Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 23-34.DOI: 10.13745/j.esf.sf.2020.5.55
Previous Articles Next Articles
HOU Xiaolin1,2(), XU Jishang1,2,3,*(
), JIANG Zhaoxia1,2,3, CAO Lihua1,2,3, ZHANG Qiang4, LI Guangxue1,2,3, WANG Shuang5, ZHAI Ke6
Received:
2020-03-11
Revised:
2020-05-27
Online:
2022-09-25
Published:
2022-08-24
Contact:
XU Jishang
CLC Number:
HOU Xiaolin, XU Jishang, JIANG Zhaoxia, CAO Lihua, ZHANG Qiang, LI Guangxue, WANG Shuang, ZHAI Ke. Environmental magnetic characteristics of sediments of the western tropical Pacific: Response to the East Asian Winter Monsoon[J]. Earth Science Frontiers, 2022, 29(5): 23-34.
[1] | 胡石建. 西太平洋暖池变异及其机制研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2013: 2-3. |
[2] | WEBSTER P J, MAGAÑA V O, PALMER T N, et al. Monsoons: processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14451-14510. |
[3] |
REA D K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind[J]. Reviews of Geophysics, 1994, 32(2): 159-195.
DOI URL |
[4] |
SHAO Y P, WYRWOLL K H, CHAPPELL A, et al. Dust cycle: an emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.
DOI URL |
[5] |
REA D K, LEINEN M. Asian aridity and the zonal westerlies: late Pleistocene and Holocene record of eolian deposition in the northwest Pacific Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 66(1/2): 1-8.
DOI URL |
[6] |
WINCKLER G, ANDERSON R F, FLEISHER M Q, et al. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica[J]. Science, 2008, 320(5872): 93-96.
DOI URL |
[7] | WAN S M, YU Z J, CLIFT P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326/327/328: 152-159. |
[8] |
XU Z K, LI T G, CLIFT P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196.
DOI URL |
[9] |
SHEN X Y, WAN S M, FRANCE-LANORD C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296-308.
DOI URL |
[10] |
XIONG Z F, LI T G, CROSTA X, et al. Potential role of giant marine diatoms in sequestration of atmospheric CO2 during the Last Glacial Maximum: 13C evidence from laminated Ethmodiscus rex mats in tropical West Pacific[J]. Global and Planetary Change, 2013, 108: 1-14.
DOI URL |
[11] |
MUHS D R. The geologic records of dust in the Quaternary[J]. Aeolian Research, 2013, 9: 3-48.
DOI URL |
[12] | 李波, 石显耀, 李学杰, 等. 西菲律宾海西部沉积物磁学特征及其环境意义[J]. 地质科技情报, 2016, 35(5): 34-41. |
[13] | THOMPSON R, OLDFIELD E. Environmental magnetism[M]. London: Allen and Unwin, 1986. |
[14] |
REYNOLDS R L, KING J W. Magnetic records of climate change[J]. Reviews of Geophysics, 1995, 33(S1): 101-110.
DOI URL |
[15] | VEROSUB K L, ROBERTS A P. Environmental magnetism: past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175-2192. |
[16] | DEKKERS M J. Environmental magnetism: an introduction[J]. Geologie En Mijnbouw, 1997, 76(1/2): 163-182. |
[17] | LIU Q S, BANERJEE S K, JACKSON M J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3): B03101. |
[18] | DENG C L, VIDIC N J, VEROSUB K L, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B3): B03103. |
[19] |
TORRENT J, LIU Q S, BLOEMENDAL J, et al. Magnetic enhancement and iron oxides in the upper Luochuan loess-paleosol sequence, Chinese Loess Plateau[J]. Soil Science Society of America Journal, 2007, 71(5): 1570-1578.
DOI URL |
[20] | YAMAZAKI T. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: temporal variations of detrital and biogenic components[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07Z04. |
[21] | 谢一璇, 杨小强, 张伙带, 等. 西太平洋深海沉积物记录的-80 ka以来风尘物质输入与东亚冬季风强度[J]. 古地理学报, 2019, 21(5): 855-868. |
[22] | 田举. 雅浦海沟南缘及附近海域表层沉积物特征和物源研究[D]. 青岛: 中国海洋大学, 2019. |
[23] |
MAHER B A. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance[J]. Aeolian Research, 2011, 3(2): 87-144.
