Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 1-17.DOI: 10.13745/j.esf.sf.2022.11.7
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 6) • Previous Articles Next Articles
GUO Xiaoyu1,2(), LUO Xucong1,2, GAO Rui1,2, XU Xiao1,2,*(
), LU Zhanwu3, HUANG Xingfu4,5, LI Wenhui3, LI Chunsen1,2
Received:
2022-10-20
Revised:
2022-11-07
Online:
2023-03-25
Published:
2023-01-05
Contact:
XU Xiao
CLC Number:
GUO Xiaoyu, LUO Xucong, GAO Rui, XU Xiao, LU Zhanwu, HUANG Xingfu, LI Wenhui, LI Chunsen. Crustal-scale plate interactions beneath the dominant domain in the India-Eurasia collision zone—a tectonogeophysical study[J]. Earth Science Frontiers, 2023, 30(2): 1-17.
Fig.1 Simplified geological maps of the middle section of the dominant domain in the India-Eurasia collision zone and adjacent area. Modified after [5⇓⇓⇓⇓-10].
Fig.3 Comparisons of the magnetotelluric (MT) profile with the 100 km-long deep seismic reflection profile and INDEPTH deep seismic profile across the eastern dominant domain in the collision zone along 92°E. Modified after [8,52-53].
[1] | 任纪舜, 牛宝贵, 赵磊, 等. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 2019, 25(5): 607-612. |
[2] |
ZHANG P Z, SHEN Z K, WANG M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
DOI URL |
[3] | 刘代志, 何继善. 一门新的交叉学科: 构造地球物理学[J]. 中南矿冶学院学报, 1993, 24(6): 719-724. |
[4] |
YIN A, HARRISON T M, MURPHY M, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11): 1644-1664.
DOI URL |
[5] | PAN G T, DING J, YAO D S, et al. Geological map of Qinghai-Xizang Tibet Plateau and adjacent areas (1∶1500000)[CM]. Chengdu: Chengdu Cartographic Publishing House, 2004. |
[6] |
LU Z, GUO X, GAO R, et al. Active construction of southernmost Tibet revealed by deep seismic imaging[J]. Nature Communications, 2022, 13(1): 3143.
DOI PMID |
[7] |
GUO X Y, LI W H, GAO R, et al. Nonuniform subduction of the Indian crust beneath the Himalayas[J]. Scientific Reports, 2017, 7(1): 1-8.
DOI URL |
[8] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395.
DOI URL |
[9] | GUO X Y, LI C S, GAO R, et al. The India-Eurasia convergence system: Late Oligocene to early Miocene passive roof thrusting driven by deep-rooted duplex stacking[J]. Geosystems and Geoenvironment, 2022, 1(1): 1-14. |
[10] | XUE S, CHEN Y, LIANG H, et al. Deep electrical resistivity structure across the Gyaring Co Fault in Central Tibet revealed by magnetotelluric data and its implication[J]. 2021, 809: 228835. |
[11] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[12] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6): 639-649. |
[13] | LIU Z C, WU F Y, JI W Q, et al. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 2014, 208: 118-136. |
[14] |
LEE J, HACKER B, WANG Y. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 2004, 26(12): 2297-2316.
DOI URL |
[15] |
BURG J, BRUNEL M, GAPAIS D, et al. Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China)[J]. Journal of Structural Geology, 1984, 6(5): 535-542.
DOI URL |
[16] |
GUO L, ZHANG J J, ZHANG B. Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya[J]. Progress in Natural Science, 2008, 18(7): 851-860.
DOI URL |
[17] |
TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12): 1139-1142.
DOI URL |
[18] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015(1): 1-36. |
[19] |
KELLETT D A, GRUJIC D, ERDMANN S. Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: implications for continental collision[J]. Lithosphere, 2009, 1(5): 259-281.
DOI URL |
[20] |
SEARLE M, SIMPSON R, LAW R, et al. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet[J]. Journal of the Geological Society, 2003, 160(3): 345-366.
DOI URL |
[21] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1/2): 1-131.
DOI URL |
[22] |
MARK HARRISON T, LOVERA O M, GROVE M. New insights into the origin of two contrasting Himalayan granite belts[J]. Geology, 1997, 25(10): 899-902.
DOI URL |
[23] |
MONTEL J M. A model for monazite/melt equilibrium and application to the generation of granitic magmas[J]. Chemical Geology, 1993, 110(1/2/3): 127-146.
