Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 295-308.DOI: 10.13745/j.esf.sf.2021.1.3
Previous Articles Next Articles
ZENG Qingdong1,2,3(), DI Qingyun2,3,4,*(
), XUE Guoqiang1,2,3, WANG Gongwen5, JING Linhai6
Received:
2021-01-10
Revised:
2021-03-22
Online:
2021-05-20
Published:
2021-05-23
Contact:
DI Qingyun
CLC Number:
ZENG Qingdong, DI Qingyun, XUE Guoqiang, WANG Gongwen, JING Linhai. Modern science and technology in metallogenic and prospecting model studies[J]. Earth Science Frontiers, 2021, 28(3): 295-308.
Fig.3 A geological model of gold deposits prospecting and prediction for the Wulong ore-bearing district, Eastern Liaoning Province. Modified after [7].
Fig.4 Quantitative distribution patterns of Au in the pyrite grains (Py1, Py2, Py4) from the Pardo paleo-placer gold deposit, in Canada. Modified after [33].
Fig.5 Structural superposition of halo anomaly model and practical model of lateral trending ore body in hydrothermal gold deposit. Modified after [117].
[1] | 苏轶娜. 我国重要矿产资源供需形势研究[J]. 中国国土资源经济, 2019, 32(7):46-51. |
[2] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2):106-111. |
[3] | 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 3版. 北京: 地质出版社, 2011: 1-413. |
[4] |
LOWELL J D, GUILBERT J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970, 65:373-408.
DOI URL |
[5] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105:3-41.
DOI URL |
[6] | 赵鹏大, 池顺都, 李志德, 等. 矿产勘查理论与方法[M]. 武汉: 中国地质大学出版社, 2006: 1-334. |
[7] | 王登红, 唐菊兴, 应立娟, 等. “五层楼+地下室”找矿模型的适用性及其对深部找矿的意义[J]. 吉林大学学报(地球科学版), 2010, 40(4):733-738. |
[8] | 曾庆栋, 陈仁义, 杨进辉, 等. 辽东地区金矿床类型、 成矿特征及找矿潜力[J]. 岩石学报, 2019, 35(7):1939-1963. |
[9] | 裴荣富, 吴良士. 金属成矿省的地质历史演化和成矿年代学研究新进展[J]. 矿床地质, 1993, 12(3):285-286. |
[10] | 侯增谦, 曲晓明, 王淑贤, 等. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用[J]. 中国科学D辑: 地球科学, 2003, 33(7):609-618. |
[11] | 唐菊兴, 陈毓川, 王登红, 等. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J]. 地质学报, 2009, 83(5):698-704. |
[12] |
SUN G T, ZENG Q D, LI T Y, et al. Ore genesis of the Baiyun gold deposit in Liaoning Province, NE China: constraints from fluid inclusions and zircon U-Pb ages[J]. Arabian Journal of Geosciences, 2019, 12(9):1-17.
DOI URL |
[13] |
SUN G T, ZENG Q D, ZHOU L L, et al. Trace element contents and in-situ sulfur isotope analyses of pyrite in the Baiyun gold deposit, NE China: implication for the genesis of intrusion-related gold deposits[J]. Ore Geology Reviews, 2020, 118. DOI: 10.1016/j.oregeorev.2020.103330.
DOI |
[14] |
GEVEDON M, SEMAN S, BARNES J D, et al. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J]. Earth and Planetary Science Letters, 2018, 498:237-246.
DOI URL |
[15] | 陈公正, 武广, 李铁刚, 等. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义[J]. 矿床地质, 2018, 37(2):225-245. |
[16] |
MA W D, FAN H R, LIU X, et al. Geochronological framework of the Xiadian gold deposit in the Jiaodong Province, China: implications for the timing of gold mineralization[J]. Ore Geology Reviews, 2017, 86:196-211.
DOI URL |
[17] |
ZENG Q D, LIU J M, CHU S X, et al. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 2014, 79:895-909.
DOI URL |
[18] |
ZENG Q D, LIU J M, QIN K Z, et al. Types, characteristics, and time-space distribution of molybdenum deposits in China[J]. International Geology Review, 2013, 55(11):1311-1358.
