Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 23-35.DOI: 10.13745/j.esf.sf.2024.10.34
Previous Articles Next Articles
LIU Dongsheng(), WANG Xueqiu, NIE Lanshi, ZHANG Bimin, ZHOU Jian, LIU Hanliang, WANG Wei, CHI Qinghua, XU Shanfa
Received:
2024-08-10
Revised:
2024-10-08
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
LIU Dongsheng, WANG Xueqiu, NIE Lanshi, ZHANG Bimin, ZHOU Jian, LIU Hanliang, WANG Wei, CHI Qinghua, XU Shanfa. Quantatitive robustness assessment of low-density geochemical mapping: An example of China’s cobalt[J]. Earth Science Frontiers, 2025, 32(1): 23-35.
作者 | 地区 | 每个样品控制面积/km2 | 对比元素 | ||
---|---|---|---|---|---|
密度1 | 密度2 | 密度3 | |||
Shen和Yan[ | 中国江西 | 1 | 1800 | W | |
成杭新和谢学锦[ | 中国浙江 | 1 | 100~1 000 | 1 000~10 000 | Sb、As、Ag、Sn、Pb、Na2O |
王学求等[ | 中国新疆 | 4 | 25 | 100 | Au、Cu、Mn、As、Hg、U |
Smith和Reimann[ | 美国 | 航空辐射测量 | 6 000 | K | |
Demetriades[ | 希腊 | 1.77~2.74 | 500 | Pb | |
Cicchella等[ | 欧洲 | 5 000 | 20 000 | CaO、Th、U | |
聂兰仕[ | 中国黔西南 | 1 | 16~25 | 100 | Au |
Birke等[ | 德国 | 1.3 | 380 | 5 000 | Ba、Cu、Cr、Pb、U |
Gosar等[ | 斯洛文尼亚 | 4 | 25 | 625 | Hg |
程湘等[ | 印度尼西亚 | 4 | 100 | Au、Ag、Cu、Zn、Ni | |
Liu等[ | 中国新疆 | 1 | 180 | 1 600 | Au、As、Sb |
Table 1 Case studies on robustness of low-density geochemical mapping
作者 | 地区 | 每个样品控制面积/km2 | 对比元素 | ||
---|---|---|---|---|---|
密度1 | 密度2 | 密度3 | |||
Shen和Yan[ | 中国江西 | 1 | 1800 | W | |
成杭新和谢学锦[ | 中国浙江 | 1 | 100~1 000 | 1 000~10 000 | Sb、As、Ag、Sn、Pb、Na2O |
王学求等[ | 中国新疆 | 4 | 25 | 100 | Au、Cu、Mn、As、Hg、U |
Smith和Reimann[ | 美国 | 航空辐射测量 | 6 000 | K | |
Demetriades[ | 希腊 | 1.77~2.74 | 500 | Pb | |
Cicchella等[ | 欧洲 | 5 000 | 20 000 | CaO、Th、U | |
聂兰仕[ | 中国黔西南 | 1 | 16~25 | 100 | Au |
Birke等[ | 德国 | 1.3 | 380 | 5 000 | Ba、Cu、Cr、Pb、U |
Gosar等[ | 斯洛文尼亚 | 4 | 25 | 625 | Hg |
程湘等[ | 印度尼西亚 | 4 | 100 | Au、Ag、Cu、Zn、Ni | |
Liu等[ | 中国新疆 | 1 | 180 | 1 600 | Au、As、Sb |
含量区间 | RGNR Co含量/(μg·g-1) | CGB Co含量/(μg·g-1) |
---|---|---|
1 | 2.6~<6.3 | 1.0~<4.7 |
2 | 6.3~<7.7 | 4.7~<5.8 |
3 | 7.7~<8.8 | 5.8~<7.0 |
4 | 8.8~<9.6 | 7.0~<8.1 |
5 | 9.6~<10.3 | 8.1~<8.8 |
6 | 10.3~<11.0 | 8.8~<9.7 |
7 | 11.0~<11.7 | 9.7~<10.6 |
8 | 11.7~<12.1 | 10.6~<11.4 |
9 | 12.1~<13.0 | 11.4~<12.1 |
10 | 13.0~<13.7 | 12.1~<13.0 |
11 | 13.7~<14.7 | 13.0~<14.1 |
12 | 14.7~<15.5 | 14.1~<15.1 |
13 | 15.5~<16.7 | 15.1~<16.6 |
14 | 16.7~<18.6 | 16.6~<18.6 |
15 | 18.6~<60.6 | 18.6~<80.8 |
Table 2 Co contents in studied catchments
含量区间 | RGNR Co含量/(μg·g-1) | CGB Co含量/(μg·g-1) |
---|---|---|
1 | 2.6~<6.3 | 1.0~<4.7 |
2 | 6.3~<7.7 | 4.7~<5.8 |
3 | 7.7~<8.8 | 5.8~<7.0 |
4 | 8.8~<9.6 | 7.0~<8.1 |
5 | 9.6~<10.3 | 8.1~<8.8 |
6 | 10.3~<11.0 | 8.8~<9.7 |
7 | 11.0~<11.7 | 9.7~<10.6 |
8 | 11.7~<12.1 | 10.6~<11.4 |
9 | 12.1~<13.0 | 11.4~<12.1 |
10 | 13.0~<13.7 | 12.1~<13.0 |
11 | 13.7~<14.7 | 13.0~<14.1 |
12 | 14.7~<15.5 | 14.1~<15.1 |
13 | 15.5~<16.7 | 15.1~<16.6 |
14 | 16.7~<18.6 | 16.6~<18.6 |
15 | 18.6~<60.6 | 18.6~<80.8 |
[1] | WANG X Q, ZHANG B M, NIE L S, et al. Mapping chemical earth program: progress and challenge[J]. Journal of Geochemical Exploration, 2020, 217: 106578. |
[2] | DARNLEY A G, BJORKLUND A, BOLVIKEN B, et al. A global geochemical database for environmental and resource management-Final Report of IGCP Project 259[R]. Paris, 1995. |
