Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 334-352.DOI: 10.13745/j.esf.sf.2020.6.32
Previous Articles Next Articles
JIN Ye1(), FANG Nianqiao2, YUAN Xiaobo3, HU Ke2
Received:
2019-11-09
Revised:
2020-01-25
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
JIN Ye, FANG Nianqiao, YUAN Xiaobo, HU Ke. An alternative perspective of the origin of oxide gabbros from ocean ridge: The case of the ODP 735B core from the Southwest Indian Ridge[J]. Earth Science Frontiers, 2021, 28(1): 334-352.
Fig.1 (a) Distribution of fracture zones and geometry of the Southwest Indian Ridge and the location of ODP 735B Hole (modified from [22]); and (b) sectional profile of this core (adapted from [21])
Fig.2 Covariation plots of Fo content of olivine (a) and Mg# of clinopyroxene (b) vs. An content of plagioclase from the upper part of the ODP 735B core (including Cycle 1 and 2, and Unit Ⅳ). All data adapted from [6].
Fig.3 Variations of (a) plagioclase anorthite value (An),(b) Mg# of clinopyroxene,(c) olivine forsterite value (Fo), and (d) calculated liquid phase equilibrium temperature (T) with depth for the upper part of the ODP 735B core
Fig.4 Oxide gabbros in Unit Ⅳ. (a) Typical petrography,with backscattered electron (BSE) images of representative bay-shaped edges of silicate minerals (a-1 and a-2); and (b) compositional profile involving all primary silicate minerals.
Fig.5 Orthopyroxenes and sulfides trapped in clinopyroxenes. (a) Typical petrography, with BSE images of sections C-D (a-1) and E-F (a-2); (b) and (c) compositional profiles of sections C-D and E-F involving all primary silicate minerals.
测试点 | 矿物类型 | wB/% | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | NiO | V2O5 | CoO | CuO | ZnO | SO3 | F | Cl | 总量 | ||||||||||||||||||||||||
剖面A-B | 1 | 斜长石 | 59.599 | 0.066 | 24.747 | 0.019 | 0.170 | 0.039 | 0.009 | 7.350 | 6.995 | 0.179 | 0.047 | 0.003 | — | 0.012 | 0.024 | — | 0.005 | — | 0.032 | 99.296 | |||||||||||||||||||||
2 | 斜长石 | 60.449 | 0.116 | 24.799 | 0.011 | 0.169 | 0.003 | 0.005 | 7.203 | 7.091 | 0.160 | — | — | 0.010 | 0.023 | 0.005 | 0.028 | — | — | — | 100.072 | ||||||||||||||||||||||
3 | 斜长石 | 60.034 | 0.030 | 24.727 | — | 0.189 | — | 0.036 | 7.474 | 7.050 | 0.117 | 0.054 | — | 0.048 | 0.016 | — | 0.055 | 0.021 | — | 0.015 | 99.866 | ||||||||||||||||||||||
4 | 钛铁氧化物a | 0.082 | 5.952 | 4.115 | 0.003 | 79.755 | 0.256 | 0.289 | — | 0.058 | 0.008 | — | 0.020 | 1.938 | 0.147 | — | 0.063 | — | — | 0.013 | 92.699 | ||||||||||||||||||||||
5 | 钛铁氧化物b | 0.025 | 53.629 | 0.001 | 0.026 | 44.675 | 0.840 | 0.733 | — | 0.008 | 0.011 | — | 0.030 | 0.576 | 0.067 | — | 0.056 | — | — | — | 100.677 | ||||||||||||||||||||||
6 | 钛铁氧化物a | 0.102 | 6.577 | 4.361 | 0.072 | 78.576 | 0.267 | 0.442 | — | 0.045 | — | — | 0.022 | 1.934 | 0.183 | — | 0.150 | — | — | 0.016 | 92.747 | ||||||||||||||||||||||
7 | 单斜辉石 | 51.355 | 0.686 | 1.879 | — | 11.866 | 0.363 | 12.507 | 20.026 | 0.483 | 0.017 | — | 0.045 | 0.071 | 0.021 | — | 0.066 | — | — | 0.017 | 99.402 | ||||||||||||||||||||||
8 | 单斜辉石 | 51.214 | 0.900 | 2.118 | — | 12.408 | 0.383 | 12.585 | 18.778 | 0.501 | — | 0.064 | — | 0.098 | 0.032 | — | 0.131 | 0.023 | — | — | 99.235 | ||||||||||||||||||||||
9 | 单斜辉石 | 49.996 | 0.748 | 2.078 | — | 14.393 | 0.379 | 13.602 | 17.466 | 0.430 | — | 0.058 | 0.021 | 0.123 | 0.054 | 0.066 | 0.032 | — | — | — | 99.446 | ||||||||||||||||||||||
10 | 单斜辉石 | 50.532 | 0.739 | 2.203 | — | 12.211 | 0.359 | 12.811 | 21.092 | 0.518 | 0.005 | 0.025 | 0.021 | 0.095 | 0.035 | — | 0.064 | — | — | — | 100.710 | ||||||||||||||||||||||
11 | 单斜辉石 | 51.826 | 0.489 | 1.916 | — | 10.898 | 0.275 | 13.207 | 19.962 | 0.359 | 0.002 | 0.013 | 0.007 | 0.101 | 0.030 | 0.012 | — | 0.015 | — | — | 99.112 | ||||||||||||||||||||||
12 | 钛铁氧化物b | 0.044 | 52.552 | 0.093 | — | 45.459 | 1.143 | 0.420 | — | — | 0.021 | — | — | 0.599 | 0.099 | — | — | — | 0.043 | 0.013 | 100.486 | ||||||||||||||||||||||
13 | 单斜辉石 | 51.164 | 0.690 | 2.033 | 0.019 | 11.976 | 0.370 | 13.000 | 20.939 | 0.495 | — | — | 0.020 | 0.037 | 0.001 | 0.020 | — | 0.015 | 0.074 | — | 100.853 | ||||||||||||||||||||||