DOI URL |
[19] | 王浩洋, 赵正, 陈伟, 等. 江西梅树坪钨钼矿床地质、 成岩成矿时代与找矿方向[J]. 地学前缘, 2017, 24(5):109-119. |
[20] |
GÜNAY K, DÖNMEZ C, OYAN V, et al. Geology, geochemistry and Re-Os geochronology of the Jurassic Zeybek volcanogenic massive sulfide deposit (Central Pontides, Turkey)[J]. Ore Geology Reviews, 2019, 111. DOI: 10.1016/j.oregeorev.2019.102994.
DOI |
[21] |
ZHAO L T, WANG J B, WANG Y W, et al. Pyrite Re-Os geochronology of the Sareke sediment-hosted Cu deposit, Xinjiang, NW China[J]. Ore Geology Reviews, 2019, 104:620-627.
DOI URL |
[22] | 王加昇, 温汉捷, 李超, 等. 黔东南石英脉型金矿毒砂Re-Os同位素定年及其地质意义[J]. 地质学报, 2011, 85(6):955-964. |
[23] | 郑震, 陈衍景, 邓小华, 等. 东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J]. 中国地质, 2016, 43(4):1341-1352. |
[24] |
POLLARD P J, TAYLOR R G, PETERS L, et al. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: implications for genetic models[J]. Mineralium Deposita, 2019, 54(3):329-346.
DOI URL |
[25] | 杨进辉, 周新华. 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代[J]. 科学通报, 2000, 45(14):1547-1553. |
[26] |
WANG Y B, ZENG Q D, LIU J M. Rb-Sr dating of gold-bearing pyrites from Wulaga gold deposit and its geological significance[J]. Resource Geology, 2014, 64(3):262-270.
DOI URL |
[27] |
GUO W K, ZENG Q D, GUO Y P, et al. Rb-Sr dating of sphalerite and S-Pb isotopic studies of the Xinxing crypto-explosive breccia Pb-Zn-(Ag) deposit in the southeastern segment of the Lesser Xing’an-Zhangguangcai metallogenic belt, NE China[J]. Ore Geology Reviews, 2018, 99:75-85.
DOI URL |
[28] |
GUO Z J, LI J W, XU X Y, et al. Sm-Nd dating and REE composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China[J]. Lithos, 2016, 261:307-321.
DOI URL |
[29] | 杨世文, 丰成友, 楼法生, 等. 赣南隆坪萤石矿床成矿时代及成因初探: 来自萤石Sm-Nd测年及黑云母电子探针的证据[J]. 高校地质学报, 2019, 25(3):341-351. |
[30] | 李林积, 李堂积, 王丹. 西秦岭大水金矿床方解石Sm-Nd等时线年龄及其地质意义[J]. 现代地质, 2019, 33(3):469-475. |
[31] |
LI X H, FAN H R, YANG K F, et al. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: implication for ore-forming processes[J]. Contributions to Mineralogy and Petrology, 2018, 173(9):1-20.
DOI URL |
[32] | 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano) SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12):3479-3496. |
[33] | 周伶俐, 曾庆栋, 孙国涛, 等. LA-ICPMS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 2019, 35(7):1964-1978. |
[34] |
LEGROS H, MARIGNAC C, MERCADIER J, et al. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China)[J]. Lithos, 2016, 264:108-124.
DOI URL |
[35] |
BREITER K, DURIŠOVÁ J, DOSBABA M. Quartz chemistry-a step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Ore Geology Reviews, 2017, 90:25-35.
DOI URL |
[36] |
HARLAUX M, MERCADIER J, MARIGNAC C, et al. Tracing metal sources in peribatholitic hydrothermal W deposits based on the chemical composition of wolframite: the example of the Variscan French Massif Central[J]. Chemical Geology, 2018, 479:58-85.
DOI URL |
[37] |
WHITEHOUSE M J, KAMBER B S, FEDO C M, et al. Integrated Pb-and S-isotope investigation of sulphide minerals from the early Archaean of Southwest Greenland[J]. Chemical Geology, 2005, 222(1/2):112-131.