[3] | 王学求, 孙宏伟, 迟清华, 等. 地球化学异常再现性与可对比性[J]. 中国地质, 2005, 32(1): 135-140. |
[4] | SMITH D B, REIMANN C. Low-density geochemical mapping and the robustness of geochemical patterns[J]. Geochemistry: Exploration, Environment, Analysis, 2008, 8(3/4): 219-227. |
[5] | HALE M, PLANT J A. Drainage geochemistry[M]. Amsterdam: Elsevier Science B. V., 1996. |
[6] | SALMINEN R, BATISTA M J, BIDOVEC M, et al. FOREGS geochemical atlas of Europe, Part 1: background information, methodology and maps[M]. Espoo: Geological Survey of Finland, 2006. |
[7] | DE CARITAT P, COOPER M. National geochemical survey of Australia: the geochemical atlas of Australia[R]. Canberra: Geoscience Australia, 2011. |
[8] | REIMANN C, FABIAN K, BIRKE M, et al. GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil[J]. Applied Geochemistry, 2018, 88: 302-318. |
[9] | SHACKLETTE H T, BOERNGEN J G. Element concentrations in soils and other surficial materials of the conterminous United States[R]. Washington: United State Government Printing Office, 1984. |
[10] | REIMANN C. Experiences from 30 years of low-density geochemical mapping at the subcontinental to continental scale in Europe[J]. Geochemistry: Exploration, Environment, Analysis, 2022, 22(4): geochem2022-030. |
[11] | CICCHELLA D, LIMA A, BIRKE M, et al. Mapping geochemical patterns at regional to continental scales using composite samples to reduce the analytical costs[J]. Journal of Geochemical Exploration, 2013, 124: 79-91. |
[12] | BIRKE M, REIMANN C, RAUCH U, et al. GEMAS: cadmium distribution and its sources in agricultural and grazing land soil of Europe: original data versus clr-transformed data[J]. Journal of Geochemical Exploration, 2017, 173: 13-30. |
[13] | LIU D S, WANG X Q, NIE L S, et al. Comparison of geochemical patterns from different sampling density geochemical mapping in Altay, Xinjiang Province, China[J]. Journal of Geochemical Exploration, 2021, 228: 106761. |
[14] | DARNLEY A G. A global geochemical reference network: the foundation for geochemical baselines[J]. Journal of Geochemical Exploration, 1997, 60(1): 1-5. |
[15] | 王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7-18. |
[16] | TIAN K, LI M, HU W Y, et al. Environmental capacity of heavy metals in intensive agricultural soils: insights from geochemical baselines and source apportionment[J]. Science of the Total Environment, 2022, 819: 153078. |
[17] | SHEN X C, YAN M C. Representativity of wide-spaced lower-layer overbank sediment geochemical sampling[J]. Journal of Geochemical Exploration, 1995, 55(1/2/3): 231-248. |
[18] | 成杭新, 谢学锦. 泛滥平原沉积物的超低密度采样代表性研究(一)[J]. 长春地质学院学报, 1997, 27(3): 289-295. |
[19] | DEMETRIADES A. Overbank sediment sampling in Greece: a contribution to the evaluation of methods for the ‘global geochemical baselines’ mapping project[J]. Geochemistry: Exploration, Environment, Analysis, 2008, 8(3/4): 229-239. |
[20] | 聂兰仕. 不同密度数据所圈定的地球化学异常与大型卡林型金矿集区关系: 以黔西南矿集区为例[C]. 中国矿物岩石地球化学学会第15届学术年会论文摘要集, 2015. |
[21] | BIRKE M, RAUCH U, STUMMEYER J. How robust are geochemical patterns? A comparison of low and high sample density geochemical mapping in Germany[J]. Journal of Geochemical Exploration, 2015, 154: 105-128. |
