Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 93-102.DOI: 10.13745/j.esf.sf.2023.9.9
Previous Articles Next Articles
DONG Xin1(), HU Haoran1, ZHANG Xiaoqing1,2,*(
), REN Dajun1,2, ZHANG Shuqin1,2
Received:
2023-06-20
Revised:
2023-09-01
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
DONG Xin, HU Haoran, ZHANG Xiaoqing, REN Dajun, ZHANG Shuqin. A Meta-analysis of the distribution characteristics and ecological risk of heavy metals in mining areas[J]. Earth Science Frontiers, 2024, 31(2): 93-102.
Igeo | 分级 | 污染等级 |
---|---|---|
Igeo<0 | I | 无污染 |
0≤Igeo<1 | II | 轻微污染 |
2≤Igeo<3 | III | 轻度污染 |
2≤Igeo<3 | VI | 中度污染 |
3≤Igeo<4 | V | 偏重污染 |
4≤Igeo<5 | VI | 重度污染 |
Igeo≥5 | VII | 严重污染 |
Table 1 Heavy metal contamination levels based on geo-accumulation index. Adapted from [10].
Igeo | 分级 | 污染等级 |
---|---|---|
Igeo<0 | I | 无污染 |
0≤Igeo<1 | II | 轻微污染 |
2≤Igeo<3 | III | 轻度污染 |
2≤Igeo<3 | VI | 中度污染 |
3≤Igeo<4 | V | 偏重污染 |
4≤Igeo<5 | VI | 重度污染 |
Igeo≥5 | VII | 严重污染 |
潜在生态风险指数ER | 等级 | 风险等级 |
---|---|---|
ER<40 | Ⅰ | 低风险 |
40≤ER<80 | Ⅱ | 中等风险 |
80≤ER<160 | Ⅲ | 高风险 |
160≤ER<320 | Ⅳ | 非常高风险 |
ER≥320 | Ⅴ | 极高风险 |
Table 2 Heavy metal contamination levels based on potential ecological risk index
潜在生态风险指数ER | 等级 | 风险等级 |
---|---|---|
ER<40 | Ⅰ | 低风险 |
40≤ER<80 | Ⅱ | 中等风险 |
80≤ER<160 | Ⅲ | 高风险 |
160≤ER<320 | Ⅳ | 非常高风险 |
ER≥320 | Ⅴ | 极高风险 |
重金属 | 组数(N) | ES+ | ES+的95%CI | PI |
---|---|---|---|---|
总体 | 976 | 0.97 | [0.89,1.05] | 163.8% |
Cd | 148 | 2.22 | [1.91,2.53] | 820.7% |
Hg | 66 | 1.41 | [0.99,1.83] | 309.6% |
Pb | 158 | 0.95 | [0.73,1.16] | 158.6% |
Cu | 149 | 0.95 | [0.80,1.10] | 158.6% |
Zn | 148 | 0.90 | [0.73,1.10] | 146.0% |
As | 97 | 0.71 | [0.45,0.96] | 103.4% |
Ni | 86 | 0.22 | [0.02,1.41] | 24.6% |
Cr | 124 | 0.14 | [0.02,0.25] | 15.0% |
Table 3 Meta-analysis results on the effect of mining on heavy metal concentration in soils
重金属 | 组数(N) | ES+ | ES+的95%CI | PI |
---|---|---|---|---|
总体 | 976 | 0.97 | [0.89,1.05] | 163.8% |
Cd | 148 | 2.22 | [1.91,2.53] | 820.7% |
Hg | 66 | 1.41 | [0.99,1.83] | 309.6% |
Pb | 158 | 0.95 | [0.73,1.16] | 158.6% |
Cu | 149 | 0.95 | [0.80,1.10] | 158.6% |
Zn | 148 | 0.90 | [0.73,1.10] | 146.0% |
As | 97 | 0.71 | [0.45,0.96] | 103.4% |
Ni | 86 | 0.22 | [0.02,1.41] | 24.6% |
Cr | 124 | 0.14 | [0.02,0.25] | 15.0% |
元素 | 元素地累积指数(Igeo) | 各级样品数所占比例/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最小值 | 平均值 | 最大值 | Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | Ⅴ级 | Ⅵ级 | Ⅶ级 | |||
Cd | -4.02 | 2.64 | 9.08 | 12.2 | 18.9 | 10.8 | 11.5 | 18.2 | 14.9 | 13.5 | ||