DOI URL |
[38] |
USHIKUBO T, WILLIFORD K H, FARQUHAR J, et al. Development of in-situ sulfur four-isotope analysis with multiple Faraday cup detectors by SIMS and application to pyrite grains in a Paleoproterozoic glaciogenic sandstone[J]. Chemical Geology, 2014, 383:86-99.
DOI URL |
[39] |
HAURI E H, PAPINEAU D, WANG J H, et al. High-precision analysis of multiple sulfur isotopes using NanoSIMS[J]. Chemical Geology, 2016, 420:148-161.
DOI URL |
[40] |
ZHU Z Y, COOK N, YANG T, et al. Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: potential analytical problems, improvements and implications[J]. Minerals, 2016, 6(4):110.
DOI URL |
[41] |
GRAHAM S, PEARSON N, JACKSON S, et al. Tracing Cu and Fe from source to porphyry: in-situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit[J]. Chemical Geology, 2004, 207(3/4):147-169.
DOI URL |
[42] |
WANG Y, ZHU X K, MAO J W, et al. Iron isotope fractionation during skarn-type metallogeny: a case study of Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze valley[J]. Ore Geology Reviews, 2011, 43(1):194-202.
DOI URL |
[43] |
TOMASCAK P B, TERA F, HELZ R T, et al. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6):907-910.
DOI URL |
[44] | TOMASCAK P B, MAGNA T S, DOHMEN R. Advances in lithium isotope geochemistry[M]. Switzerland: Springer International Publishing, 2016: 1-195. |
[45] |
TIAN S H, HOU Z Q, SU A N, et al. The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: enriched mantle source and petrogenesis[J]. Geochimica et Cosmochimica Acta, 2015, 159:42-60.
DOI URL |
[46] |
MALONEY J S, NABELEK P I, SIRBESCU M L C H. Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites, California, USA[J]. European Journal of Mineralogy, 2008, 20(5):905-916.
DOI URL |
[47] |
TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota[J]. American Mineralogist, 2006, 91(10):1488-1498.
DOI URL |
[48] |
BARNES E M, WEIS D, GROAT L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132/133:21-36.
DOI URL |
[49] |
DEVEAUD S, MILLOT R, VILLAROS A. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology, 2015, 411:97-111.
DOI URL |
[50] |
GÜNTHER D, AUDÉTAT A, FRISCHKNECHT R, et al. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1998, 13(4):263-270.
DOI URL |
[51] |
GREGORY D D, LARGE R R, BATH A B, et al. Trace element content of pyrite from the Kapai slate, St. Ives gold district, Western Australia[J]. Economic Geology, 2016, 111(6):1297-1320.
DOI URL |
[52] |
HEINRICH C A, PETTKE T, HALTER W E, et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry[J]. Geochimica et Cosmochimica Acta, 2003, 67(18):3473-3497.
DOI URL |
[53] |
CHEN P W, ZENG Q D, ZHOU T C, et al. Evolution of fluids in the Dasuji porphyry Mo deposit on the northern margin of the North China Craton: constraints from microthermometric and LA-ICP-MS analyses of fluid inclusions[J]. Ore Geology Reviews, 2019, 104:26-45.
DOI URL |
[54] |
CAMPBELL A R, PANTER K S. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael’s Mount and Cligga Head, Cornwall, England[J]. Geochimica et Cosmochimica Acta, 1990, 54(3):673-681.
DOI URL |
[55] |
GIAMELLO M, PROTANO G, RICCOBONO F, et al. The W-Mo deposit of Perda Majori (SE Sardinia, Italy): a fluid inclusion study of ore and gangue minerals[J]. European Journal of Mineralogy, 1992, 4(5):1079-1084.
DOI URL |
[56] |
MORITZ R. Fluid salinities obtained by infrared microthermometry of opaque minerals: implications for ore deposit modeling: a note of caution[J]. Journal of Geochemical Exploration, 2006, 89(1/2/3):284-287.
DOI URL |
[57] | HEDENQUIST J W, MATSUHISA Y, IZAWA E, et al. Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan[J]. Econmic Geology, 1994, 89(1):1-30. |
[58] |
MANCANO D P, CAMPBELL A R. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit[J]. Geochimica et Cosmochimica Acta, 1995, 59(19):3909-3916.
