Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 165-180.DOI: 10.13745/j.esf.sf.2022.5.42
Previous Articles Next Articles
LIU Xiuyan1(), CHEN Honghan1,*(
), XIAO Xuewei1, LI Peijun2, WANG Baozhong2
Received:
2022-01-01
Revised:
2022-01-30
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
LIU Xiuyan, CHEN Honghan, XIAO Xuewei, LI Peijun, WANG Baozhong. Characterization of the shale gas formation process based on fluid inclusion evidence: An example of the Lower Cambrian Niutitang shale formation, Xiushan section, southeastern Chongqing[J]. Earth Science Frontiers, 2023, 30(3): 165-180.
Fig.1 Geological sketch map of southeastern Chongqing (A), and profile (B) and stratigraphy column (C) of the Xiushan section. Modified after [24⇓-26].
脉体 编号 | 层位 | 岩性 | 宿主矿物 产状 | 成因 | 盐水包裹体均一温度/℃ | 盐度(w(NaCl))/% | 流体 幕次 | |||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | |||||||
DQ15-1 | 牛蹄塘组 | 暗色泥岩 | 顺层含黄铁 矿方解石脉 | 原生 | 95.8 ~ 104.9 | 100.3 (n=6) | 0.2 ~ 4.0 | 1.9 (n=4) | C1 | |
DQ12-1 | 牛蹄塘组 | 暗色泥岩 | 顺层方解石脉 | 原生 | 115.5 ~ 128.9 | 123.0 (n=22) | 1.7 ~ 6.2 | 2.5 (n=8) | C2 | |
原生 | 135.6 ~ 153.5 | 144.6 (n=23) | 0 ~ 5.3 | 2.7 (n=18) | C3 | |||||
原生 | 161.6 | 161.6 (n=1) | 5.3 | 5.3 (n=1) | C3 | |||||
次生 | 97.1 ~ 103.5 | 100.4 (n=4) | 2.9 ~ 3.2 | 3.1 (n=2) | C6 | |||||
顺层石英脉 | 原生 | 163.7 ~ 169.8 | 166.9 (n=6) | 5.1 ~ 7.2 | 6.1 (n=5) | Q1 | ||||
次生 | 189.5 ~ 199.9 | 195.1 (n=5) | 11.6 | 11.6 (n=1) | Q2 | |||||
次生 | 230.7 ~ 236.1 | 232.5 (n=3) | — | — | Q3 | |||||
次生 | 120.6 | 120.6 (n=1) | — | — | Q6 | |||||
次生 | 143.4 | 143.4 (n=1) | 17.5 | 17.5 (n=1) | Q5 | |||||
DQ9-1 | 牛蹄塘组 | 暗色泥岩 | 垂直脉中方解石 | 原生 | 124.6 ~ 129.0 | 126.7 (n=3) | 2.7 ~ 4.8 | 3.8 (n=2) | C5 | |
原生 | 139.6 ~ 150.9 | 143.9 (n=6) | 2.4 ~ 7.0 | 4.4 (n=4) | C4 | |||||
垂直脉中方 解石解理面 | 原生 | 104.1 ~ 111.6 | 107.9 (n=4) | 2.1 ~ 4.8 | 3.1 (n=4) | C6 | ||||
垂直脉体壁 上石英 | 原生 | 160.2 | 160.2 (n=1) | 4.6 | 4.6 (n=1) | Q1 | ||||
次生 | 163.1 ~ 172.3 | 167.7 (n=2) | — | — | Q4 | |||||
次生 | 194.5 | 194.5 (n=1) | 6.2 | 6.2 (n=1) | Q2 | |||||
DQ14-1 | 牛蹄塘组 | 暗色泥岩 | 垂直脉中方解石 | 原生 | 150.1 | 150.1 (n=1) | 2.4 | 2.4 (n=1) | C4 | |
垂直脉中方解 石解理面 | 原生 | 107.9 | 107.9 (n=1) | 1.7 | 1.7 (n=1) | C6 | ||||
垂直脉体壁 上石英 | 原生 | 162.1 ~ 166.2 | 165.0 (n=7) | 6.0 ~ 6.7 | 6.3 (n=3) | Q1 | ||||
次生 | 215.8 ~ 225.6 | 220.7 (n=2) | — | — | Q3 | |||||
次生 | 161.1 ~ 171.5 | 164.8 (n=6) | 3.9 ~ 7.2 | 5.5 (n=2) | Q4 | |||||