14 | 单斜辉石 | 50.964 | 0.813 | 2.219 | 0.023 | 12.022 | 0.420 | 12.408 | 19.749 | 0.508 | — | 0.019 | 0.005 | 0.116 | 0.077 | 0.056 | — | — | 0.029 | 0.003 | 99.431 | ||||||||||||||||||||||
15 | 单斜辉石 | 51.485 | 0.381 | 0.991 | — | 23.347 | 0.642 | 17.391 | 4.918 | 0.099 | — | — | — | 0.040 | 0.051 | 0.026 | 0.099 | 0.021 | 0.051 | 0.001 | 99.543 | ||||||||||||||||||||||
16 | 钛铁氧化物b | 0.014 | 53.222 | 0.013 | 0.011 | 44.909 | 0.704 | 1.144 | — | 0.002 | — | 0.138 | — | 0.575 | 0.058 | — | 0.036 | 0.011 | — | 0.007 | 100.844 | ||||||||||||||||||||||
17 | 钛铁氧化物b | 0.011 | 52.626 | 0.030 | — | 44.604 | 0.619 | 1.648 | — | — | 0.001 | 0.133 | — | 0.672 | 0.064 | — | — | — | — | 0.010 | 100.418 | ||||||||||||||||||||||
18 | 钛铁氧化物a | 0.048 | 4.412 | 2.147 | 0.069 | 82.596 | 0.136 | 0.281 | — | — | — | — | — | 2.018 | 0.136 | 0.002 | 0.104 | — | — | 0.001 | 91.950 | ||||||||||||||||||||||
19 | 单斜辉石 | 50.850 | 0.811 | 2.111 | — | 12.111 | 0.320 | 12.631 | 21.104 | 0.490 | — | 0.045 | 0.037 | 0.130 | 0.006 | — | 0.030 | — | — | — | 100.676 | ||||||||||||||||||||||
20 | 单斜辉石 | 51.265 | 0.366 | 0.972 | 0.008 | 24.307 | 0.562 | 17.483 | 5.576 | 0.132 | 0.003 | — | 0.014 | 0.053 | 0.072 | — | 0.134 | — | — | 0.001 | 100.948 | ||||||||||||||||||||||
21 | 单斜辉石 | 51.325 | 0.509 | 1.646 | 0.022 | 17.170 | 0.529 | 14.788 | 12.872 | 0.312 | — | 0.026 | 0.024 | 0.091 | 0.054 | 0.014 | 0.075 | — | 0.014 | 0.002 | 99.473 | ||||||||||||||||||||||
剖面C-D | 1 | 单斜辉石 | 51.232 | 0.581 | 1.837 | 0.009 | 12.727 | 0.311 | 12.935 | 20.275 | 0.482 | — | 0.038 | — | 0.096 | — | 0.032 | 0.029 | — | 0.015 | — | 100.599 | |||||||||||||||||||||
2 | 斜长石 | 60.162 | 0.063 | 24.729 | 0.026 | 0.198 | — | 0.027 | 7.028 | 7.095 | 0.209 | 0.040 | — | 0.014 | 0.020 | 0.049 | — | 0.035 | — | — | 99.695 | ||||||||||||||||||||||
3 | 单斜辉石 | 51.005 | 0.474 | 1.378 | 0.029 | 11.487 | 0.358 | 13.076 | 21.513 | 0.461 | 0.008 | 0.019 | — | 0.012 | 0.010 | — | 0.026 | — | — | — | 99.856 | ||||||||||||||||||||||
4 | 硫化物 | 2.284 | — | 0.155 | 0.121 | 55.907 | 0.032 | 0.238 | 0.312 | 0.424 | 0.146 | 0.044 | 0.21 | 0.009 | 0.463 | 0.161 | 0.091 | 59.743 | — | 0.057 | 120.397 | ||||||||||||||||||||||
5 | 斜方辉石 | 51.957 | 0.206 | 0.753 | 0.006 | 25.527 | 0.580 | 18.909 | 1.589 | 0.035 | — | — | — | 0.038 | 0.074 | 0.019 | 0.057 | 0.003 | 0.074 | 0.003 | 99.830 | ||||||||||||||||||||||
6 | 单斜辉石 | 51.306 | 0.421 | 1.299 | 0.003 | 21.559 | 0.603 | 16.274 | 7.912 | 0.201 | 0.026 | — | — | 0.053 | 0.058 | — | — | — | — | 0.012 | 99.727 | ||||||||||||||||||||||
剖面E-F | 1 | 单斜辉石 | 51.074 | 0.479 | 1.499 | 0.045 | 13.729 | 0.400 | 13.656 | 18.479 | 0.402 | — | 0.038 | — | 0.118 | 0.002 | — | 0.019 | — | — | 0.012 | 99.952 | |||||||||||||||||||||
2 | 斜方辉石 | 52.026 | 0.261 | 0.655 | 0.003 | 27.064 | 0.659 | 18.904 | 0.933 | 0.001 | — | 0.046 | 0.018 | 0.013 | 0.061 | — | — | 0.005 | 0.049 | — | 100.698 | ||||||||||||||||||||||
3 | 硫化物 | 0.910 | — | 0.023 | 0.075 | 59.602 | 0.026 | 0.066 | 0.033 | 0.499 | 0.150 | 0.038 | 0.125 | — | 0.360 | — | 0.072 | 61.813 | — | 0.043 | 123.835 | ||||||||||||||||||||||
4 | 单斜辉石 | 50.654 | 0.602 | 1.984 | 0.024 | 12.937 | 0.342 | 12.983 | 19.749 | 0.523 | 0.021 | 0.019 | 0.021 | 0.085 | — | 0.049 | — | — | — | 0.007 | 100.000 |
Table 1 Chemical compositions of representative microprobe analysed cross-sectional profiles from Unit Ⅳ oxide gabbros
测试点 | 矿物类型 | wB/% | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | NiO | V2O5 | CoO | CuO | ZnO | SO3 | F | Cl | 总量 | ||||||||||||||||||||||||
剖面A-B | 1 | 斜长石 | 59.599 | 0.066 | 24.747 | 0.019 | 0.170 | 0.039 | 0.009 | 7.350 | 6.995 | 0.179 | 0.047 | 0.003 | — | 0.012 | 0.024 | — | 0.005 | — | 0.032 | 99.296 | |||||||||||||||||||||
2 | 斜长石 | 60.449 | 0.116 | 24.799 | 0.011 | 0.169 | 0.003 | 0.005 | 7.203 | 7.091 | 0.160 | — | — | 0.010 | 0.023 | 0.005 | 0.028 | — | — | — | 100.072 | ||||||||||||||||||||||
