Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 232-253.DOI: 10.13745/j.esf.sf.2020.3.18
Previous Articles Next Articles
LÜ Qingtian(), MENG Guixiang, YAN Jiayong, ZHANG Kun, GONG Xuejing, GAO Fengxia
Received:
2019-12-10
Revised:
2020-01-30
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
LÜ Qingtian, MENG Guixiang, YAN Jiayong, ZHANG Kun, GONG Xuejing, GAO Fengxia. The geophysical exploration of Mesozoic iron-copper mineral system in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt: a synthesis[J]. Earth Science Frontiers, 2020, 27(2): 232-253.
Fig. 2 Three-dimensional velocity perspective image of P-wave teleseismic tomography in metallogenic belt of Middle and Lower Yangtze River. Adapted from [50].
[1] |
BLEWETT R S, HENSON P A, Roy I G, et al. Scale-integrated architecture of a world-class gold mineral system: the Archaean eastern Yilgarn Craton, Western Australia[J]. Precambrian Research, 2010, 183(2): 230-250.
DOI URL |
[2] | 翟裕生. 古大陆边缘构造演化和成矿系统[C]//北京大学地质系. 北京大学国际地质科学学术研讨会论文集. 北京: 地震出版社, 1998: 769-778. |
[3] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 13. |
[4] | WYBORN L A I, HEINRICH C A, JAQUES A L. Aus-tralian Proterozoic mineral systems: essential ingredients and mappable criteria[J]. Australian Institute of Mining and Metallurgy Annual Conference, 1994, 94(5): 109-115. |
[5] | HAGEMANN S G, CASSIDY K. Archean orogenic lode gold deposits[C]// HAGEMANN S G, BROWN P E. Gold in 2000. McLean: Society of Economic Geologists, 2000, 13: 9-68. |
[6] |
HUSTON D L, MERNAGH T P, HAGEMANN S G, et al. Tectono-metallogenic systems: the place of mineral systems within tectonic evolution, with an emphasis on Australian examples[J]. Ore Geology Reviews, 2016, 76: 168-210.
DOI URL |
[7] | MCCUAIG T C, HRONSKY J M A. The mineral system concept: the key to exploration targeting[J]. Applied Earth Science IMM Transactions Section B, 2014, 18(2): 153-175. |
[8] | 吕庆田, 孟贵祥, 严加永, 等. 成矿系统的多尺度探测: 概念与进展: 以长江中下游成矿带为例[J]. 中国地质, 2019, 46(4): 673-689. |
[9] | WITHERLY K. Geophysical expressions of ore systems: our current understanding[C]// HAGEMANN S G, BROWN P E. Gold in 2000. McLean: Society of Economic Geologists, 2014, 18: 177-208. |
[10] | DULFER H, SKIRROW R G, CHAMPION D C, et al. Potential for intrusion-hosted Ni-Cu-PGE sulfide deposits in Australia: a continental-scale analysis of mineral system prospectivity[J]. Geoscience Australia Record, 2016(1): 129. |
[11] |
MCCUAIG T C, BERESFORD S, HRONSKY J. Trans-lating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 2010, 38(3): 128-138.
DOI URL |
[12] | HRONSKY J. Self-organized critical systems and ore for-mation: the key to spatial targeting[J]. Society of Economic Geology Newsletter, 2011, 84: 14-16. |
[13] | 常印佛, 刘湘培, 吴言昌. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991: 71-76. |
[14] |
PAN Y M, DONG P. The Lower Changjiang(Yangzi/Yangtze River)metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999, 15(4): 177-242.
DOI URL |
[15] | 高锐, 卢占武, 刘金凯, 等. 庐-枞金属矿集区深地震反射剖面解释结果: 揭露地壳精细结构,追踪成矿深部过程[J]. 岩石学报, 2010, 26(9): 2543-2552. |
[16] | 吕庆田, 侯增谦, 杨竹森, 等. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束[J]. 中国科学: D辑, 2004, 34(9): 783-794. |
[17] | 吕庆田, 董树文, 汤井田, 等. 多尺度综合地球物理探测: 揭示成矿系统, 助力深部找矿:长江中下游深部探测(SinoProbe-03)进展[J]. 地球物理学报, 2015, 58(12): 4319-4343. |
[18] |
LÜ Q T, SHI D N, LIU Z D, et al. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: insights from deep seismic reflection profiling[J]. Journal of Asian Earth Sciences, 2015, 114(Part 4): 704-716.
