
[30] | GARDINER N J, SEARLE M P, MORLEY C K, et al. The closure of palaeo-Tethys in eastern Myanmar and northern Thailand: new insights from zircon U-Pb and Hf isotope data[J]. Gondwana Research, 2016, 39: 401-422. |
[31] | MITCHELL A, CHUNG S L, OO T, et al. Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[J]. Journal of Asian Earth Sciences, 2012, 56: 1-23. |
[32] | RIDD M F. East flank of the Sibumasu block in NW Thailand and Myanmar and its possible northward continuation into Yunnan: a review and suggested tectono-stratigraphic interpretation[J]. Journal of Asian Earth Sciences, 2015, 104: 160-174. |
[33] | XU Y G, YANG Q J, LAN J B, et al. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes[J]. Journal of Asian Earth Sciences, 2012, 53: 151-175. |
[34] | MORLEY C K. Late Cretaceous-Early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews, 2012, 115(1/2): 37-75. |
[35] | CAO H W, ZHANG S T, LIN J Z, et al. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China): regional tectonic implications[J]. Journal of Asian Earth Sciences, 2014, 81: 142-152. |
[36] | 陈吉琛, 林文信, 陈良忠. 腾冲—梁河地区含锡花岗岩序列—单元研究[J]. 云南地质, 1991, 10(3): 241-289. |
[37] | 罗君烈. 滇西锡矿的花岗岩类及其成矿作用[J]. 矿床地质, 1991, 10(1): 81-96, 80. |
[38] | AHRENS L H. The lognormal distribution of the elements (2)[J]. Geochimica et Cosmochimica Acta, 1954, 6(2/3): 121-131. |
[39] | AHRENS L H. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary)[J]. Geochimica et Cosmochimica Acta, 1954, 5(2): 49-73. |
[40] | AGTERBERG F. Pareto-lognormal modeling of known and unknown metal resources[J]. Natural Resources Research, 2017, 26(1): 3-20. |
[41] | AGTERBERG F. Aspects of regional and worldwide mineral resource prediction[J]. Journal of Earth Science, 2021, 32(2): 279-287. |
[42] | AGTERBERG F P, CHENG Q M. Introduction to special issue on “fractals and multifractals”[J]. Computers and Geosciences, 1999, 25(9): 947-948. |
[43] | ZUO R G, XIA Q L, WANG H C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry, 2013, 28: 202-211. |
[44] | 黄静宁, 赵鹏大. 滇东地区深层次Pt-Cu-Au矿化异常定量提取与评价[J]. 地球科学: 中国地质大学学报, 2009, 34(2): 365-374. |
[45] | CARRANZA E J M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values[J]. Journal of Geochemical Exploration, 2011, 110(2): 167-185. |
[46] | CARRANZA E J M, LABORTE A G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm[J]. Ore Geology Reviews, 2015, 71: 777-787. |
[47] | CARRANZA E J M, VAN RUITENBEEK F J A, HECKER C, et al. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain[J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3): 374-387. |
[48] | AITCHISON J. The statistical analysis of compositional data[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1982, 44(2): 139-160. |
[49] | AITCHISON J, GREENACRE M. Biplots of compositional data[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2002, 51(4): 375-392. |
[50] | ZHENG A Y, CHEN C, CHEN Y Q, et al. Application of SVD combined with PCA in delineation and evaluation of ore-prospecting targets in the Gejiu tin polymetallic cluster region, SW China[J]. Ore Geology Reviews, 2023, 160: 105571. |
[51] | XIE X J, LIU D W, XIANG Y C, et al. Geochemical blocks for predicting large ore deposits: concept and methodology[J]. Journal of Geochemical Exploration, 2004, 84(2): 77-91. |
[52] | 赵振华. 微量元素地球化学[J]. 地球科学进展, 1992, 7(5): 65-66. |
[53] | 陈永清, 黄静宁, ZHAI X M, 等. 多尺度地球化学勘查聚焦找矿靶区: 以滇东Pt地球化学省勘查研究为例[J]. 中国科学D辑: 地球科学, 2009, 39(10): 1456-1465. |
[1] | NING Wenjing, XIE Xianming, YAN Liping. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results [J]. Earth Science Frontiers, 2023, 30(4): 470-484. |
[2] | ZHU Xu, YANG Rong, CHEN Yongqing, WANG Lianyue, LI Gang. Primary halo zonation in and a deep orebody prediction model for the inner-outer contact zone of the Laochang Sn-Cu deposit in Gejiu [J]. Earth Science Frontiers, 2021, 28(3): 112-127. |
[3] | LIU Chengzhao,HAN Shuai,LI Mingchao,ZHU Yueqin. Prediction and analysis of gold deposit sizes based on coupled PCA-SVM algorithm [J]. Earth Science Frontiers, 2019, 26(4): 138-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||