3 | 斜长石 | 60.034 | 0.030 | 24.727 | — | 0.189 | — | 0.036 | 7.474 | 7.050 | 0.117 | 0.054 | — | 0.048 | 0.016 | — | 0.055 | 0.021 | — | 0.015 | 99.866 | ||||||||||||||||||||||
4 | 钛铁氧化物a | 0.082 | 5.952 | 4.115 | 0.003 | 79.755 | 0.256 | 0.289 | — | 0.058 | 0.008 | — | 0.020 | 1.938 | 0.147 | — | 0.063 | — | — | 0.013 | 92.699 | ||||||||||||||||||||||
5 | 钛铁氧化物b | 0.025 | 53.629 | 0.001 | 0.026 | 44.675 | 0.840 | 0.733 | — | 0.008 | 0.011 | — | 0.030 | 0.576 | 0.067 | — | 0.056 | — | — | — | 100.677 | ||||||||||||||||||||||
6 | 钛铁氧化物a | 0.102 | 6.577 | 4.361 | 0.072 | 78.576 | 0.267 | 0.442 | — | 0.045 | — | — | 0.022 | 1.934 | 0.183 | — | 0.150 | — | — | 0.016 | 92.747 | ||||||||||||||||||||||
7 | 单斜辉石 | 51.355 | 0.686 | 1.879 | — | 11.866 | 0.363 | 12.507 | 20.026 | 0.483 | 0.017 | — | 0.045 | 0.071 | 0.021 | — | 0.066 | — | — | 0.017 | 99.402 | ||||||||||||||||||||||
8 | 单斜辉石 | 51.214 | 0.900 | 2.118 | — | 12.408 | 0.383 | 12.585 | 18.778 | 0.501 | — | 0.064 | — | 0.098 | 0.032 | — | 0.131 | 0.023 | — | — | 99.235 | ||||||||||||||||||||||
9 | 单斜辉石 | 49.996 | 0.748 | 2.078 | — | 14.393 | 0.379 | 13.602 | 17.466 | 0.430 | — | 0.058 | 0.021 | 0.123 | 0.054 | 0.066 | 0.032 | — | — | — | 99.446 | ||||||||||||||||||||||
10 | 单斜辉石 | 50.532 | 0.739 | 2.203 | — | 12.211 | 0.359 | 12.811 | 21.092 | 0.518 | 0.005 | 0.025 | 0.021 | 0.095 | 0.035 | — | 0.064 | — | — | — | 100.710 | ||||||||||||||||||||||
11 | 单斜辉石 | 51.826 | 0.489 | 1.916 | — | 10.898 | 0.275 | 13.207 | 19.962 | 0.359 | 0.002 | 0.013 | 0.007 | 0.101 | 0.030 | 0.012 | — | 0.015 | — | — | 99.112 | ||||||||||||||||||||||
12 | 钛铁氧化物b | 0.044 | 52.552 | 0.093 | — | 45.459 | 1.143 | 0.420 | — | — | 0.021 | — | — | 0.599 | 0.099 | — | — | — | 0.043 | 0.013 | 100.486 | ||||||||||||||||||||||
13 | 单斜辉石 | 51.164 | 0.690 | 2.033 | 0.019 | 11.976 | 0.370 | 13.000 | 20.939 | 0.495 | — | — | 0.020 | 0.037 | 0.001 | 0.020 | — | 0.015 | 0.074 | — | 100.853 | ||||||||||||||||||||||
14 | 单斜辉石 | 50.964 | 0.813 | 2.219 | 0.023 | 12.022 | 0.420 | 12.408 | 19.749 | 0.508 | — | 0.019 | 0.005 | 0.116 | 0.077 | 0.056 | — | — | 0.029 | 0.003 | 99.431 | ||||||||||||||||||||||
15 | 单斜辉石 | 51.485 | 0.381 | 0.991 | — | 23.347 | 0.642 | 17.391 | 4.918 | 0.099 | — | — | — | 0.040 | 0.051 | 0.026 | 0.099 | 0.021 | 0.051 | 0.001 | 99.543 | ||||||||||||||||||||||
16 | 钛铁氧化物b | 0.014 | 53.222 | 0.013 | 0.011 | 44.909 | 0.704 | 1.144 | — | 0.002 | — | 0.138 | — | 0.575 | 0.058 | — | 0.036 | 0.011 | — | 0.007 | 100.844 | ||||||||||||||||||||||
17 | 钛铁氧化物b | 0.011 | 52.626 | 0.030 | — | 44.604 | 0.619 | 1.648 | — | — | 0.001 | 0.133 | — | 0.672 | 0.064 | — | — | — | — | 0.010 | 100.418 | ||||||||||||||||||||||
18 | 钛铁氧化物a | 0.048 | 4.412 | 2.147 | 0.069 | 82.596 | 0.136 | 0.281 | — | — | — | — | — | 2.018 | 0.136 | 0.002 | 0.104 | — | — | 0.001 | 91.950 | ||||||||||||||||||||||
19 | 单斜辉石 | 50.850 | 0.811 | 2.111 | — | 12.111 | 0.320 | 12.631 | 21.104 | 0.490 | — | 0.045 | 0.037 | 0.130 | 0.006 | — | 0.030 | — | — | — | 100.676 | ||||||||||||||||||||||
20 | 单斜辉石 | 51.265 | 0.366 | 0.972 | 0.008 | 24.307 | 0.562 | 17.483 | 5.576 | 0.132 | 0.003 | — | 0.014 | 0.053 | 0.072 | — | 0.134 | — | — | 0.001 | 100.948 | ||||||||||||||||||||||
21 | 单斜辉石 | 51.325 | 0.509 | 1.646 | 0.022 | 17.170 | 0.529 | 14.788 | 12.872 | 0.312 | — | 0.026 | 0.024 | 0.091 | 0.054 | 0.014 | 0.075 | — | 0.014 | 0.002 | 99.473 | ||||||||||||||||||||||
剖面C-D | 1 | 单斜辉石 | 51.232 | 0.581 | 1.837 | 0.009 | 12.727 | 0.311 | 12.935 | 20.275 | 0.482 | — | 0.038 | — | 0.096 | — | 0.032 | 0.029 | — | 0.015 | — | 100.599 | |||||||||||||||||||||
2 | 斜长石 | 60.162 | 0.063 | 24.729 | 0.026 | 0.198 | — | 0.027 | 7.028 | 7.095 | 0.209 | 0.040 | — | 0.014 | 0.020 | 0.049 | — | 0.035 | — | — | 99.695 | ||||||||||||||||||||||
3 | 单斜辉石 | 51.005 | 0.474 | 1.378 | 0.029 | 11.487 | 0.358 | 13.076 | 21.513 | 0.461 | 0.008 | 0.019 | — | 0.012 | 0.010 | — | 0.026 | — | — | — | 99.856 | ||||||||||||||||||||||
4 | 硫化物 | 2.284 | — | 0.155 | 0.121 | 55.907 | 0.032 | 0.238 | 0.312 | 0.424 | 0.146 | 0.044 | 0.21 | 0.009 | 0.463 | 0.161 | 0.091 | 59.743 | — | 0.057 | 120.397 | ||||||||||||||||||||||