DOI URL |
[19] | LÜ Q T, LIU Z D, YAN J Y, et al. Crustal-scale structure and deformation of Lu-Zong ore district: joint interpre-tation from Integrated Geophysical Data[J]. Interpre-tation, 2015, 3(2): SL39-SL61. |
[20] |
JIANG G M, ZHANG G B, LÜ Q T, et al. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics[J]. Tectonophysics, 2013, 606: 36-48.
DOI URL |
[21] |
YE Z, LI Q S, ZHANG H S, et al. Crustal and uppermost mantle structure across the Lower Yangtze region and its implications for the late Mesozoic magmatism and metallogenesis, eastern South China[J]. Physics of the Earth and Planetary Interiors, 2019, 297(12): 106324.
DOI URL |
[22] |
LI H Y, SONG X D, LÜ Q T, et al. Seismic imaging of lithosphere structure and upper mantle deformation beneath east-central China and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 2856-2870.
DOI URL |
[23] |
XU J F, SHINJO R, DEFANT M J, et al. Origin of Me-sozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12): 1111-1114.
DOI URL |
[24] | 王强, 赵振华, 熊小林, 等. 底侵玄武质下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J]. 地球化学, 2001, 30(4): 353-362. |
[25] | WANG Q, WYMAN D A, XU J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province(eastern China): implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 8989(3/4), 424-446. |
[26] |
WANG Q, WYMAN D A, XU J F, et al. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636.
DOI URL |
[27] | 周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8): 1665-1678. |
[28] | 周涛发, 范裕, 王世伟, 等. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 2017, 33(11): 3353-3372. |
[29] |
ZHOU T F, WANG S W, FAN Y, et al. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 2015, 65: 433-456.
DOI URL |
[30] | 常印佛, 董树文, 黄德志. 论中-下扬子“一盖多底”格局与演化[J]. 火山地质与矿产, 1996, 17(增刊1): 1-15. |
[31] | 刘刚, 董树文, 马立成, 等. 长江中下游地区基底与成矿[J]. 地质学报, 2016, 90(9): 2258-2275. |
[32] | 王文斌, 李文达, 范洪源. 长江中下游地区变质基底及地壳形成时间[J]. 火山地质与矿产, 1996, 17(增刊2): 42-50. |
[33] | 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. |
[34] |
ZHOU X M, SUN T, SHEN W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33.
DOI URL |
[35] | 张岳桥, 徐先兵, 贾东, 等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 2009, 16(1): 234-247. |
[36] | 徐先兵, 张岳桥, 贾东, 等. 华南早中生代大地构造过程[J]. 中国地质, 2009, 36(3): 573-593. |
[37] | 安徽省地矿局. 铜陵幅区域地质矿产调查报告(1∶20万)[R]. 合肥: 安徽省地矿局, 1969. |
[38] | 安徽省地矿局. 宣城幅区地质矿产调查报告(1∶20万)[R]. 合肥: 安徽省地矿局, 1974. |
[39] | 朱光, 徐嘉炜, 刘国生, 等. 下扬子地区前陆变形构造格局及其动力学机制[J]. 中国区域地质, 1999, 18(1): 73-79. |
[40] |
MAO J W, WANG Y T, LEHMANN B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magne-tite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4): 307-324.
DOI URL |
[41] |
MAO J, XIE G, DUAN C, et al. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China[J]. Ore Geology Reviews, 2011, 43: 294-314.
DOI URL |
[42] |
XIE G Q, MAO J W, LI R L, et al. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo(W)deposits in southeastern Hubei, China[J]. Mineralogy and Petrology, 2007, 90(3/4): 249-270.
DOI URL |
[43] |
XIE G Q, MAO J W, ZHAO H J, et al. Zircon U-Pb and phlogopite 40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt, China[J]. Mineralium Deposita, 2012, 47(6): 633-652.
DOI URL |
[44] |
ZHOU T F, WU M G, FAN Y, et al. Geological, geoc-hemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze(Changjiang)River Valley, eastern China[J]. Ore Geology Reviews, 2011, 43(1): 154-169.