DOI URL |
[24] |
GAO P, ZHENG Y F, MAYNE M J, et al. Miocene high-temperature leucogranite magmatism in the Himalayan orogen[J]. Geological Society of America Bulletin, 2021, 133(3/4): 679-690.
DOI URL |
[25] | 潘桂棠, 王培生, 徐耀荣. 青藏高原新生代构造演化[M]. 北京: 地质出版社, 1990. |
[26] |
DING L, SPICER R, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-223.
DOI URL |
[27] |
ZHU D C, ZHAO Z D, NIU Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[28] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. |
[29] | MENG Y K, XU Z Q, MA S W, et al. The 40Ar/39Ar geochronological constraints on the Xaitongmoin-Quxu ductile shear zone in the Gangdese batholith, southern Xizang (Tibet)[J]. Geological Review, 2016, 62(4): 795-806. |
[30] | QUIDELLEUR X, GROVE M, LOVERA O M, et al. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2659-2679. |
[31] | XIANG S Y, ZHANG S Z, HU J R, et al. Activation of the Mila-Mountain fault in Tibet, evidence from apatite fission track geochronology[J]. Earth Science, 2012, 37(Suppl 2): 39-46. |
[32] |
DEPAOLO D J, HARRISON T M, WIELICKI M, et al. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet[J]. Gondwana Research, 2019, 73: 123-135.
DOI URL |
[33] | TAYLOR M, FORTE A, LASKOWSKI A, et al. Active uplift of southern Tibet revealed[J]. GSA Today, 2021, 31: 4-10. |
[34] | ZHU D C, WANG Q, ZHAO Z D, et al. Magmatic record of India-Asia collision[J]. Scientific Reports, 2015, 5(1): 1-9. |
[35] |
LEE H Y, CHUNG S L, LO C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477(1/2): 20-35.
DOI URL |
[36] |
CHUNG S L, LIU D Y, JI J Q, et al. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1025.
DOI URL |
[37] |
NáBLEK J, HETéNYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1375.
DOI PMID |
[38] |
HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110(6): 1541-1575.
DOI URL |
[39] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
DOI URL |
[40] |
ZHU D C, WANG Q, CAWOOD P A, et al. Raising the Gangdese mountains in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 214-223.
DOI URL |
[41] | ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676. |
[42] | MA X X, MEERT J G, XU Z Q, et al. Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet[J]. Lithos, 2017, 278: 126-139. |
[43] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[44] |
NIU Y L, ZHAO Z D, ZHU D C, et al. Continental collision zones are primary sites for net continental crust growth: a testable hypothesis[J]. Earth-Science Reviews, 2013, 127: 96-110.
DOI URL |
[45] |
WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150: 68-94.
DOI URL |
[46] | CHUNG S L, CHU M F, ZHANG Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196. |
[47] |
ZHANG P, NAJMAN Y, MEI L F, et al. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics[J]. Earth-Science Reviews, 2019, 192: 601-630.
DOI URL |
[48] |
MARK N, SCHOFIELD N, GARDINER D, et al. Overthickening of sedimentary sequences by igneous intrusions[J]. Journal of the Geological Society, 2019, 176(1): 46-60.
DOI |
[49] |
DING L, LAI Q Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision[J]. Chinese Science Bulletin, 2003, 48(15): 1604-1610.
DOI URL |
[50] |
FAN S, MURPHY M A. Three-dimensional strain accumulation and partitioning in an arcuate orogenic wedge: an example from the Himalaya[J]. Geological Society of America Bulletin, 2021, 133(1/2): 3-18.
DOI URL |
[51] | VEEKEN P P. Seismic stratigraphy and depositional facies models[M]. Netherlands: Academic Press, 2013. |
[52] |
HAUCK M, NELSON K, BROWN L, et al. Crustal structure of the Himalayan orogen at -90° east longitude from Project INDEPTH deep reflection profiles[J]. Tectonics, 1998, 17(4): 481-500.
DOI URL |
[53] |
UNSWORTH M, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
DOI URL |
[54] | XIE C L, JIN S, WEI W B, et al. Middle crustal partial melting triggered since the Mid-Miocene in southern Tibet: insights from magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022435. |
[55] |
XIE C L, JIN S, WEI W B, et al. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data[J]. Earth, Planets Space, 2017, 69(1): 1-17.
DOI URL |
[56] |
ZHAO W J, NELSON K, CHE J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455): 557-566.
DOI URL |
[57] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
DOI URL |
[58] |
INFANTE-PAEZ L, MARFURT K J. Seismic expression and geomorphology of igneous bodies: a Taranaki Basin, New Zealand, case study[J]. Interpretation, 2017, 5(3): SK121-SK40.