5 | 斜方辉石 | 51.957 | 0.206 | 0.753 | 0.006 | 25.527 | 0.580 | 18.909 | 1.589 | 0.035 | — | — | — | 0.038 | 0.074 | 0.019 | 0.057 | 0.003 | 0.074 | 0.003 | 99.830 | ||||||||||||||||||||||
6 | 单斜辉石 | 51.306 | 0.421 | 1.299 | 0.003 | 21.559 | 0.603 | 16.274 | 7.912 | 0.201 | 0.026 | — | — | 0.053 | 0.058 | — | — | — | — | 0.012 | 99.727 | ||||||||||||||||||||||
剖面E-F | 1 | 单斜辉石 | 51.074 | 0.479 | 1.499 | 0.045 | 13.729 | 0.400 | 13.656 | 18.479 | 0.402 | — | 0.038 | — | 0.118 | 0.002 | — | 0.019 | — | — | 0.012 | 99.952 | |||||||||||||||||||||
2 | 斜方辉石 | 52.026 | 0.261 | 0.655 | 0.003 | 27.064 | 0.659 | 18.904 | 0.933 | 0.001 | — | 0.046 | 0.018 | 0.013 | 0.061 | — | — | 0.005 | 0.049 | — | 100.698 | ||||||||||||||||||||||
3 | 硫化物 | 0.910 | — | 0.023 | 0.075 | 59.602 | 0.026 | 0.066 | 0.033 | 0.499 | 0.150 | 0.038 | 0.125 | — | 0.360 | — | 0.072 | 61.813 | — | 0.043 | 123.835 | ||||||||||||||||||||||
4 | 单斜辉石 | 50.654 | 0.602 | 1.984 | 0.024 | 12.937 | 0.342 | 12.983 | 19.749 | 0.523 | 0.021 | 0.019 | 0.021 | 0.085 | — | 0.049 | — | — | — | 0.007 | 100.000 |
测试点 | 8个氧为基础计算阳离子数 | 端员组分指标 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | Ti | Al | Fe | Mn | Mg | Ca | Na | K | Total | An | Ab | Or | ||
剖面A-B | 1 | 2.677 | 0.002 | 1.308 | 0.006 | 0.001 | 0.001 | 0.354 | 0.608 | 0.010 | 4.973 | 36.39 | 62.56 | 1.05 |
2 | 2.691 | 0.004 | 1.299 | 0.006 | - | - | 0.343 | 0.611 | 0.009 | 4.966 | 35.65 | 63.40 | 0.95 | |
3 | 2.681 | 0.001 | 1.299 | 0.007 | - | 0.002 | 0.358 | 0.609 | 0.007 | 4.971 | 36.73 | 62.59 | 0.68 | |
剖面C-D | 2 | 2.688 | 0.002 | 1.300 | 0.007 | - | 0.002 | 0.336 | 0.614 | 0.012 | 4.967 | 34.98 | 63.78 | 1.24 |
Table 2 Major cation numbers and An, Ab and Or contents of analysed plagioclases
测试点 | 8个氧为基础计算阳离子数 | 端员组分指标 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | Ti | Al | Fe | Mn | Mg | Ca | Na | K | Total | An | Ab | Or | ||
剖面A-B | 1 | 2.677 | 0.002 | 1.308 | 0.006 | 0.001 | 0.001 | 0.354 | 0.608 | 0.010 | 4.973 | 36.39 | 62.56 | 1.05 |
2 | 2.691 | 0.004 | 1.299 | 0.006 | - | - | 0.343 | 0.611 | 0.009 | 4.966 | 35.65 | 63.40 | 0.95 | |
3 | 2.681 | 0.001 | 1.299 | 0.007 | - | 0.002 | 0.358 | 0.609 | 0.007 | 4.971 | 36.73 | 62.59 | 0.68 | |
剖面C-D | 2 | 2.688 | 0.002 | 1.300 | 0.007 | - | 0.002 | 0.336 | 0.614 | 0.012 | 4.967 | 34.98 | 63.78 | 1.24 |
测试点 | 矿物 类型 | 6个氧为基础计算阳离子数 | Mg# | 端员组分指标 | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | Ti | Al | Cr | Fe | Mn | Mg | Ca | Na | K | 总量 | Wo | En | Fs | |||||||||||||||||||||
剖面 A-B | 7 | 单斜辉石 | 1.948 | 0.020 | 0.084 | - | 0.375 | 0.012 | 0.712 | 0.814 | 0.035 | 0.001 | 4.006 | 0.655 | 42.82 | 37.44 | 19.74 | |||||||||||||||||
8 | 单斜辉石 | 1.943 | 0.026 | 0.095 | - | 0.392 | 0.012 | 0.716 | 0.763 | 0.037 | - | 3.994 | 0.646 | 40.78 | 38.26 | 20.96 | ||||||||||||||||||
9 | 单斜辉石 | 1.910 | 0.021 | 0.093 | - | 0.458 | 0.012 | 0.779 | 0.715 | 0.032 | - | 4.031 | 0.630 | 36.61 | 39.92 | 23.47 | ||||||||||||||||||
10 | 单斜辉石 | 1.905 | 0.021 | 0.098 | - | 0.384 | 0.011 | 0.724 | 0.852 | 0.038 | - | 4.04 | 0.654 | 43.47 | 36.96 | 19.57 | ||||||||||||||||||
11 | 单斜辉石 | 1.957 | 0.014 | 0.085 | - | 0.343 | 0.009 | 0.748 | 0.808 | 0.026 | - | 3.995 | 0.686 | 42.54 | 39.40 | 18.06 | ||||||||||||||||||
13 | 单斜辉石 | 1.921 | 0.019 | 0.090 | 0.001 | 0.375 | 0.012 | 0.732 | 0.842 | 0.036 | - | 4.034 | 0.661 | 43.21 | 37.56 | 19.22 | ||||||||||||||||||
14 | 单斜辉石 | 1.935 | 0.023 | 0.099 | 0.001 | 0.380 | 0.013 | 0.706 | 0.803 | 0.037 | - | 4.007 | 0.650 | 42.50 | 37.38 | 20.12 | ||||||||||||||||||
15 | 单斜辉石 | 1.968 | 0.011 | 0.045 | - | 0.744 | 0.021 | 0.997 | 0.201 | 0.007 | - | 4.003 | 0.573 | 10.37 | 51.34 | 38.29 | ||||||||||||||||||
19 | 单斜辉石 | 1.914 | 0.023 | 0.093 | - | 0.380 | 0.010 | 0.713 | 0.851 | 0.036 | - | 4.027 | 0.652 | 43.78 | 36.68 | 19.54 | ||||||||||||||||||
20 | 单斜辉石 | 1.945 | 0.010 | 0.043 | - | 0.769 | 0.018 | 0.995 | 0.227 | 0.010 | - | 4.025 | 0.564 | 11.39 | 49.99 | 38.62 | ||||||||||||||||||