DOI URL |
[59] | LUDERS V. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications[J]. Econmic Geology, 1996, 91(8):1462-1468. |
[60] |
NI P, WANG X D, WANG G G, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65:1062-1077.
DOI URL |
[61] | 胡东泉, 华仁民, 李光来, 等. 赣南茅坪钨矿流体包裹体研究[J]. 高校地质学报, 2011, 17(2):327-336. |
[62] | 魏文凤, 毕献武, 彭建堂, 等. 热液矿床中不透明矿物的流体包裹体研究进展[J]. 矿床地质, 2016, 35(4):696-708. |
[63] |
O’NIONS R K, OXBURGH E R. Heat and helium in the Earth[J]. Nature, 1983, 306(5942):429-431.
DOI URL |
[64] |
GRAHAM D W. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1):247-317.
DOI URL |
[65] |
BURNARD P G, POLYA D A. Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira[J]. Geochimica et Cosmochimica Acta, 2004, 68(7):1607-1615.
DOI URL |
[66] |
RICHARD A, KENDRICK M A, CATHELINEAU M. Noble gases (Ar, Kr, Xe) and halogens (Cl, Br, I) in fluid inclusions from the Athabasca Basin (Canada): implications for unconformity-related U deposits[J]. Precambrian Research, 2014, 247:110-125.
DOI URL |
[67] |
KENDRICK M A, HONDA M, WALSHE J, et al. Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: constraints from noble gases and halogens[J]. Precambrian Research, 2011, 189(3/4):313-327.
DOI URL |
[68] |
MANNING A H, HOFSTRA A H. Noble gas data from Goldfield and Tonopah epithermal Au-Ag deposits, ancestral Cascades Arc, USA: evidence for a primitive mantle volatile source[J]. Ore Geology Reviews, 2017, 89:683-700.
DOI URL |
[69] |
ZENG Q D, GUO W K, HE H Y, et al. He, Ar, and S isotopic compositions and origin of giant porphyry Mo deposits in the Lesser Xing’an Range-Zhangguangcai Range metallogenic belt, northeast China[J]. Journal of Asian Earth Sciences, 2018, 165:228-240.
DOI URL |
[70] |
YU B, ZENG Q D, WANG Y B, et al. The sources of ore-forming fluids from the Jinchang gold deposit, Heilongjiang Province, NE China: constraints from the He-Ar isotopic evidence[J]. Resource Geology, 2017, 67(3):330-340.
DOI URL |
[71] |
TAPPERT M C, RIVARD B, GILES D, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J]. Ore Geology Reviews, 2013, 53:26-38.
DOI URL |
[72] |
HELLMAN M J, RAMSEY M S. Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing[J]. Journal of Volcanology and Geothermal Research, 2004, 135(1/2):195-219.
DOI URL |
[73] |
GERSMAN R, BEN-DOR E, BEYTH M, et al. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea[J]. International Journal of Remote Sensing, 2008, 29(13):3911-3936.
DOI URL |
[74] | BISHOP C A, LIU J G, MASON P J. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China[J]. Journal of Remote Sensing, 2011, 32(9):2409-2426. |
[75] | KRUSE F A, PERRY S L, CABALLERO A. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina[J]. Annals of Geophysics, 2006, 49(1):83-92. |
[76] |
BIERWIRTH P, HUSTON D, BLEWETT R. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia[J]. Economic Geology, 2002, 97(4):819-826.
DOI URL |
[77] |
BEDINI E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data[J]. Advances in Space Research, 2011, 47(1):60-73.
DOI URL |
[78] |
GRAHAM G E, KOKALY R F, KELLEY K D, et al. Application of imaging spectroscopy for mineral exploration in Alaska: a study over porphyry Cu deposits in the Eastern Alaska range[J]. Economic Geology, 2018, 113(2):489-510.