DOI URL |
[59] | MOLNAR P, STOCK J M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3): 1-11. |
[60] |
PATRIAT P, ACHACHE J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates[J]. Nature, 1984, 311(5987): 615-621.
DOI URL |
[61] |
ZHU D C, WANG Q, CHUNG S L, et al. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma[J]. Geological Society, London, Special Publications, 2019, 483(1): 583-604.
DOI URL |
[62] | PUSOK A E, STEGMAN D R. The convergence history of India-Eurasia records multiple subduction dynamics processes[J]. Science Advances, 2020, 6(19): eaaz8681. |
[63] |
KLOOTWIJK C T, GEE J S, PEIRCE J W, et al. An early India-Asia contact: paleomagnetic constraints from Ninetyeast ridge, ODP Leg 121[J]. Geology, 1992, 20(5): 395-403.
DOI URL |
[64] | 李秋耘, 杨志明, 王瑞, 等. 西藏驱龙矿区中新世侵入岩锆石微量和 Hf-O 同位素研究[J]. 岩石矿物学杂志, 2021, 40(6): 1023-1048. |
[65] |
XUE S, CHEN Y, LIANG H D, et al. Deep electrical resistivity structure across the Gyaring Co Fault in central Tibet revealed by magnetotelluric data and its implication[J]. Tectonophysics, 2021, 809: 228835.
DOI URL |
[66] |
NELSON K. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results[J]. Geophysical Journal International, 1991, 105(1): 25-35.
DOI URL |
[67] |
YAN M D, ZHANG D W, FANG X M, et al. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: implications for the evolution of the Paleo-and Meso-Tethys[J]. Gondwana Research, 2016, 39: 292-316.
DOI URL |
[68] |
HAMMER P T, CLOWES R M, COOK F A, et al. The Lithoprobe trans-continental lithospheric cross sections: imaging the internal structure of the North American continent[J]. Canadian Journal of Earth Sciences, 2010, 47(5): 821-857.
DOI URL |
[69] | QUIDELLEUR X, GROVE M, LOVERA O M, et al. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2659-2679. |
[70] | MENG Y, XU Z, MA S, et al. The 40Ar/39Ar Geochronological constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, southern Xizang( Tibet)[J]. Geological Review, 2016, 62(4): 795-806. |
[71] |
YIN A, HARRISON T M, MURPHY M, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11): 1644-1664.
DOI URL |
[72] | XIANG S, ZHANG S, HU J, et al. Activation of the Mila-Mountain fault in Tibet: evidence from apatite fission track geochronology[J]. Earth Science: Journal of China University of Geosciences, 2012, 37: 39-46. |
[73] |
WU Y, GUO X Y, GAO R, et al. Deep seismic reflection insights into syn-Rodinian crustal recycling[J]. Precambrian Research, 2021, 354: 106075.
DOI URL |
[74] |
YAN H Y, LONG X P, LI J, et al. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 456-475.
DOI URL |
[75] |
HACKER B R, KELEMEN P B, BEHN M D. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 501-516.
DOI URL |
[76] |
ZHANG Z, DONG X, XIANG H, et al. Reworking of the Gangdese magmatic arc, southeastern Tibet: post-collisional metamorphism and anatexis[J]. Journal of Metamorphic Geology, 2015, 33(1): 1-21.
DOI URL |
[77] |
BURKE W B, LASKOWSKI A K, ORME D A, et al. Record of crustal thickening and synconvergent extension from the Dajiamang Tso Rift, southern Tibet[J]. Geosciences, 2021, 11(5): 209.
DOI URL |
[78] | SUNDELL K E, LASKOWSKI A K, KAPP P A, et al. Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet[J]. GSA Today, 2021, 31(6): 4-10. |
[79] |
ZHENG Y C, HOU Z Q, FU Q, et al. Mantle inputs to Himalayan anatexis: insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 2016, 264: 125-140.
DOI URL |
[1] | ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust [J]. Earth Science Frontiers, 2024, 31(1): 28-45. |
[2] | LI Chunsen, XU Xiao, XIANG Bo, GUO Xiaoyu, WU You, WU Jiajie, LUO Xucong, YU Jiahao, TONG Xiaofei, YUAN Zizhao, LIN Yanqi. Moho geometry in the eastern North Himalayan tectonic belt: An example of the receiver function 3DCCP method [J]. Earth Science Frontiers, 2023, 30(2): 57-67. |
[3] | . [J]. Earth Science Frontiers, 2017, 24(5): 138-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||