Hg | -4.79 | 1.6 | 9.88 | 28.8 | 18.2 | 9.1 | 16.7 | 12.1 | 4.5 | 10.6 | ||
Cu | -6.14 | 0.86 | 6.9 | 36.9 | 24.2 | 20.8 | 10.1 | 4.0 | 2.7 | 1.3 | ||
Pb | -7.67 | 0.82 | 7.27 | 40.5 | 17.1 | 19.0 | 6.3 | 8.9 | 5.7 | 2.5 | ||
Zn | -6.02 | 0.78 | 7.25 | 39.9 | 25 | 17.6 | 7.4 | 5.4 | 2.0 | 2.7 | ||
As | -6.97 | 0.44 | 5.35 | 50.5 | 16.5 | 13.4 | 8.2 | 6.2 | 4.1 | 1.0 | ||
Ni | -7.44 | -0.21 | 4.23 | 65.1 | 24.2 | 2.3 | 5.8 | 1.2 | 1.2 | 0 | ||
Cr | -6.87 | -0.41 | 3.05 | 70.2 | 23.4 | 3.2 | 2.4 | 0 | 0 | 0 |
Table 4 Data for geo-accumulation index of heavy metals in soils around mining areas
元素 | 元素地累积指数(Igeo) | 各级样品数所占比例/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最小值 | 平均值 | 最大值 | Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | Ⅴ级 | Ⅵ级 | Ⅶ级 | |||
Cd | -4.02 | 2.64 | 9.08 | 12.2 | 18.9 | 10.8 | 11.5 | 18.2 | 14.9 | 13.5 | ||
Hg | -4.79 | 1.6 | 9.88 | 28.8 | 18.2 | 9.1 | 16.7 | 12.1 | 4.5 | 10.6 | ||
Cu | -6.14 | 0.86 | 6.9 | 36.9 | 24.2 | 20.8 | 10.1 | 4.0 | 2.7 | 1.3 | ||
Pb | -7.67 | 0.82 | 7.27 | 40.5 | 17.1 | 19.0 | 6.3 | 8.9 | 5.7 | 2.5 | ||
Zn | -6.02 | 0.78 | 7.25 | 39.9 | 25 | 17.6 | 7.4 | 5.4 | 2.0 | 2.7 | ||
As | -6.97 | 0.44 | 5.35 | 50.5 | 16.5 | 13.4 | 8.2 | 6.2 | 4.1 | 1.0 | ||
Ni | -7.44 | -0.21 | 4.23 | 65.1 | 24.2 | 2.3 | 5.8 | 1.2 | 1.2 | 0 | ||
Cr | -6.87 | -0.41 | 3.05 | 70.2 | 23.4 | 3.2 | 2.4 | 0 | 0 | 0 |
元素 | 潜在生态风险指数(ER) | 潜在生态风险等级占比/% | |||||||
---|---|---|---|---|---|---|---|---|---|
最小值 | 平均值 | 最大值 | Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | Ⅴ级 | ||
Cd | 2.78 | 1 147.91 | 24 294.64 | 10.8 | 18.2 | 7.4 | 14.9 | 48.6 | |
Hg | 2.16 | 738.99 | 14 294.73 | 21.2 | 15.2 | 15.2 | 16.7 | 31.8 | |
As | 0.12 | 53.64 | 612.36 | 72.2 | 11.3 | 7.2 | 5.2 | 4.1 | |
Pb | 0.04 | 40.64 | 1 159.95 | 80.4 | 7.0 | 8.9 | 1.9 | 1.9 | |
Cu | 1.97 | 31.01 | 894.12 | 85.9 | 8.1 | 3.4 | 1.3 | 1.3 | |
Ni | 0.04 | 10.72 | 140.74 | 96.5 | 1.2 | 2.3 | 0 | 0 | |
Zn | 0.432 | 6.88 | 228.18 | 96.6 | 2.0 | 0.7 | 0.7 | 0 | |
Cr | 0.03 | 3.10 | 24.77 | 100 | 0 | 0 | 0 | 0 |
Table 5 Data for potential ecological risk index of heavy metals in soils around mining areas
元素 | 潜在生态风险指数(ER) | 潜在生态风险等级占比/% | |||||||
---|---|---|---|---|---|---|---|---|---|
最小值 | 平均值 | 最大值 | Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | Ⅴ级 | ||
Cd | 2.78 | 1 147.91 | 24 294.64 | 10.8 | 18.2 | 7.4 | 14.9 | 48.6 | |
Hg | 2.16 | 738.99 | 14 294.73 | 21.2 | 15.2 | 15.2 | 16.7 | 31.8 | |
As | 0.12 | 53.64 | 612.36 | 72.2 | 11.3 | 7.2 | 5.2 | 4.1 | |
Pb | 0.04 | 40.64 | 1 159.95 | 80.4 | 7.0 | 8.9 | 1.9 | 1.9 | |