DOI URL |
[24] | FERGUSON W S, GRIFFIN J J, GOLDBERG E D. Atmospheric dusts from the North Pacific: a short note on a long-range eolian transport[J]. Journal of Geophysical Research: Oceans and Atmospheres, 1970, 75(6): 1137-1139. |
[25] | 姜兆霞, 刘青松. 上新世末期-更新世早期西北太平洋ODP882A孔沉积物的磁学特征及其古气候意义[J]. 中国科学: 地球科学, 2011, 41(9): 1242-1252. |
[26] | ARNOLD E, LEINEN M, KING J. Paleoenvironmental variation based on the mineralogy and rock-magnetic properties of sediment from sites 885 and 886[C]// REA D K, BASOVI A, SCHOLLD W, et al.Proceedings of the ocean drilling program, scientific results, Vol. 145. College Station, Texas: TX Ocean Drilling Program, 1995: 231-245. |
[27] |
BAILEY I, LIU Q S, SWANN G E A, et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of Northern Hemisphere glaciation[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 253-265.
DOI URL |
[28] |
BARRÓN V, TORRENT J, DE GRAVE E. Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite[J]. American Mineralogist, 2003, 88(11/12): 1679-1688.
DOI URL |
[29] |
ZHANG Q, LIU Q S, LI J H, et al. An integrated study of the eolian dust in pelagic sediments from the north Pacific Ocean based on environmental magnetism, transmission electron microscopy, and diffuse reflectance spectroscopy[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3358-3376.
DOI URL |
[30] | 刘子洲, 李培良, 王雪竹, 等. 太平洋气候态环流场的数值模拟及其季节性变化特征[J]. 中国海洋大学学报(自然科学版), 2013, 43(11): 17-26. |
[31] |
HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308.
DOI URL |
[32] | LUKAS R, YAMAGATA T, MCCREARY J P. Pacific low-latitude western boundary currents and the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12209-12216. |
[33] | 李博. 北太平洋低纬度西边界环流的季节和年际变异特征与机制[D]. 青岛: 中国科学院研究生院(海洋研究所), 2016: 6. |
[34] |
SIEDLER G, HOLFORT J, ZENK W, et al. Deep-water flow in the Mariana and Caroline basins[J]. Journal of Physical Oceanography, 2004, 34(3): 566-581.
DOI URL |
[35] |
LEA D W, PAK D K, SPERO H J. Climate impact of late quaternary equatorial Pacific Sea surface temperature variations[J]. Science, 2000, 289(5485): 1719-1724.
DOI URL |
[36] |
DENG C, ZHU R, JACKSON M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: a pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11/12): 873-878.
DOI URL |
[37] |
LIU Q S, DENG C L, YU Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
DOI URL |
[38] |
DAY R, FULLER M, SCHMIDT V A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence[J]. Physics of the Earth and Planetary Interiors, 1977, 13(4): 260-267.
DOI URL |
[39] | DUNLOP D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 2056. |
[40] | DUNLOP D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 2057. |
[41] |
PIKE C R, ROBERTS A P, VEROSUB K L. Characterizing interactions in fine magnetic particle systems using first order reversal curves[J]. Journal of Applied Physics, 1999, 85(9): 6660-6667.
DOI URL |
[42] |
MUXWORTHY A R, DUNLOP D J. First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature[J]. Earth and Planetary Science Letters, 2002, 203(1): 369-382.
DOI URL |
[43] | 王双. 黄渤海表层沉积物磁学特征及其环境指示意义[D]. 青岛: 中国海洋大学, 2014. |
[44] | 张凯棣, 李安春, 卢健, 等. 东海陆架沉积物环境磁学特征及其物源指示意义[J]. 海洋与湖沼, 2017, 48(2): 246-257. |
[45] | 段宗奇, 高星, 刘青松. 非磁滞剩磁(ARM)及其在地学中的应用[J]. 地球物理学进展, 2012, 27(5): 1929-1938. |
[46] |
JIANG F Q, ZHOU Y, NAN Q Y, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research: Oceans, 2016, 121(9): 6911-6928.
DOI URL |
[47] |
SEO I, LEE Y I, YOO C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11492-11504.