21 | 单斜辉石 | 1.953 | 0.015 | 0.074 | 0.001 | 0.544 | 0.017 | 0.844 | 0.525 | 0.023 | - | 4.003 | 0.608 | 27.43 | 44.12 | 28.46 | ||||||||||||||||||
剖面 C-D | 1 | 单斜辉石 | 1.929 | 0.016 | 0.081 | - | 0.399 | 0.010 | 0.731 | 0.818 | 0.035 | - | 4.026 | 0.647 | 41.99 | 37.51 | 20.50 | |||||||||||||||||
3 | 单斜辉石 | 1.934 | 0.013 | 0.061 | 0.001 | 0.363 | 0.011 | 0.744 | 0.874 | 0.034 | - | 4.037 | 0.672 | 44.13 | 37.55 | 18.33 | ||||||||||||||||||
5 | 斜方辉石 | 1.978 | 0.006 | 0.034 | - | 0.810 | 0.019 | 1.080 | 0.065 | 0.003 | - | 4.003 | 0.571 | 3.32 | 55.25 | 41.44 | ||||||||||||||||||
6 | 单斜辉石 | 1.958 | 0.012 | 0.058 | - | 0.686 | 0.019 | 0.931 | 0.323 | 0.015 | 0.001 | 4.007 5 | 0.576 | 16.67 | 48.00 | 35.33 | ||||||||||||||||||
剖面 E-F | 1 | 单斜辉石 | 1.936 | 0.014 | 0.067 | 0.001 | 0.434 | 0.013 | 0.776 | 0.750 | 0.029 | - | 4.025 | 0.642 | 38.28 | 39.60 | 22.12 | |||||||||||||||||
2 | 斜方辉石 | 1.972 | 0.007 | 0.029 | - | 0.855 | 0.021 | 1.075 | 0.038 | - | - | 4.005 | 0.557 | 1.93 | 54.63 | 43.45 | ||||||||||||||||||
4 | 单斜辉石 | 1.921 | 0.017 | 0.089 | 0.001 | 0.409 | 0.011 | 0.739 | 0.803 | 0.038 | 0.001 | 4.033 | 0.644 | 41.15 | 37.88 | 20.97 |
Table 3 Major cation numbers, Mg# and Wo, En and Fs contents of analysed clinopyroxenes and orthopyroxenes
测试点 | 矿物 类型 | 6个氧为基础计算阳离子数 | Mg# | 端员组分指标 | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | Ti | Al | Cr | Fe | Mn | Mg | Ca | Na | K | 总量 | Wo | En | Fs | |||||||||||||||||||||
剖面 A-B | 7 | 单斜辉石 | 1.948 | 0.020 | 0.084 | - | 0.375 | 0.012 | 0.712 | 0.814 | 0.035 | 0.001 | 4.006 | 0.655 | 42.82 | 37.44 | 19.74 | |||||||||||||||||
8 | 单斜辉石 | 1.943 | 0.026 | 0.095 | - | 0.392 | 0.012 | 0.716 | 0.763 | 0.037 | - | 3.994 | 0.646 | 40.78 | 38.26 | 20.96 | ||||||||||||||||||
9 | 单斜辉石 | 1.910 | 0.021 | 0.093 | - | 0.458 | 0.012 | 0.779 | 0.715 | 0.032 | - | 4.031 | 0.630 | 36.61 | 39.92 | 23.47 | ||||||||||||||||||
10 | 单斜辉石 | 1.905 | 0.021 | 0.098 | - | 0.384 | 0.011 | 0.724 | 0.852 | 0.038 | - | 4.04 | 0.654 | 43.47 | 36.96 | 19.57 | ||||||||||||||||||
11 | 单斜辉石 | 1.957 | 0.014 | 0.085 | - | 0.343 | 0.009 | 0.748 | 0.808 | 0.026 | - | 3.995 | 0.686 | 42.54 | 39.40 | 18.06 | ||||||||||||||||||
13 | 单斜辉石 | 1.921 | 0.019 | 0.090 | 0.001 | 0.375 | 0.012 | 0.732 | 0.842 | 0.036 | - | 4.034 | 0.661 | 43.21 | 37.56 | 19.22 | ||||||||||||||||||
14 | 单斜辉石 | 1.935 | 0.023 | 0.099 | 0.001 | 0.380 | 0.013 | 0.706 | 0.803 | 0.037 | - | 4.007 | 0.650 | 42.50 | 37.38 | 20.12 | ||||||||||||||||||
15 | 单斜辉石 | 1.968 | 0.011 | 0.045 | - | 0.744 | 0.021 | 0.997 | 0.201 | 0.007 | - | 4.003 | 0.573 | 10.37 | 51.34 | 38.29 | ||||||||||||||||||
19 | 单斜辉石 | 1.914 | 0.023 | 0.093 | - | 0.380 | 0.010 | 0.713 | 0.851 | 0.036 | - | 4.027 | 0.652 | 43.78 | 36.68 | 19.54 | ||||||||||||||||||
20 | 单斜辉石 | 1.945 | 0.010 | 0.043 | - | 0.769 | 0.018 | 0.995 | 0.227 | 0.010 | - | 4.025 | 0.564 | 11.39 | 49.99 | 38.62 | ||||||||||||||||||
21 | 单斜辉石 | 1.953 | 0.015 | 0.074 | 0.001 | 0.544 | 0.017 | 0.844 | 0.525 | 0.023 | - | 4.003 | 0.608 | 27.43 | 44.12 | 28.46 | ||||||||||||||||||
剖面 C-D | 1 | 单斜辉石 | 1.929 | 0.016 | 0.081 | - | 0.399 | 0.010 | 0.731 | 0.818 | 0.035 | - | 4.026 | 0.647 | 41.99 | 37.51 | 20.50 | |||||||||||||||||
3 | 单斜辉石 | 1.934 | 0.013 | 0.061 | 0.001 | 0.363 | 0.011 | 0.744 | 0.874 | 0.034 | - | 4.037 | 0.672 | 44.13 | 37.55 | 18.33 | ||||||||||||||||||
5 | 斜方辉石 | 1.978 | 0.006 | 0.034 | - | 0.810 | 0.019 | 1.080 | 0.065 | 0.003 | - | 4.003 | 0.571 | 3.32 | 55.25 | 41.44 | ||||||||||||||||||
6 | 单斜辉石 | 1.958 | 0.012 | 0.058 | - | 0.686 | 0.019 | 0.931 | 0.323 | 0.015 | 0.001 | 4.007 5 | 0.576 | 16.67 | 48.00 | 35.33 | ||||||||||||||||||
剖面 E-F | 1 | 单斜辉石 | 1.936 | 0.014 | 0.067 | 0.001 | 0.434 | 0.013 | 0.776 | 0.750 | 0.029 | - | 4.025 | 0.642 | 38.28 | 39.60 | 22.12 | |||||||||||||||||
2 | 斜方辉石 | 1.972 | 0.007 | 0.029 | - | 0.855 | 0.021 | 1.075 | 0.038 | - | - | 4.005 | 0.557 | 1.93 | 54.63 | 43.45 | ||||||||||||||||||
4 | 单斜辉石 | 1.921 | 0.017 | 0.089 | 0.001 | 0.409 | 0.011 | 0.739 | 0.803 | 0.038 | 0.001 | 4.033 | 0.644 | 41.15 | 37.88 | 20.97 |
