

Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 226-238.DOI: 10.13745/j.esf.sf.2024.1.9
Previous Articles Next Articles
					
													HU Ruizhong1,2( ), GAO Wei1, FU Shanling1, SU Wenchao1, PENG Jiantang1, BI Xianwu1
), GAO Wei1, FU Shanling1, SU Wenchao1, PENG Jiantang1, BI Xianwu1
												  
						
						
						
					
				
Received:2023-12-30
															
							
																	Revised:2024-01-08
															
							
															
							
																	Online:2024-01-25
															
							
																	Published:2024-01-25
															
						CLC Number:
HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China[J]. Earth Science Frontiers, 2024, 31(1): 226-238.
 
																													Fig.6 Plot of Δ201Hg vs. Δ199Hg for gold, antimony, and mercury deposits of low-temperature metallogenic province in South China. Modified from [48,52⇓-54].
 
																													Fig.7 Comparison of elemental concentration and element/Na ratio in ore-forming fluids between low-temperature gold deposit and high-temperature tungsten deposit. Adapted from [7].
 
																													Fig.8 Vertical binary model for upper low-temperature, lower high-temperature mineralization in the Youjiang and Xiangzhong ore clustes of low-temperature metallogenic province
 
																													Fig.11 Genetic relationship between the low- and high-temperature metallogenic provinces in South China and deep prospecting prediction. Modified after [7].
| [1] | PIRAJNO F, ERNST R E, BORISENKO A S, et al.  Intraplate magmatism in Central Asia and China and associated metallogeny[J]. Ore Geology Reviews, 2009, 35(2): 114-136. DOI URL | 
| [2] | NALDRETT A J. World-class Ni-Cu-(PGE) deposits: key factors in their genesis[J]. Mineralium Deposita, 1999, 34: 227-240. DOI URL | 
| [3] | RICHARDS J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250. DOI URL | 
| [4] | SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105: 3-41. DOI URL | 
| [5] | HOU Z Q, YANG Z M, LU Y J, et al.  A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250. DOI URL | 
| [6] | GORCZYK W, VOGT K. Tectonics and melting in intra-continental settings[J]. Gondwana Research, 2015, 27(1): 196-208. DOI URL | 
| [7] | 胡瑞忠等. 华南大规模低温成矿作用[M]. 北京: 科学出版社, 2021. | 
| [8] | ZHAO G C, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2015, 222/223: 1-12. DOI URL | 
| [9] | HU R Z, ZHOU M F. Multiple Mesozoic mineralization events in South China: an introduction to the thematic issue[J]. Mineralium Deposita, 2012, 47(6): 579-588. DOI URL | 
| [10] | MAO J W, CHENG Y B, CHEN M H, et al.  Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294. DOI URL | 
| [11] | 胡瑞忠, 毛景文, 华仁民, 等. 华南陆块陆内成矿作用[M]. 北京: 科学出版社, 2015. | 
| [12] | XU Y J, CAWOOD P A, DU Y S. Intraplate orogenesis in response to Gondwana assembly: Kwangsian Orogeny, South China[J]. American Journal of Science, 2016, 316(4): 329-362. DOI URL | 
| [13] | WANG Y J, FAN W M, ZANG G W, et al.  Phanerozoic tectonics of the South China Block: key observations and controversies[J]. Gondwana Research, 2013, 23(4): 1273-1305. DOI URL | 
| [14] | LI Z X, LI X H. Formation of the 1300-km-wide intracontinent orogen and post-orogenic magmatic province in Mesozoic South China[J]. Geology, 2007, 35(2): 179-182. DOI URL | 
| [15] | NI P, WANG G G, LI W S, et al.  A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts, Cathaysia Block, South China[J]. Ore Geology Reviews, 2021, 133: 104088. DOI URL | 