次生 | 142.0 ~ 158.7 | 151.9 (n=6) | 0.4 ~ 3.5 | 2.3 (n=6) | Q5 | |||||
次生 | 114.5 ~ 126.0 | 118.3 (n=4) | 3.9 | 3.9 (n=1) | Q6 | |||||
DQ14-2 | 牛蹄塘组 | 暗色泥岩 | 垂直脉外侧纤维 状方解石 | 原生 | 135.6 ~ 145.4 | 141.5 (n=7) | 0.9 ~ 8.0 | 4.4 (n=5) | C4 | |
原生 | 164.3 | 164.3 (n=1) | 11.3 | 11.3 (n=1) | C4 | |||||
原生 | 203.8 | 203.8 (n=1) | — | — | C4 | |||||
原生 | 124.1 ~ 134.2 | 129.4 (n=3) | 1.4 ~ 7.3 | 4.4 (n=2) | C5 | |||||
外侧纤维状方解 石解理面 | 原生 | 103.3 ~ 103.4 | 103.4 (n=2) | 0.9 ~ 1.9 | 1.4 (n=2) | C6 |
Table 1 Homogenization temperature and salinity measurements for coeval fluid inclusions in veins
脉体 编号 | 层位 | 岩性 | 宿主矿物 产状 | 成因 | 盐水包裹体均一温度/℃ | 盐度(w(NaCl))/% | 流体 幕次 | |||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | |||||||
DQ15-1 | 牛蹄塘组 | 暗色泥岩 | 顺层含黄铁 矿方解石脉 | 原生 | 95.8 ~ 104.9 | 100.3 (n=6) | 0.2 ~ 4.0 | 1.9 (n=4) | C1 | |
DQ12-1 | 牛蹄塘组 | 暗色泥岩 | 顺层方解石脉 | 原生 | 115.5 ~ 128.9 | 123.0 (n=22) | 1.7 ~ 6.2 | 2.5 (n=8) | C2 | |
原生 | 135.6 ~ 153.5 | 144.6 (n=23) | 0 ~ 5.3 | 2.7 (n=18) | C3 | |||||
原生 | 161.6 | 161.6 (n=1) | 5.3 | 5.3 (n=1) | C3 | |||||
次生 | 97.1 ~ 103.5 | 100.4 (n=4) | 2.9 ~ 3.2 | 3.1 (n=2) | C6 | |||||
顺层石英脉 | 原生 | 163.7 ~ 169.8 | 166.9 (n=6) | 5.1 ~ 7.2 | 6.1 (n=5) | Q1 | ||||
次生 | 189.5 ~ 199.9 | 195.1 (n=5) | 11.6 | 11.6 (n=1) | Q2 | |||||
次生 | 230.7 ~ 236.1 | 232.5 (n=3) | — | — | Q3 | |||||
次生 | 120.6 | 120.6 (n=1) | — | — | Q6 | |||||
次生 | 143.4 | 143.4 (n=1) | 17.5 | 17.5 (n=1) | Q5 | |||||
DQ9-1 | 牛蹄塘组 | 暗色泥岩 | 垂直脉中方解石 | 原生 | 124.6 ~ 129.0 | 126.7 (n=3) | 2.7 ~ 4.8 | 3.8 (n=2) | C5 | |
原生 | 139.6 ~ 150.9 | 143.9 (n=6) | 2.4 ~ 7.0 | 4.4 (n=4) | C4 | |||||
垂直脉中方 解石解理面 | 原生 | 104.1 ~ 111.6 | 107.9 (n=4) | 2.1 ~ 4.8 | 3.1 (n=4) | C6 | ||||
垂直脉体壁 上石英 | 原生 | 160.2 | 160.2 (n=1) | 4.6 | 4.6 (n=1) | Q1 | ||||
次生 | 163.1 ~ 172.3 | 167.7 (n=2) | — | — | Q4 | |||||
次生 | 194.5 | 194.5 (n=1) | 6.2 | 6.2 (n=1) | Q2 | |||||
DQ14-1 | 牛蹄塘组 | 暗色泥岩 | 垂直脉中方解石 | 原生 | 150.1 | 150.1 (n=1) | 2.4 | 2.4 (n=1) | C4 | |
垂直脉中方解 石解理面 | 原生 | 107.9 | 107.9 (n=1) | 1.7 | 1.7 (n=1) | C6 | ||||
垂直脉体壁 上石英 | 原生 | 162.1 ~ 166.2 | 165.0 (n=7) | 6.0 ~ 6.7 | 6.3 (n=3) | Q1 | ||||
次生 | 215.8 ~ 225.6 | 220.7 (n=2) | — | — | Q3 | |||||
次生 | 161.1 ~ 171.5 | 164.8 (n=6) | 3.9 ~ 7.2 | 5.5 (n=2) | Q4 | |||||
次生 | 142.0 ~ 158.7 | 151.9 (n=6) | 0.4 ~ 3.5 | 2.3 (n=6) | Q5 | |||||
次生 | 114.5 ~ 126.0 | 118.3 (n=4) | 3.9 | 3.9 (n=1) | Q6 | |||||