[1] | AGAR S M, LLOYD G E. Deformation of Fe-Ti oxides in gabbroic shear zones from the MARK area[R]//KARSON J A, CANNAT M, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 153. College Station, TX, USA: Ocean Drilling Program, 1997: 123-141. |
[2] |
GILLIS K M, MEYER P S. Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: evidence from the rare earth element composition of amphiboles[J]. Geochemistry, Geophysics, Geosystems, 2001, 2. DOI: 10.1029-2000gc000087.
DOI |
[3] |
DZIONY W, HORN I, LATTARD D, et al. In-situ Fe isotope ratio determination in Fe-Ti oxides and sulfides from drilled gabbros and basalt from the IODP Hole 1256D in the eastern equatorial Pacific[J]. Chemical Geology, 2014, 363:101-113.
DOI URL |
[4] | DICK H J B, MEYER P S, BLOOMER S, et al. Lithostratigrahic evolution of an in-situ section of oceanic layer 3[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 439-538. |
[5] |
DICK H J B, NATLAND J H, ALT J C, et al. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 2000, 179(1):31-51.
DOI URL |
[6] | DICK H J B, OZAWA K, MEYER P S, et al. Primary silicate mineral chemistry of a 1.5 km section of very slow spreading lower ocean crust: ODP hole 735B, Southwest Indian Ridge[R/OL]// NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, Texas A&M University, 2002: 1-61[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_10.PDF . |
[7] | NATLAND J H, MEYER P S, DICK H J B, et al. Magmatic oxides and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 75-111. |
[8] | NATLAND J H, DICK H J B. Stratigraphy and composition of gabbros drilled in Ocean Drilling Program Hole 735B, Southwest Indian Ridge: a synthesis of geochemical data[R/OL]//NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, Texas A&M University, 2002: 1-69[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/SYNTH/SYNTH.PDF . |
[9] | OZAWA K, MEYER P S, BLOOMER S H. Mineralogy and textures of iron-titanium oxide gabbros and associated olivine gabbros from Hole 735B[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 41-63. |
[10] | HERTOGEN J, EMMERMANN R, ROBINSON P T, et al. Lithology, mineralogy, and geochemistry of the lower ocean crust, ODP Hole 735B, Southwest Indian Ridge[R/OL]//NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, Texas A&M University, 2002, 176: 1-82[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_06.PDF . |
[11] | NIU Y, GILMORE T, MACKIE S, et al. Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion[R/OL]//NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, Texas A&M University, 2002: 1-60[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_08.PDF . |
[12] | 周美夫. 攀西地区层状辉长岩体及钒钛磁铁矿床的成因[J]. 岩石矿物学杂志, 2005, 24(5):381-384. |
[13] |
GAO Y J, HOEFS J, HELLEBRAND E, et al. Trace element zoning in pyroxenes from ODP Hole 735B gabbros: diffusive exchange or synkinematic crystal fractionation?[J]. Contributions to Mineralogy and Petrology, 2007, 153:429-442.
DOI URL |
[14] | LEG 118 SHIPBOARD SCIENTIFIC PARTY. Proceedings of the Ocean Drilling Program, Initial Reports, 118[R]. College Station, TX,EG 118 SHIPBOARD SCIENTIFIC PARTY. Proceedings of the Ocean Drilling Program, Initial Reports, 118[R]. College Station, TX, USA: Ocean Drilling Program, 1989: 89-222. |
[15] | ROBINSON P T, DICK H J B, VON HERZON R P. Metamorphism and alteration in oceanic layer 3: Hole 735B[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 541-552. |
[16] | ROBINSON P T, DICK H J B, NATLAND J H, et al. Lower oceanic crust formed at an ultra-slow-spreading ridge: Ocean Drilling Program Hole 735B, Southwest Indian Ridge[J]. Geological Society of America Special Paper, 2000, 349:75-86. |
[17] | DICK H J B, NATLAND J H, MILLER D J, et al. Ocean Drilling Program, Initial Reports, 176[R/CD]. College Station, TX, USA: Ocean Drilling Program, Texas A&M University, 1999: 1-70. |
[18] |
DICK H J B, LIN J, SCHOUTEN H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965):405-412.