| [16] | 靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 武汉: 中国地质大学(武汉), 2017. | 
| [17] | HU R Z, FU S L, HUANG Y, et al.  The giant South China Mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137: 9-34. DOI URL | 
| [18] | PI Q H, HU R Z, XIONG B, et al.  In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China[J]. Mineralium Deposita, 2017, 52(8): 1179-1190. DOI URL | 
| [19] | GAO W, HU R Z, HOFSTRA A H, et al.  Dating on hydrothermal rutile and monazite from the Badu gold deposit supports an Early Cretaceous age for Carlin-type gold mineralization in the Youjiang Basin, southwestern China[J]. Economic Geology, 2021, 116(6): 1355-1385. DOI URL | 
| [20] | GAO W, HU R Z, HUANG Y, et al. Hydrothermal apatite as a robust U-Th-Pb chronometer for the Carlin-type gold deposits in the Youjiang Basin, SW China[J]. Mineralium Deposita, 2024, 59. https://doi.org/10.1007/s00126-023-01196-6. | 
| [21] | GAO W, MEI L, HU R Z, et al.  Age of Carlin-type gold mineralization in the Youjiang Basin, South China: constraint from hydrothermal zircon geochronology in the Badu dolerite-hosted gold deposit[J]. Ore Geology Reviews, 2023, 163: 105771. DOI URL | 
| [22] | 高伟, 胡瑞忠, 李秋立, 等. 右江盆地卡林型金矿成矿年代学研究进展[J]. 地学前缘, 2024, 31(1): 267-283. | 
| [23] | 中国科学院地球化学研究所. 华南花岗岩类地球化学及其成矿作用[M]. 北京: 科学出版社, 1979. | 
| [24] | 南京大学地质系. 华南不同时代花岗岩类及其与成矿关系[M]. 北京: 科学出版社, 1981. | 
| [25] | HU R Z, BI X W, JIANG G H, et al.  Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, southeastern China[J]. Mineralium Deposita, 47: 623-632. DOI URL | 
| [26] | WEI W F, HU R Z, BI X W, et al.  Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi Province, China[J]. Mineralium Deposita, 2012, 47: 589-605. DOI URL | 
| [27] | ROMER R F, KRONER U. Phanerozoic tin and tungsten mineralization: tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 2017, 31: 60-95. DOI URL | 
| [28] | SU W C, XIA B, ZHANG H T, et al.  Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 2008. 33(3/4): 667-679. DOI URL | 
| [29] | SU W C, HEINRICH C A, PETTKE T, et al.  Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids[J]. Economic Geology, 2009, 104(1): 73-93. DOI URL | 
| [30] | YAN J, HU R Z, LIU S, et al.  NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China: new insights into the origin and evolution of Au-bearing fluids[J]. Ore Geology Reviews, 2018, 92: 29-41. DOI URL | 
| [31] | XIE Z J, XIA Y, CLINE J, et al. Magmatic origin for sediment-hosted Au deposits, Guizhou province, China: in situ chemistry and sulfur isotope composition of pyrites, Shuiyindong and Jinfeng deposits[J]. Economic Geology, 2018, 113(7), 1625-1652. | 
| [32] | LL J X, HU R Z, ZHAO C H, et al.  Sulfur isotope and trace element compositions of pyrite determined by NanoSIMS and LA-ICP-MS: new constraints on the genesis of the Shuiyindong Carlin-like gold deposit in SW China[J]. Mineralium Deposita, 2020, 55: 1279-1298. DOI | 
| [33] | GAO W, HU R Z, MEI L, et al.  Monitoring the evolution of sulfur isotope and metal concentrations across gold-bearing pyrite of Carlin-type gold deposits in the Youjiang Basin. SW China[J]. Ore Geology Reviews, 2022, 147: 104990. DOI URL | 
| [34] | TURNER G, BURNARD P G, FORD J L. Tracing fluid sources and interaction: discussion[J]. Physical Sciences and Engineering, 1993, 344(1670): 127-140. | 
| [35] | 胡瑞忠, 毕献武, TURNER G, 等. 哀牢山金矿带金成矿流体He和Ar同位素地球化学[J]. 中国科学D辑: 地球科学, 1999, 29(4): 321-330. | 