DOI URL |
[48] | LEINEN M. Quartz content of northwest Pacific hole 576A and implications for Cenozoic eolian transport[R]// Initial Reports of the Deep Sea Drilling Project, 86. Washington: U.S. Government Printing Office, 1985, 86: 581-588. |
[49] | SUN D H, AN Z S, SU R X, et al. The aeolian sedimentary records on the monsoon and westerlies circulation in northern China since recent 2.6 Ma[J]. Science in China (Series D), 2003, 33(6): 497-504. |
[50] | 陈康, 徐继尚, 李广雪, 等. 雅浦海沟南缘海底表层矿物碎屑粒度特征及其物源指示[J]. 海洋地质与第四纪地质, 2020, 40(5): 46-57. |
[51] | 温强. 南海ODP1148站位岩芯新近纪以来的环境磁学特征及其对气候、构造的响应[D]. 北京: 中国地质大学(北京), 2016: 55. |
[1] | JIANG Zhaoxia, LI Sanzhong, SUO Yanhui, WU Lixin. Prospects for submarine hydrogen exploration and extraction technologies [J]. Earth Science Frontiers, 2024, 31(4): 183-190. |
[2] | XU Zhihao, YAN Guoying, YANG Zongfeng, WANG Zhaojing, SHEN Junfeng, ZHANG Mengmeng, LI Peipei, XU Kexin. Typomorphic characteristics of magnetite and prediction of deep iron-rich orebody in the Bayan Obo ore deposit [J]. Earth Science Frontiers, 2023, 30(2): 426-439. |
[3] | GUAN Yulong, CHEN Liang, JIANG Zhaoxia, LI Sanzhong, XIAO Chunfeng, CHEN Long. Source-sink processes, paleoenvironment and paleomonsoon evolution in the Northeast Indian Ocean [J]. Earth Science Frontiers, 2022, 29(5): 102-118. |
[4] | YANG Ziyang, REN Denglong, HE Zhipeng, LI Xuegang, SONG Jinming, YUAN Huamao, DUAN Liqin, LI Ning, ZHANG Qian. Exploring biomineralization in the tropical western Pacific sediments based on phospholipid fatty acid analysis [J]. Earth Science Frontiers, 2022, 29(4): 93-102. |
[5] | ZHANG Yang, XU Jishang, LI Guangxue, LIU Yong. ENSO-like patterns and its driving mechanism in Western Pacific Warm Pool during the glacial cycles [J]. Earth Science Frontiers, 2022, 29(4): 168-178. |
[6] | YANG Yubo, SU Shangguo, HUO Yan’an, NING Yage, GU Dapeng. Formation mechanism of Hanxing type iron deposit: Evidence from the iron-bearing melt-fluid assemblage in porphyritic monzonite from Wu’an, Hebei Province [J]. Earth Science Frontiers, 2022, 29(3): 304-318. |
[7] | YAO Huiqiang, LIU Yonggang, ZHANG Huodai, LIANG Donghong, REN Jiangbo, YU Miao, DENG Xiguang, HE Gaowen. Distribution characteristics of cobalt-rich ferromanganese crust on the Weijia Guyot: Constraints from the human-occupied vehicle “Jiaolong submersible” near-bottom observation data [J]. Earth Science Frontiers, 2021, 28(6): 331-342. |
[8] | HONG Shuang, ZUO Renguang, HU Hao, XIONG Yihui, WANG Ziye. Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 87-96. |
[9] | REN Jiangbo, DENG Yinan, LAI Peixin, HE Gaowen, WANG Fenlian, YAO Huiqiang, DENG Xiguang, LIU Yonggang. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area [J]. Earth Science Frontiers, 2021, 28(2): 412-425. |
[10] | MA Jun, SONG Jinming, LI Xuegang, YUAN Huamao, LI Ning, DUAN Liqin, WANG Qidong. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean [J]. Earth Science Frontiers, 2020, 27(4): 322-331. |
[11] | HOU Xiaoyang,SU Shangguo,YANG Yueyue. Magnetite characteristics of the Yushiwa iron deposit in Wu‘an, Hebei Province and its indication significance to the genesis of iron deposit [J]. Earth Science Frontiers, 2019, 26(6): 244-256. |
[12] | CHEN Yinghua,LAN Tingguang,WANG Hong,TANG Yanwen,DAI Zhihui. LA-ICP-MS trace element characteristics of magnetite from the Zhangjiawa iron deposit, Laiwu and constraints on metallogenic processes. [J]. Earth Science Frontiers, 2018, 25(4): 32-49. |
[13] | ZHENG Meng-Tian, ZHANG Lian-Chang, SHU Meng-Tian, LI Zhi-Quan. Geological characteristics, formation age and genesis of the Kalaizi BaFe deposit in West Kunlun. [J]. Earth Science Frontiers, 2016, 23(5): 252-265. |
[14] | . Petrologic and geochemical research of Xiaohalajunshan gabbro in Southwest Tianshan Mts., Xinjiang. [J]. Earth Science Frontiers, 2011, 18(2): 180-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||