Cu | 1.97 | 31.01 | 894.12 | 85.9 | 8.1 | 3.4 | 1.3 | 1.3 | |
Ni | 0.04 | 10.72 | 140.74 | 96.5 | 1.2 | 2.3 | 0 | 0 | |
Zn | 0.432 | 6.88 | 228.18 | 96.6 | 2.0 | 0.7 | 0.7 | 0 | |
Cr | 0.03 | 3.10 | 24.77 | 100 | 0 | 0 | 0 | 0 |
[1] | 李如忠, 刘宇昊, 黄言欢, 等. 铜陵某废弃硫铁矿区土壤重金属污染特征及来源解析[J]. 环境科学, 2024, 45(1): 407-416. |
[2] | LIU H, QU M, CHEN J, et al. Heavy metal accumulation in the surrounding areas affected by mining in China: spatial distribution patterns, risk assessment, and influencing factors[J]. Science of the Total Environment, 2022, 825: 154004. |
[3] | SHI J, DU P, LUO H L, et al. Soil contamination with cadmium and potential risk around various mines in China during 2000-2020[J]. Journal of Environmental Management, 2022, 310: 114509. |
[4] | SMITH G D, EGGER M. Meta-analysis: unresolved issues and future developments[J]. British Medical Journal, 1998, 316(7126): 221-225. |
[5] | GATTINGER A, MULLER A, HAENI M, et al. Enhanced top soil carbon stocks under organic farming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 18226-18231. |
[6] | TIAN K, ZHAO Y C, XU X H, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis[J]. Agriculture, Ecosystems and Environment, 2015, 204: 40-50. |
[7] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[8] | BAI Z G, BING Q, GONG R R, et al. Evidence based social science in China Paper 4: the quality of social science systematic reviews and meta-analysis published from 2000-2019[J]. Journal of Clinical Epidemiology, 2022, 141: 132-140. |
[9] | 吴泰相, 刘关键, 李静. 影响系统评价质量的主要因素浅析[J]. 中国循证医学杂志, 2005, 5(1): 51-58. |
[10] | 贾莲, 刘盼盼, 吕琳琳, 等. 鞍山某铁矿区土壤重金属污染评价[J]. 矿产保护与利用, 2018(4): 118-123. |
[11] | HAKANSON L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water research, 1980, 14(8): 975-1001. |
[12] | 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. |
[13] | HUANG Y, WANG L Y, WANG W J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis[J]. Science of the Total Environment, 2019, 651: 3034-3042. |
[14] | 刘宏波. 全国矿区周边土壤重金属浓度变化分析与风险评价[D]. 赣州: 江西理工大学, 2022. |
[15] | 晏利晶, 姜淼, 赵庆良, 等. 基于Meta分析的中国工矿业场地土壤重金属污染评价[J]. 环境科学研究, 2023, 36(1): 9-18. |
[16] | 范振林, 马正己. 中国矿业高质量发展问题探讨[J]. 中国国土资源经济, 2022, 35(8): 17-26. |
[17] | 周润杰. 鄂东矿集区岩浆岩成矿差异性研究及其找矿勘查意义[D]. 武汉: 中国地质大学(武汉), 2022. |
[18] | 唐小平, 冯治汉, 刘生荣, 等. 西北地区区域地球物理调查工作现状与展望[J]. 西北地质, 2022, 55(3): 191-199. |
[19] | 孙丽娜, 金成洙. 猫岭: 王家崴子金矿区伴生元素的分布特征[J]. 辽宁地质, 2001, 18(1): 34-37. |
[20] | 袁珊珊, 肖细元, 郭朝晖. 中国镉矿的区域分布及土壤镉污染风险分析[J]. 环境污染与防治, 2012, 34(6): 51-56, 100. |
[21] | YU C X, PENG B, PELTOLA P, et al. Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China[J]. Environmental Geochemistry and Health, 2012, 34(3): 375-390. |