| [36] | Hu R Z, BURNARD P G, et al.  Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China[J]. Chemical Geology, 2004, 203(3/4): 305-317. DOI URL | 
| [37] | STUART F M, BURNARD P G, TAYLOR R P, et al.  Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea[J]. Geochimica et Cosmochimica Acta, 1995, 59(22): 4663-4673. DOI URL | 
| [38] | BURNARD P G, HU R Z, TURNER G, et al.  Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1595-1604. DOI URL | 
| [39] | HU R Z, BURNARD P G, Bi X W, et al.  Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: evidence from He, Ar and C isotopes[J]. Chemical Geology, 2009, 266(1/2): 86-95. DOI URL | 
| [40] | JIN X Y, HOFSTRA A H, ANDREW G H, et al.  Noble gases fingerprint the source and evolution of ore-forming fluids of Carlin-type gold deposits in the Golden Triangle, South China[J]. Economic Geology, 2020, 115(2): 455-469. DOI URL | 
| [41] | GROVES D I, ZHANG L, SANTOSH M. Subduction, mantle metasomatism, and gold: a dynamic and genetic conjunction[J]. Geological Society of America Bulletin, 2020, 132(7/8): 1419-1426. DOI URL | 
| [42] | 胡瑞忠, 陈伟, 毕献武, 等. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约[J]. 地学前缘, 2020, 27(2): 137-150. DOI | 
| [43] | ZHU J, ZHANG Z C, SANTOSH M, et al.  Carlin-style gold province linked to the extinct E’meishan Plume[J]. Earth and Planetary Science Letters, 530: 115940. DOI URL | 
| [44] | BLUM J D, SHERMAN L S, JOHNSON M W. Mercury isotopes in earth and environmental sciences[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 249-269. DOI URL | 
| [45] | SHERMAN L S, BLUM J D, NORDSTROM D K, et al.  Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift[J]. Earth and Planetary Science Letters, 2009, 279(1/2): 86-96. DOI URL | 
| [46] | MOYNIER F, JACKSON M, ZHANG K, et al. The mercury isotopic composition of earth's mantle and the use of mass independently fractionated Hg to test for recycled crust[J]. Geophysical Research Letters, 2020, 48(17): e2021GL094301. | 
| [47] | GRASBY S E, THEM T R, CHEN Z H, et al.  Mercury as a proxy for volcanic emissions in the geologic record[J]. Earth-Science Reviews, 2019, 196: 102880. DOI URL | 
| [48] | DENG C Z, SUN G Y, RONG Y M, et al.  Recycling of mercury from the atmosphere-ocean system into volcanic-arc-associated epithermal gold systems[J]. Geology, 2021, 49(3): 309-313. DOI URL | 
| [49] | YIN R S, CHEN D, PAN X, et al.  Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle[J]. Nature Communications, 2022, 13: 948. DOI PMID | 
| [50] | HU R Z, SU W C, BI X W, et al.  Geology and geochemistry of Carlin-type gold deposits in China[J]. Mineralium Deposita, 2002, 37(3/4): 378-392. DOI URL | 
| [51] | CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 451-484. | 
| [52] | GAO W, HU R Z, WANF X Y, et al. Large-scale basement mobilization endows the giant Carlin-type gold mineralization in the Youjiang Basin, South China: insights from mercury isotopes[J]. Geological Society of America Bulletin, 2023, 135(11/12): 3163-3172. | 
| [53] | FU S L, HU R Z, YIN R S, et al.  Mercury and in situ sulfur isotopes as constraints on the metal and sulfur sources for the world's largest Sb deposit at Xikuangshan, southern China[J]. Mineralium Deposita, 2020, 55: 1353-1364. DOI | 
| [54] | DENG C Z, ZHANG J W, HU R Z, et al.  Mercury isotope constraints on the genesis of Late Mesozoic Sb deposits in South China[J]. Science China: Earth Sciences, 2022, 65(2): 269-281. DOI | 
| [55] | 胡凯. 右江盆地卡林型金矿成矿流体性质与成矿模式研究[D]. 南京: 南京大学, 2015. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||