[22] | GOSAR M, ŠAJN R, TERŠIČ T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets[J]. Journal of Geochemical Exploration, 2016, 167: 38-48. |
[23] | 程湘, 胡鹏, 战明国, 等. 低密度地球化学填图在热带雨林区的适用性探索: 以印度尼西亚苏门答腊岛巴东明古鲁地区为例[J]. 高校地质学报, 2021, 27(2): 200-210. |
[24] | 刘东盛, 迟清华, 王学求, 等. 华南—西秦岭地球化学走廊带水系沉积物钴含量影响因素评价[J]. 地质学报, 2023, 97(5): 1655-1669. |
[25] | 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716. |
[26] | WANG X Q. China geochemical baselines: sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39. |
[27] | 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366. |
[28] |
GLOAGUEN T V, PASSE J J. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil[J]. Chemosphere, 2017, 186: 31-42.
DOI PMID |
[29] | 程志中, 王学求, 谢学锦, 等. 黑龙江森林沼泽区超低密度地球化学调查采样介质对比[J]. 物探与化探, 2005, 29(3): 201-204. |
[30] | 郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15. |
[31] | 中国地质调查局. 中国人民共和国地质图1∶2500000[M]. 北京: 中国地图出版社, 2002. |
[32] | ALBANESE S, SADEGHI M, LIMA A, et al. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe[J]. Journal of Geochemical Exploration, 2015, 154: 81-93. |
[33] | 刘东盛, 王学求, 周建, 等. 中国钴地球化学基准值特征及影响因素[J]. 地球学报, 2020, 41(6): 807-817. |
[34] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007. |
[35] | WEN Y B, LI W, YANG Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the Karst region, Southwestern China[J]. Chemosphere, 2020, 245: 125620. |
[36] | FRINA A. Principles and methods in landscape ecology: towards a science of landscape[M]. Dordrecht: Springer, 2006. |
[37] | LARIMER J E, YANITES B J, JUNG S J. A field study on the lithological influence on the interaction between weathering and abrasion processes in bedrock rivers[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(4): e2021JF006418. |
[38] |
刘雪敏, 王学求. 全球尺度地球化学填图计划对比研究[J]. 地学前缘, 2014, 21(2): 275-285.
DOI |
[1] | LI Longxue, WANG Xueqiu, CHI Qinghua, LIU Dongsheng, LIU Hanliang, ZHANG Bimin, ZHOU Jian, XU Shanfa, NIE Lanshi, WANG Wei, LIU Qingqing. Geochemical baseline of nickel in China: Characteristics and influence of geological setting [J]. Earth Science Frontiers, 2025, 32(1): 36-49. |
[2] | HU Qinghai, WANG Xueqiu, ZHANG Bimin, CHI Qinghua, WANG Qiang, SUN Binbin, ZHOU Jian, WANG Wei, Igor ESPINOZA VERDE, Alex AGURTO CORNEJO, Joel OTERO AGUILAR, PAN Wei, LIU Hanliang, TIAN Mi, WU Hui. Geochemical spatial distribution of copper and mineral prospectivity prediction in Peru [J]. Earth Science Frontiers, 2025, 32(1): 205-218. |
[3] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[4] | ZHANG Jingyuan, WANG Xuedong, LIANG Lichuan, DUAN Guilan. Derivation of ecotoxicity thresholds for Co in soils in China [J]. Earth Science Frontiers, 2024, 31(2): 137-146. |
[5] | LU Yiguan, TU Jiarun, SUN Kai, QIN Peng, WANG Huaqing, HE Shengfei, ZHANG Hang, GONG Penghui, GUO Shuo, FANG Ke, HE Wenyan. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian Copperbelt, Central Africa [J]. Earth Science Frontiers, 2021, 28(3): 338-354. |
[6] | LIU Hanliang, NIE Lanshi, SHOJIN Davaa, WANG Xueqiu, CHI Qinghua. Background values of 69 elements in catchment sediments of the China-Mongolia boundary region [J]. Earth Science Frontiers, 2020, 27(3): 202-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||