DOI URL |
[19] |
GRINDLAY N R, MADSEN J A, ROMMEVAUX-JESTIN C, et al. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15°30'E to 25°E)[J]. Earth and Planetary Science Letters, 1998, 161(1):243-253.
DOI URL |
[20] |
COOGAN L A, MACLEOD C J, DICK H J B, et al. Whole-rock geochemistry of gabbros from the Southwest Indian Ridge: constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow-spreading ridges[J]. Chemical Geology, 2001, 178(1):1-22.
DOI URL |
[21] |
NATLAND J H, DICK H J B. Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge[J]. Journal of Volcanology and Geothermal Research, 2001, 110(3):191-233.
DOI URL |
[22] | 李小虎, 初凤友, 雷吉江, 等. 慢速-超慢速扩张西南印度洋中脊研究进展[J]. 地球科学进展, 2008, 23(6), 595-603. |
[23] | DICK H J B, SCHOUTEN H, MEYER P S, et al. Tectonic evolution of the Atlantis II fracture zone[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 359-398. |
[24] |
HOLM P M. Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian Ridge: results from ODP Leg 176[J]. Chemical Geology, 2002, 184(3):195-216.
DOI URL |
[25] |
MULLER M R, ROBINSON C J, MINSHULL T A, et al. Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 1997, 148:93-107.
DOI URL |
[26] | NIU Y L. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11(1):9-46. |
[27] | 罗照华, 杨宗锋, 代耕, 等. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1):176-181. |
[28] | BLOOMER S H, MEYER P S, DICK H J B, et al. Textural and mineralogic variations in gabbroic rocks from Hole 735B[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 21-39. |
[29] |
STONE S, NIU Y. Origin of compositional trends in clinopyroxene of oceanic gabbros and gabbroic rocks: a case study using data from ODP Hole 735B[J]. Journal of Volcanology and Geothermal Research, 2009, 184(3):313-322.
DOI URL |
[30] |
SCHOUTEN H, KELEMEN P B. Melt viscosity, temperature and transport processes, Troodos ophiolite, Cyprus[J]. Earth and Planetary Science Letters, 2002, 201(2):337-352.
DOI URL |
[31] |
ROEDER P L, EMSLIE R F. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 1970, 29:275-289.
DOI URL |
[32] |
DYMENT J, LIN J, BAKER E T. Ridge-hotspot interactions: what mid-ocean ridges tell us about deep earth processes[J]. Oceanography, 2007, 20:102-115.
DOI URL |
[33] |
JANNEY P E, LE ROEX A P, CARLSON R W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13°E to 47°E)[J]. Journal of Petrology, 2005, 46(12):2427-2464.
DOI URL |
[34] |
PIETRANIK A, STOREY C, KOEPKE J, et al. Zircon record of fraction, hydrous partial melting and thermal gradients at different depth in oceanic crust (ODP Site 735B, South-West Indian Ocean)[J]. Contributions to Mineralogy and Petrology, 2017, 172. DOI: 10.1007/s00410-016-1324-y.
DOI |
[35] |
GAO Y, HOEFS J, PREZYBILLA R, et al. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B[J]. Chemical Geology, 2006, 233:217-234.
DOI URL |
[36] | VANKO D A, STAKES D S. Fluids in oceanic layer 3: Hole 735B, Southwest Indian Ridge[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 541-552. |
[37] | HART S R, BLUSZTAJN J, DICK H J B, et al. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros[J]. Geochimica et Cosmochimica Acta, 1999, 63(23/24):4069-4080. |
[38] | STAKES D S, MEVEL C, CANNAT M. Metamorphic stratigraphy of Hole 735B[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Reports, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 541-552. |
[39] | ALT J C, BACH W. Data report: low-grade hydrothermal alteration of uplifted lower oceanic crust, Hole 735B: mineralogy and isotope geochemistry[R/OL]//NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, 2002: 1-24[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_01.PDF . |
[40] | MAEDA J, NASLUND H R, JANG Y D, et al. High-temperature fluid migration within oceanic layer 3 gabbros, Hole 735B, Southwest Indian Ridge: implications for the magmatic-hydrothermal transition[R/OL]//NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, Texas A&M University, 2002: 1-56[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_04.PDF . |
[41] | ROBINSON P T, ERZINGER J, EMMERMANN R. The composition and origin of igneous and hydrothermal veins in the lower ocean crust-ODP Hole 735B, Southwest Indian Ridge[R/OL]//NATLAND J H, DICK H J B, MILLER D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 176. College Station, TX, USA: Ocean Drilling Program, 2002: 1-66[2018-11-08]. http://www-odp.tamu.edu/publications/176_SR/VOLUME/CHAPTERS/SR176_09.PDF . |
[42] |
RICHARD G, MONNEREAU M, INGRIN J. Is the transition zone an empty water reservoir? Inferences from numerical model of mantle dynamics[J]. Earth and Planetary Science Letters, 2002, 205:37-51.
DOI URL |
[43] |
BOLFAN-CASANOVA N. Water in the Earth’s mantle[J]. Mineralogical Magazine, 2005, 69(3):229-257.
DOI URL |
[44] |
HIRSCHMANN M M, AUBAUD C, WITHERS A C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle[J]. Earth and Planetary Science Letters, 2005, 236:167-181.
DOI URL |
[45] |
SMYTH J R, FROST D J, NESTOLA F, et al. Olivine hydration in the deep upper mantle: effects of temperature and silica activity[J]. Geophysical Research Letters, 2006, 33. DOI: 10.1029/2006GL026194.
DOI |
[46] | 罗照华, 卢欣祥, 陈必河, 等. 透岩浆流体成矿作用导论[M]. 北京: 地质出版社, 2009. |
[47] |
IRIFUNE T, ISSHIKI M. Iron partitioning in a pyrolite mantle and the nature of the 410-km discontinuity[J]. Nature, 1998, 392:702-705.
DOI URL |
[48] |
KOHLSTEDT D L, KEPPLER H, RUBIE D C. Solubility of water in the a, b, and g phases of (Mg, Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 1996, 123:345-357.
DOI URL |
[49] |
BELL D R, ROSSMAN G R, MALDENER A, et al. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum[J]. Journal of Geophysical Research, 2003, 108. DOI: 10.1029/2001JB000679.
DOI |
[50] |
RAUCH M, KEPPLER H. Water solubility in orthopyroxene[J]. Contributions to Mineralogy and Petrology, 2002, 143:525-536.