[22] | 莫斌吉, 雷良奇, 黄祥林, 等. 镉在硫化矿尾矿中的地球化学行为及其污染防治[J]. 有色金属(矿山部分), 2014, 66(2): 34-38. |
[23] | DUAN J C, TAN J H. Atmospheric heavy metals and Arsenic in China: situation, sources and control policies[J]. Atmospheric Environment, 2013, 74: 93-101. |
[24] | 卢小慧, 余方中, 范一鸣, 等. 三门峡某铅厂遗留场地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2023, 44(3): 1646-1656. |
[25] | 孙小丽, 阿不都艾尼·阿不里, 哈力旦·艾赛都力, 等. 基于PMF模型的五彩湾矿区土壤重金属污染空间分布与来源解析[J]. 中国矿业, 2022, 31(11): 62-70. |
[26] | 张旺, 高珍冉, 邰粤鹰, 等. 基于APCS-MLR受体模型的贵州喀斯特矿区水田土壤重金属源解析[J]. 农业工程学报, 2022, 38(3): 212-219. |
[27] | 张骁勇. 尤溪铅锌矿区重金属的迁移和分布研究[D]. 福州: 福建农林大学, 2012. |
[28] | KAN X Q, DONG Y Q, FENG L, et al. Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: a meta-analysis[J]. Chemosphere, 2021, 267: 128909. |
[29] | CHEN H, TENG Y, LU S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512: 143-153. |
[30] | 张迪, 周明忠, 熊康宁, 等. 贵州遵义下寒武统黑色页岩区土壤重金属污染和人体健康风险评价[J]. 环境科学研究, 2021, 34(5): 1247-1257. |
[31] | 李秀华, 赵玲, 滕应, 等. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[32] | FENG X B, QIU G L. Mercury pollution in Guizhou, Southwestern China: an overview[J]. Science of the Total Environment, 2008, 400(1/2/3): 227-237. |
[33] | 朱林宇. 胶东金矿区土壤重金属时空变异及来源解析研究[D]. 济南: 山东师范大学, 2022. |
[34] | 戴前进. 中国混汞法采金地区汞的环境地球化学研究: 以陕西潼关为例[D]. 贵阳: 中国科学院研究生院(地球化学研究所), 2004. |
[35] | 张刚, 王宁, 王艺, 等. 中国金矿开采区环境汞污染[J]. 环境科学与管理, 2012, 37(11): 54-60. |
[36] | 雷力, 周兴龙, 文书明, 等. 我国铅锌矿资源特点及开发利用现状[J]. 矿业快报, 2007, 23(9): 1-4. |
[37] | 吴汉福, 田玲, 邓红江, 等. 贵州某铅锌矿区土壤重金属污染评价[J]. 六盘水师范学院学报, 2016, 28(4): 18-22. |
[38] | 张振磊, 袁建平, 吴丹, 等. 海南昌化铅锌矿废弃地重金属污染评价及其空间分布特征[J]. 湖北农业科学, 2016, 55(12): 3031-3035. |
[39] | XIAO X, ZHANG J X, WANG H, et al. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis[J]. Science of the Total Environment, 2020, 713: 135292. |
[40] | ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289. |
[41] | 唐梦迎, 夏楠, 陈丽. 荒漠矿区琵琶柴重金属富集特征及污染评价[J]. 西南农业学报, 2022, 35(6): 1393-1400. |
[42] | 李小刚, 占长林, 王路, 等. 大冶铁矿尾矿库区土壤重金属垂直分布特征及污染评价[J]. 湖北理工学院学报, 2017, 33(3): 28-33. |
[43] | 韩松豪, 马艳. 浅谈金属尾矿资源的危害及二次开发利用[J]. 黑龙江科技信息, 2017(8): 42. |
[44] | 王海涛, 田玮, 岳昌盛, 等. 金属尾矿土壤重金属污染及修复技术研究现状[J]. 中国资源综合利用, 2022, 40(5): 127-131. |
[45] | SHI J D, ZHAO D, REN F T, et al. Spatiotemporal variation of soil heavy metals in China: the pollution status and risk assessment[J]. Science of the Total Environment, 2023, 871: 161768. |
[1] | MA Jianhua, LIU Jinfeng, ZHOU Yongzhang, ZHENG Yijun, LU Kefei, LIN Xingyu, WANG Hanyu, ZHANG Can. Online monitoring of CO2 using IoT for assessment of leakage risks associated with geological sequestration [J]. Earth Science Frontiers, 2024, 31(4): 139-146. |