DOI URL |
[79] | 刘德长, 赵英俊, 叶发旺, 等. 航空高光谱遥感区域成矿背景研究: 以甘肃柳园—方山口地区为例[J]. 遥感学报, 2017, 21(1):136-148. |
[80] | 王瑞军, 李名松, 汪冰, 等. 新疆红山铜金矿床基于地面高光谱遥感找矿模型构建[J]. 现代地质, 2016, 30(3):577-586. |
[81] | 吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备: 回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664. |
[82] | 张寿庭, 徐旃章, 郑明华. 甚低频电磁法在矿体空间定位预测中的应用[J]. 地质科技情报, 1999, 18(4):85-88. |
[83] | 白大明, 聂凤军, 江思宏. 甚低频电磁法对脉状矿床勘查评价的意义: 以金、 铅锌(银)和萤石矿为例[J]. 矿床地质, 2002, 21(4):408-413. |
[84] | 张作伦, 曾庆栋, 叶杰, 等. 甚低频电磁法在矿体勘查中的应用[J]. 地质与勘探, 2008, 44(1):67-69. |
[85] |
LIU H T, LIU J M, YU C M, et al. Integrated geological and geophysical exploration for concealed ores beneath cover in the Chaihulanzi goldfield, Northern China[J]. Geophysical Prospecting, 2006, 54(5):605-621.
DOI URL |
[86] | 杨德传, 汪磊, 李再勇. 激电中梯测量在晴隆丁头山铅锌矿找矿中的应用[J]. 中国地质调查, 2017, 4(6):89-98. |
[87] | 安仰生. 激电中梯测量在瑙木浑沟口金矿勘查中的应用[J]. 山东国土资源, 2019, 35(11):57-64. |
[88] | 黄启霖. 高精度磁法在柬埔寨王国贡布省速富县本库比铁矿的勘查效果[J]. 贵州地质, 2019, 36(4):352-358. |
[89] | 张作伦, 曾庆栋, 于昌明, 等. 氦光泵磁力仪(HC-95a)在矿体勘查中的应用[J]. 中国矿业, 2007, 16(7):61-63, 67. |
[90] | 王立刚. 内蒙古巴根黑格其尔铅锌矿矿体特征及成因探讨[J]. 黑龙江科技信息, 2015(34):62. |
[91] | 于昌明. CSAMT方法在寻找隐伏金矿中的应用[J]. 地球物理学报, 1998, 41(1):133-138. |
[92] |
ZENG Q D, SHEN Y C, LIU T B, et al. Geophysical exploration for interlayer slip breccia gold deposits: example from Pengjiakuang gold deposit, Shandong Province, China[J]. Geophysical Prospecting, 2004, 52:97-108.
DOI URL |
[93] | 张建奎. 可控源音频大地电磁测深找铅锌矿的应用[J]. 物探与化探, 2010, 34(2):167-169. |
[94] | 陆桂福, 刘瑞德. 大功率激电和CSAMT在隐伏矿产勘查中的应用[J]. 物探与化探, 2014, 38(5):921-924. |
[95] | 杨兴, 赵旭, 李继安, 等. 激电测深在资源调查评价中的研究[J]. 东华理工大学学报(自然科学版), 2017, 40(3):284-292. |
[96] | 何金华. 激电测深法在东至县兆吉口地区铅锌矿床找矿中应用[J]. 安徽地质, 2018, 28(2):119-122. |
[97] | 朱俊, 欧阳凯, 陈敦理. 激电测深法在印尼塔里阿布岛铅锌多金属矿区勘查中的应用[J]. 华东地质, 2018, 39(1):59-65. |
[98] | 李建全, 杜建松, 刘恩法, 等. 激电测深法在贵州大观金矿区勘查中的应用[J]. 工程地球物理学报, 2015, 12(4):459-462. |
[99] | 沈远超, 申萍, 刘铁兵, 等. EH4在危机矿山隐伏金矿体定位预测中的应用研究[J]. 地球物理学进展, 2008, 23(2):559-567. |
[100] | 谭红艳, 吕骏超, 刘桂香, 等. EH4音频大地电磁测深方法在鄂东南地区寻找隐伏矿体的应用[J]. 地质与勘探, 2011, 47(6):1133-1141. |
[101] | 樊战军, 卿敏, 于爱军, 等. EH4电磁成像系统在金矿勘查中的应用[J]. 物探与化探, 2007, 31(增刊1):72-76. |
[102] | 孔志召. 太行山中段寺沟岩体电性结构分析及深部成矿预测[J]. 物探与化探, 2018, 42(5):882-888. |
[103] | 荆鹏, 李水平, 曹杰, 等. 音频大地电磁测深在坦桑尼亚金矿勘查中的应用[J]. 矿产勘查, 2019, 10(9):2355-2361. |
[104] | 任广利, 王核, 刘建平, 等. EH-4连续电导率法在安徽南陵县朱家冲铜矿勘查中的应用[J]. 地质与勘探, 2010, 46(2):354-360. |
[105] |
ZENG Q D, DI Q Y, LIU T B, et al. Explorations of gold and lead-zinc deposits using a magnetotelluric method: case studies in the Tianshan-Xingmeng Orogenic Belt of Northern China[J]. Ore Geology Reviews, 2020, 117. DOI: 10.1016/j.oregeorev.2019.103283.