DOI URL |
[51] |
LU R, KEPPLER H. Water solubility in pyrope to 100 kbar[J]. Contributions to Mineralogy and Petrology, 1997, 129:35-42.
DOI URL |
[52] |
WITHERS A C, WOOD B J, CARROLL M R. The OH content of pyrope at high pressure[J]. Chemical Geology, 1998, 147:161-171.
DOI URL |
[53] |
ROBINSON J A C, WOOD B J. The depth of the spinel to garnet transition at the peridotite solidus[J]. Earth and Planetary Science Letters, 1998, 164:277-284.
DOI URL |
[54] | EGGLER D H. Solubility of major and trace elements in mantle metasomatism fluids: experimental constraints[M]//O’REILLY S Y, GRIFFIN W L. Mantle metasomatism. London: Academic Press Inc. Limited, 1987: 21-41. |
[55] |
ROBINSON C J, BICKLE M J, MINSHULL T A, et al. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting[J]. Earth and Planetary Science Letters, 2001, 188:383-398.
DOI URL |
[56] | 罗照华, 莫宣学, 卢欣祥, 等. 透岩浆流体成矿作用: 理论分析与野外证据[J]. 地学前缘, 2007, 14(3):165-183. |
[57] | 罗照华, 卢欣祥, 郭少丰, 等. 透岩浆流体成矿体系[J]. 岩石学报, 2008, 24(12):2669-2678. |
[58] | 罗照华, 刘嘉麒, 赵慈平, 等. 深部流体与岩浆活动: 兼论腾冲火山群的深部过程[J]. 岩石学报, 2011, 27(10):2855-2862. |
[59] | 罗照华, 卢欣祥, 刘翠, 等. 岩浆热液成矿理论的失败: 原因和出路[J]. 吉林大学学报(地球科学版), 2011, 41(1):1-11. |
[60] | 罗照华, 高飞. 透岩浆流体成矿作用理论简介[J]. 自然杂志, 2009, 31(5):254-257, 276. |
[61] |
SIMON A C, PETTKE T, CANDELA P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environments[J]. Geochimica et Cosmochimica Acta, 2004, 68(23):4905-4914.
DOI URL |
[62] |
DE HOOG J C M, VAN BERGEN M J. Volatile-induced transport of HFSE, REE, Th and U in arc magmas: evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia)[J]. Contributions to Mineralogy and Petrology, 2000, 139:485-502.
DOI URL |
[63] |
LOUCKS R R, MAVROGENES J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions[J]. Science, 1999, 284:2159-2163.
DOI URL |
[64] |
SIMON A C, PETTKE T, CANDELA P A, et al. The partioning behavior of silver in a vapor-brine-rhyolite melt assemblage[J]. Geochimica et Cosmochimica Acta, 2009, 72:1638-1659.
DOI URL |
[65] |
SINTON J M, DETRICK R S. Mid-ocean ridge magma chambers[J]. Journal of Geophysical Research, 1992, 97:197-216.
DOI URL |
[66] | GOLDBERG D, BROGLIA C, BECKER K. Fracturing, alteration and permeability: in-situ properties in Hole 735B[R]//VON HERZEN R P, ROBINSON P T. Proceedings of the Ocean Drilling Program, Scientific Results, 118. College Station, TX, USA: Ocean Drilling Program, 1991: 261-269. |
[67] | 黑慧欣, 罗照华, 程金华, 等. 攀西地区镁铁质岩浆成矿系统的流体动力学模型[J]. 地学前缘, 2015, 22(3):333-347. |
[68] | 李解, 罗照华, 杨宗锋, 等. 攀枝花铁矿朱家包包矿段层状铁矿体的成因: 来自矿物结构定量化分析的证据[J]. 地学前缘, 2016, 23(3):210-220. |
[1] | KOU Caihua, LIU Yanxue, LI Jiang, LI Tingdong, DING Xiaozhong, LIU Yong, JIN Shengkai. Geochronology and geochemistry of 830 Ma gabbro in the western segment of the Jiangnan Orogen and constraint on its petrogenesis [J]. Earth Science Frontiers, 2022, 29(2): 218-233. |
[2] | REN Fei, YIN Fuguang, PENG Zhimin, PAN Guitang, WEI Dong. Late-Paleoanthics diabase from the eastern part of the Bangong Lake-Nujiang subduction belt: U-Pb geochronology, Hf isotopic composition and geological characteristics [J]. Earth Science Frontiers, 2022, 29(2): 164-179. |
[3] | Svetlana S. Timofeeva, Evgeniy V. Kislov, Lyudmila I. Khudyakova. Yoko-Dovyren layered dunite-troctolite-gabbro massif, North Baikal region, Russia: Structure, composition and use of mineral raw materials [J]. Earth Science Frontiers, 2020, 27(5): 262-279. |
[4] | PEI Shengliang, DING Rufu, SHAN Lihua, YANG Wusheng. Zircon U-Pb geochronology and geochemistry of the Kekebieketi basic complex in Fuyun, Xinjiang and the geological significance [J]. Earth Science Frontiers, 2020, 27(4): 184-198. |
[5] | ZHANG Baoyue,SUN Jiankun,LUO Xiong,JIN Weijun,WANG Long,DU Xueliang,CHEN Wanfeng,DU Jun,ZHANG Qi,ZHU Yueqin. Data analysis of major and trace element of gabbro clinopyroxene from different tectonic setting [J]. Earth Science Frontiers, 2019, 26(4): 33-44. |
[6] | ZHANG Shuanhong,ZHAO Yue. The 1.331.30 Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton. [J]. Earth Science Frontiers, 2018, 25(5): 34-50. |
[7] | . [J]. Earth Science Frontiers, 2017, 24(6): 80-97. |
[8] | . [J]. Earth Science Frontiers, 2017, 24(5): 182-191. |
[9] | LI Gang-Zhu, SU Chang-Guo, LEI Wei-Yan, DUAN Xiang-Dong. Precise IDTIMS zircon UPb age and wholerock geochemistry of the Nanlinshan mafic intrusion in the southern Lancangjiang arc terrane, Sanjiang area, SW China. [J]. Earth Science Frontiers, 2011, 18(5): 206-212. |
[10] | . Timespace distribution and formation mechanism of the Mesozoic mafic dikes in Southeast China. [J]. Earth Science Frontiers, 2011, 18(1): 15-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||