[2] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[3] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[4] | TU Chunlin, HE Chengzhong, MA Yiqi, YIN Linhu, TAO Lanchu, YANG Minghua. Pollution Characteristics, Ecological risk and source apportionment of heavy metals in sediments of the Pearl River Basin [J]. Earth Science Frontiers, 2024, 31(3): 410-419. |
[5] | LIU Hai, WEI Wei, SONG Yang, PAN Yang, LI Yingchun. Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County [J]. Earth Science Frontiers, 2024, 31(3): 420-431. |
[6] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[7] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[8] | LEI Ming, ZHOU Yimin, HUANG Darui, HUANG Yayuan, WANG Xinqi, LI Bingyu, DU Huihui, LIU Xiaoli, TIE Boqing. Prevention and control of heavy metal contamination in cropland and in commercial rice in Hunan Province: Current status and practical considerations [J]. Earth Science Frontiers, 2024, 31(2): 173-182. |
[9] | LIU Yongbing, SU Junjie, GUO Wei, WANG Yingnan, YIN Yaqiu. Comparative study on soil remediation of slope-alluvial contaminated arable land in granite areas, northern Hebei Province [J]. Earth Science Frontiers, 2024, 31(2): 196-203. |
[10] | DING Xiang, YUAN Bei, DU Ping, LIU Hupeng, ZHANG Yunhui, CHEN Juan. Heavy metal accumulation in soils of a typical mining community: Driving factors and probabilistic health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 31-41. |
[11] | HAO Mengqiuyue, LIU Daqing, YAN Zhenfei, FENG Chenglian. Short chain chlorinated paraffins in soil: Environmental safety criteria based on ecological risks [J]. Earth Science Frontiers, 2024, 31(2): 54-63. |
[12] | WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China [J]. Earth Science Frontiers, 2024, 31(2): 64-76. |
[13] | GUO Xuehui, HUANG Renliang, WAN Jianhua. Heavy metal pollution in agricultural land around a tailings pond, northern Hubei and ecological and human health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 77-92. |
[14] | WEI Hongbin, LUO Ming, ZHANG Shiwen, ZHOU Pengfei. Effects of different remediation treatments on heavy metals and microorganisms in mining wasteland [J]. Earth Science Frontiers, 2023, 30(5): 541-552. |
[15] | NING Wenjing, XIE Xianming, YAN Liping. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results [J]. Earth Science Frontiers, 2023, 30(4): 470-484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||