DOI |
[106] | 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138. |
[107] | 梁光河, 蔡新平, 张宝林, 等. 浅层地震勘探方法在金矿深部预测中的应用[J]. 地质与勘探, 2001, 37(6):29-33. |
[108] | 梁光河, 蔡新平, 王杰, 等. 浅层地震勘探在云南北衙地区隐伏金矿预测中的应用[J]. 黄金科学技术, 2000, 8(6):1-9. |
[109] | 梁科伟, 赵忠海, 郭艳. 原生晕在深部成矿预测中的应用: 以黑河地区永新金矿为例[J]. 地质与资源, 2019, 28(6):512-518. |
[110] | 侯长才, 李玉莲, 李永太, 等. 青海东昆仑五龙沟地区化探次生晕觅金效果探讨[J]. 西北地质, 2019, 52(1):183-194. |
[111] | 罗先熔, 杨晓. 地电提取测量寻找隐伏矿研究[J]. 地质与勘探, 1989, 25(12):43-51. |
[112] | 王学求. 深穿透勘查地球化学[J]. 物探与化探, 1998, 22(3):166-169. |
[113] | 白国典, 何凯, 琚根社, 等. 区域化探成果在青海北巴颜喀拉山地区地质填图中的应用[J]. 物探与化探, 2018, 42(3):429-435. |
[114] | 侯长才, 李宏录, 李永太. 青海百吨沟地区金矿地质特征及找矿前景[J]. 矿产勘查, 2015, 6(2):142-148. |
[115] | 陈俊霖, 付乐兵, 赵江南, 等. 东昆仑东段果洛龙洼金矿床原生晕分带特征与深部找矿靶区圈定[J]. 地质科技情报, 2017, 36(1):161-167. |
[116] | 郑凯. 胡村南铜钼矿段90线剖面原生晕分带特征及深部矿体预测[J]. 世界有色金属, 2019(20):92-93. |
[117] | 禹斌, 李惠, 李永才, 等. 典型矿床深部盲矿预测的构造叠加晕实用模式[J]. 黄金科学技术, 2017, 25(2):1-6. |
[118] | 胡明, 李克. 招远金翅岭金矿构造叠加晕深部探矿成果验证分析[J]. 世界有色金属, 2019(21):212-213. |
[119] | 禹斌, 李惠, 张国义. 金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M]. 北京: 地质出版社, 2006: 1-146. |
[120] | 李惠, 禹斌, 李德亮, 等. 不同类型金矿深部盲矿预测的构造叠加晕模型[J]. 矿产与地质, 2015, 29(5):648-653, 658. |
[121] | 赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7):1255-1259. |
[122] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2):255-263. |
[123] | 吴冲龙, 刘刚. 大数据与地质学的未来发展[J]. 地质通报, 2019, 38(7):1081-1088. |
[124] |
ZUO R G, XIONG Y H. Big data analytics of identifying geochemical anomalies supported by machine learning methods[J]. Natural Resources Research, 2018, 27(1):5-13.