DQ14-2 | 牛蹄塘组 | 暗色泥岩 | 垂直脉外侧纤维 状方解石 | 原生 | 135.6 ~ 145.4 | 141.5 (n=7) | 0.9 ~ 8.0 | 4.4 (n=5) | C4 | |
原生 | 164.3 | 164.3 (n=1) | 11.3 | 11.3 (n=1) | C4 | |||||
原生 | 203.8 | 203.8 (n=1) | — | — | C4 | |||||
原生 | 124.1 ~ 134.2 | 129.4 (n=3) | 1.4 ~ 7.3 | 4.4 (n=2) | C5 | |||||
外侧纤维状方解 石解理面 | 原生 | 103.3 ~ 103.4 | 103.4 (n=2) | 0.9 ~ 1.9 | 1.4 (n=2) | C6 |
Fig.7 Burial history map combined with homogenization temperature data (A), and age constrains on fluid inclusions revealing three stages, multiple episodes of fluid activity (B)
样品编号 | δ13CV-PDB/ ‰ | δ13C/ ‰ (1σ) | δ18OV-PDB/ ‰ | δ18O/ ‰(1σ) |
---|---|---|---|---|
DQ-9-1 | -3.94 | 0.01 | -12.94 | 0.03 |
DQ-12-1 | -6.67 | 0.02 | -12.42 | 0.03 |
DQ-14-1 | -2.31 | 0.01 | -12.36 | 0.02 |
DQ-15-1-1 | -2.23 | 0.02 | -7.09 | 0.03 |
DQ-15-1-2 | 0.27 | 0.02 | -7.49 | 0.05 |
Table 2 Carbon and oxygen isotopes in calcite veins in shale
样品编号 | δ13CV-PDB/ ‰ | δ13C/ ‰ (1σ) | δ18OV-PDB/ ‰ | δ18O/ ‰(1σ) |
---|---|---|---|---|
DQ-9-1 | -3.94 | 0.01 | -12.94 | 0.03 |
DQ-12-1 | -6.67 | 0.02 | -12.42 | 0.03 |
DQ-14-1 | -2.31 | 0.01 | -12.36 | 0.02 |
DQ-15-1-1 | -2.23 | 0.02 | -7.09 | 0.03 |
DQ-15-1-2 | 0.27 | 0.02 | -7.49 | 0.05 |
[1] |
TAN J Q, HORSFIELD B, MAHLSTEDT N, et al. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the Upper Yangtze Platform, South China, as inferred from PhaseKinetics modelling[J]. Marine and Petroleum Geology, 2013, 48: 47-56.
DOI URL |
[2] |
赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1): 31-44.
DOI |
[3] | 伍岳, 樊太亮, 丁怀宇. 上扬子区下寒武统海相页岩岩相类型及沉积模式[J]. 现代地质, 2017, 31(6): 1222-1232. |
[4] |
王濡岳, 龚大建, 丁文龙, 等. 上扬子地区下寒武统牛蹄塘组页岩储层脆性评价: 以贵州岑巩区块为例[J]. 地学前缘, 2016, 23(1): 87-95.
DOI |
[5] | 杨迪, 刘树根, 单钰铭, 等. 上扬子地区牛蹄塘组黑色页岩的力学性质[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 677-687. |
[6] | 王宁, 许锋. 陕南镇巴地区牛蹄塘组页岩沉积环境分析[J]. 矿产勘查, 2019, 10(8): 1764-1774. |
[7] | 白振瑞. 遵义—綦江地区下寒武统牛蹄塘组页岩沉积特征及页岩气评价参数研究[D]. 北京: 中国地质大学(北京), 2012. |
[8] | 胡明毅, 邓庆杰, 胡忠贵. 上扬子地区下寒武统牛蹄塘组页岩气成藏条件[J]. 石油与天然气地质, 2014, 35(2): 272-279. |
[9] | 罗超, 刘树根, 孙玮, 等. 上扬子区下寒武统牛蹄塘组页岩气基本特征研究: 以贵州丹寨南皋剖面为例[J]. 天然气地球科学, 2014, 25(3): 453-470. |
[10] | 胡明毅, 邓庆杰, 邱小松. 上扬子地区下寒武统牛蹄塘组页岩气储层矿物成分特征[J]. 石油天然气学报, 2013, 35(5): 1-6, 16. |
[11] | 刘雯, 邱楠生, 徐秋晨, 等. 四川盆地高石梯—磨溪地区下寒武统筇竹寺组生烃增压定量评价[J]. 石油科学通报, 2018, 3(3): 262-271. |
[12] |
GOLDSTEIN R H. Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos, 2001, 55(1/2/3/4): 159-193.
DOI URL |
[13] |
PARNELL J, MIDDLETON D, CHEN H H, et al. The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d’Arc Basin, offshore Newfoundland[J]. Marine and Petroleum Geology, 2001, 18(5): 535-549.
DOI URL |
[14] |
FENG Y, CHEN H H, HE S, et al. Fluid inclusion evidence for a coupling response between hydrocarbon charging and structural movements in Yitong Basin, Northeast China[J]. Journal of Geochemical Exploration, 2010, 106(1/2/3): 84-89.
DOI URL |
[15] |
GUO X W, LIU K Y, HE S, et al. Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: insight from integrated fluid inclusion analysis and basin modelling[J]. Marine and Petroleum Geology, 2012, 32(1): 21-35.
DOI URL |
[16] |
PING H W, CHEN H H, JIA G H. Petroleum accumulation in the deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China: new insights from fluid inclusions, natural gas geochemistry, and 1-D basin modeling[J]. Marine and Petroleum Geology, 2017, 80: 70-93.
DOI URL |
[17] | 刘秀岩, 陈红汉, 张洪安, 等. 多套烃源岩联合供烃下的原油成藏特征及其与压力的耦合关系:以东濮凹陷濮城地区沙河街组为例[J]. 地球科学, 2020, 45(6): 2210-2220. |
[18] | 尚培, 陈红汉, 胡守志, 等. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程[J]. 地球科学, 2020, 45(3): 1013-1026. |
[19] |
李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415.
DOI |
[20] | 董敏, 张林炎, 王宗秀, 等. 鄂西地区下寒武统牛蹄塘组页岩气成藏及保存条件分析:以XD1井为例[J]. 地球科学, 2019, 44(11): 3616-3627. |
[21] |
ZHANG Y Y, HE Z L, JIANG S, et al. Fracture types in the lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze[J]. Marine and Petroleum Geology, 2019, 99: 282-291.
DOI URL |
[22] |
WU C J, TUO J C, ZHANG M F, et al. Sedimentary and residual gas geochemical characteristics of the Lower Cambrian organic-rich shales in Southeastern Chongqing, China[J]. Marine and Petroleum Geology, 2016, 75: 140-150.
DOI URL |
[23] |
PAN L, XIAO X M, TIAN H, et al. Geological models of gas in place of the Longmaxi shale in Southeast Chongqing, South China[J]. Marine and Petroleum Geology, 2016, 73: 433-444.
DOI URL |
[24] |
CAO X M, YU B S, LI X T, et al. Reservoir characteristics and well-logging evaluation of the Lower Cambrian shales in southeast Chongqing, China[J]. Petroleum Research, 2016, 1(2): 178-190.
DOI URL |
[25] |
LI M, CHEN J F, WANG T G, et al. Nitrogen isotope and trace element composition characteristics of the Lower Cambrian Niutitang Formation shale in the upper-middle Yangtze region, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 501: 1-12.
DOI URL |
[26] |
WU C J, ZHANG L F, ZHANG T W, et al. Reconstruction of paleoceanic redox conditions of the lower Cambrian Niutitang shales in northern Guizhou, Upper Yangtze region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109457.
DOI URL |
[27] | 张灿, 李恒超, 刘大永, 等. 上扬子地区不同构造位置牛蹄塘组页岩孔隙特征的对比研究[J]. 地球化学, 2019, 48(2): 171-183. |
[28] |
BODNAR R J. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.
DOI URL |
[29] |
NIE H K, HE Z L, WANG R Y, et al. Temperature and origin of fluid inclusions in shale veins of Wufeng-Longmaxi Formations, Sichuan Basin, South China: implications for shale gas preservation and enrichment[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107329.