DOI URL |
[125] | RUSSELL H A J, DE KEMP E A, MACCORMACK K E. Overview of geological survey organizations contributions on modelling approaches[M]// MACCORMACK K E, BERG R C, KESSLER H, et al. 2019 synopsis of current three-dimensional geological mapping and modelling in geological survey organizations. Calgary: Alberta Energy Regulator, 2019, 112:7-18. |
[126] | HOULDING S W. 3D geoscience modeling: computer techniques for geological characterization[M]. Berlin: Springer-Verlag, 1994: 287-297. |
[127] |
CAUMON G, COLLON-DROUAILLET P. Special issue on three-dimensional structural modeling[J]. Mathematical Geosciences, 2014, 46:905-908.
DOI URL |
[128] |
LIU L M, ZHAO Y L, SUN T. 3D computational shape- and cooling process-modeling of magmatic intrusion and its implication for genesis and exploration of intrusion-related ore deposits: an example from the Yueshan intrusion in An qing, China[J]. Tectonophysics, 2012, 526-529:110-123.
DOI URL |
[129] |
HUANG L L, WANG G W, CARRANZA E J M, et al. Multi-scale numerical simulation and 3D modeling for deep mineral exploration in the Jiaojia gold district, China[J]. Natural Resources Research, 2020, 29(1):415-438.
DOI URL |
[130] |
AILLERES L, JESSELL M W, DE KEMP E, et al. Loop: enabling 3D stochastic geological modeling[J]. ASEG Extended Abstracts, 2019, 1:1-3. DOI: 10.1080/22020586.2019.12072955.
DOI |
[131] |
ZHANG Z Q, WANG G W, CARRANZA E J M, et al. Metallogenic model of the Wulong gold district, China, and associated assessment of exploration criteria based on multi-scale geoscience datasets[J]. Ore Geology Reviews, 2019, 114. DOI: 10.1016/j.oregeorev.2019.103138.
DOI |
[132] | 王功文, 张寿庭, 陈建平, 等. 大型-超大型矿床成矿动力学背景、 过程与定量评价: 定量评价技术手册[M]. 北京: 地质出版社, 2019: 1-130. |
[133] | BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363:1299-1211. |
[1] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[2] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[3] | SHAO Chunjing, HU Huan, YIN Hongwei, MIAO Zhongying, ZHANG Xuefei, LI Weiqiang, XIA Zhiguang. Characteristics of in situ elemental composition of rock salt from the Simao Basin: New metallogenic insights [J]. Earth Science Frontiers, 2021, 28(6): 66-78. |
[4] | CHEN Yongqing, MO Xuanxue. Metallogenic background, process and exploration as one: A trinity concept for prospecting for super-large ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 26-48. |
[5] | LI Jie, LUO Zhaohua, YANG Zongfeng. The genesis of layered iron bodies occurring in the middle zone of Panzhihua intrusion, Zhujiabaobao mine: Evidence from quantitative crystal textural analysis [J]. Earth Science Frontiers, 2016, 23(3): 210-220. |
[6] | WANG Tinghao,HUANG Wenhui,YAN Deyu,TANG Xiuyi. Progress of research on mineralization mode of large coalGe deposits in China: CoalGe deposit in Wulantuga of Inner Mongolia and Lincang of Yunan [J]. Earth Science Frontiers, 2016, 23(3): 113-123. |
[7] | XU Wen-Gang, FAN Hong-Rui-*, HU Fang-Fang, YANG Kui-Feng. Oreforming fluids of the oxidized and reduced porphyry deposits. [J]. Earth Science Frontiers, 2011, 18(5): 103-120. |
[8] | WANG Miao, FAN Ji-Zhang, WANG Zhong-Wen, MA Yan-Yang. Comprehensive prospecting model for leadzinc deposit of HuanggangGanzhuermiao Metallogenic Belt, Inner Mongolia. [J]. Earth Science Frontiers, 2009, 16(6): 318-324. |
[9] | YANG Xiao-Yong LING Meng-Xing LAI Xiao-Dong. Metallogenic model of the Dongsheng insitu leaching sandstonetype uranium deposit in the Ordos Basin. [J]. Earth Science Frontiers, 2009, 16(2): 239-249. |
[10] | CENG Jian-Nian HU Ji-Feng. Adakitelike rocks and mineralization: confusion and inquiry [J]. Earth Science Frontiers, 2008, 15(6): 278-292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||