DOI URL |
[30] | 张旺. 渝东南地区下寒武统牛蹄塘组页岩气保存条件研究[D]. 北京: 中国石油大学(北京), 2016. |
[31] | 罗志立, 孙玮, 韩建辉, 等. 峨眉地幔柱对中上扬子区二叠纪成藏条件影响的探讨[J]. 地学前缘, 2012, 19(6): 144-154. |
[32] |
HE L J. Thermal evolution of the Upper Yangtze Craton: secular cooling and short-lived thermal perturbations[J]. Physics of the Earth and Planetary Interiors, 2020, 301: 106458.
DOI URL |
[1] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[2] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[3] | ZHANG Jinchuan, WANG Xiangzeng, LI Zhongming, LIU Shugen, NIU Jialiang, YUAN Tianshu, LI Xingqi, TANG Xuan. Technological progress and trend in shale gas on-site testing—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 315-326. |
[4] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[5] | HONG Tao, ZHAI Mingguo, WANG Yuejun, LIU Xingcheng, XU Xingwang, GAO Jun, HU Mingxi, MA Jing. Coupling relationship between the stability of Li/Be complexes and Li/Be differential enrichment in granitic pegmatites—an experimental study [J]. Earth Science Frontiers, 2023, 30(5): 93-105. |
[6] | ZHANG Tongwei, LUO Huan, MENG Kang. Main factors controlling the shale gas content of Cambrian shales of southern China—a discussion [J]. Earth Science Frontiers, 2023, 30(3): 1-13. |
[7] | WU Chenjun, LIU Xinshe, WEN Zhigang, TUO Jincai. Mechanism of organic matter enrichment and organic pore development in the Lower Cambrian Niutitang shales in northern Guizhou [J]. Earth Science Frontiers, 2023, 30(3): 101-109. |
[8] | TANG Xuan, ZHENG Fengzan, LIANG Guodong, MA Zijie, ZHANG Jiazheng, WANG Yufang, ZHANG Tongwei. Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China [J]. Earth Science Frontiers, 2023, 30(3): 110-123. |
[9] | MENG Kang, SHAO Deyong, ZHANG Liuliu, LI Liwu, ZHANG Yu, LUO Huan, SONG Hui, ZHANG Tongwei. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei—indication for gas-bearing capacity of shale [J]. Earth Science Frontiers, 2023, 30(3): 14-27. |
[10] | XIAO Xuewei, CHEN Honghan, LIU Xiuyan, PENG Zhongqin, LI Peijun, WANG Baozhong. Fluid inclusion evidence on the shale gas formation process in the Lower Cambrian Niutitang Formation in Jishou slope zone, western Hunan Province—a case study of well XJD 1 [J]. Earth Science Frontiers, 2023, 30(3): 181-194. |
[11] | HE Chencheng, CHEN Honghan, XIAO Xuewei, LIU Xiuyan, SU Ao. Differential shale gas generation in the Lower Cambrian Qiongzhusi stage in the Middle-Upper Yangtze region [J]. Earth Science Frontiers, 2023, 30(3): 44-65. |
[12] | ZHANG Yu, HUANG Dejiang, ZHANG Liuliu, WAN Chuanhui, LUO Huan, SHAO Deyong, MENG Kang, YAN Jianping, ZHANG Tongwei. Biogenic silica of the Lower Cambrian Shuijingtuo Formation in Yichang, western Hubei Province—features and influence on shale gas accumulation [J]. Earth Science Frontiers, 2023, 30(3): 83-100. |
[13] | ZHANG Weifeng, CHEN Huayong, DENG Xin, JIN Xinbiao, LIU Shuzhan, TAN Juanjuan. Discriminating characteristics of hydrothermal fluids using epidote mineral chemistry and strontium isotopes: A case study of the Duotoushan Fe-Cu deposit, eastern Tianshan [J]. Earth Science Frontiers, 2023, 30(2): 384-400. |
[14] | WANG Xiangzeng. Low permeability tight oil and gas in Yanchang area, Ordos Basin: Advances in accumulation theory and exploration practice [J]. Earth Science Frontiers, 2023, 30(1): 143-155. |
[15] | FAN Fu, HOU Xianhua, ZHENG Mianping, MENG Fanwei, YANG Zhenjing, MIAO Qing. Homogenization temperature of fluid inclusions in Early-Middle Pleistocene halite from Liang Hole ZK02 in Dalangtan area, Qaidam Basin and its constraints on potash mineralization [J]. Earth Science Frontiers, 2021, 28(6): 105-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||