DOI URL |
[45] | 范裕, 周涛发, 袁峰, 等. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J]. 岩石学报, 2010, 26(9): 2715-2728. |
[46] | 范裕, 周涛发, 袁峰, 等. 宁芜盆地玢岩型铁矿床的成矿时代: 金云母40Ar-39Ar 同位素年代学研究[J]. 地质学报, 2011, 85(5): 810-820. |
[47] | 范裕, 周涛发, 袁峰, 等. 安徽庐江—枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义[J]. 岩石学报, 2008, 24(8): 1715-1724. |
[48] | 王强, 赵振华, 许继峰, 等. 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J]. 岩石学报, 2004, 20(2): 351-360. |
[49] | SHI D N, LÜ Q T, Xu W Y, et al. Crustal structure be-neath the middle-lower Yangtze metallogenic belt in East China: constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization[J]. Tecto-nophysics, 2013, 606: 48-60. |
[50] | 江国明, 张贵宾, 吕庆田, 等. 长江中下游地区成矿深部动力学机制: 远震层析成像证据[J]. 岩石学报, 2014, 30(4): 907-917. |
[51] | 徐峣, 吕庆田, 张贵宾, 等. 长江中下游成矿带三维S波速度结构及对深部过程的约束[J]. 地球物理学报, 2015, 58(12): 4373-4387. |
[52] | QIU G G, FANG H, LÜ Q Y, et al. Lithospheric electrical characteristics of eastern Jiangnan Orogen, South China[C]// Proceedings of the International Workshop on Envi-ronment and Geoscience. Hangzhou, China: IWEG 2018, 2018, 1: 415-420. |
[53] | 仇根根, 方慧, 吕琴音, 等. 武夷山北段及相邻区深部电性构造与成矿分析: 基于三维大地电磁探测结果[J]. 中国地质, 2019, 46(4): 775-785. |
[54] | 王刚, 方慧, 仇根根, 等. 安庆—贵池矿集区及邻区深部电性结构研究[J]. 中国地质, 2019, 46(4): 795-806. |
[55] |
ZHANG K, LÜ Q T, YAN J Y, et al. The subduction and continental collision of the North China and Yangtze Blocks: magnetotelluric evidence from the Susong-Anqing section of western Anhui, China[J]. Geophysical Journal International, 2019, 216(3): 2114-2128.
DOI URL |
[56] |
SODOUDI F, YUAN X, LIU Q, et al. Lithospheric thi-ckness beneath the Dabie Shan, central eastern China from S receiver functions[J]. Geophysical Journal International, 2006, 166(3): 1363-1367.
DOI URL |
[57] | CHEN L, ZHENG T Y, XU W W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9). |
[58] |
LI C F, WANG J L, ZHOU Z Y, et al. 3D geophysical characterization of the Sulu-Dabie orogeny and its environs[J]. Physics of the Earth and Planetary Interiors, 2012, 192/193: 35-53.
DOI URL |
[59] |
OUYANG L B, Li H Y, LÜ Q T, et al. Crustal and uppermost mantle velocity structure and its relationship to the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 2014, 408: 378-389.
DOI URL |
[60] |
JIANG G M, ZHANG G B, ZHAO D P, et al. Mantle dynamics and Cretaceous magmatism in east-central China: insight from teleseismic tomograms[J]. Tectonophysics, 2015, 664: 256-268.
DOI URL |
[61] | 吕庆田, 董树文, 史大年, 等. 长江中下游成矿带岩石圈结构与成矿动力学模型: 深部探测(SinoProbe)综述[J]. 岩石学报, 2014, 30(4): 889-906. |
[62] |
GRIFFIN W L, BEGG G C, SUZANNE Y O. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6: 905-910.
DOI URL |
[63] | 唐永成, 吴言昌, 储国正, 等. 安徽沿江地区铜金多金属矿床地质[M]. 北京: 地质出版社, 1998: 1-386. |
[64] | 严加永, 吕庆田, 孟贵祥, 等. 基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J]. 地质学报, 2011, 85(5): 900-914. |
[65] |
PARKER R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447-455.
DOI URL |
[66] |
OLDENBURG D W. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974, 39(4): 526-536.
DOI URL |
[67] | 张明辉, 徐涛, 吕庆田, 等. 长江中下游成矿带及邻区三维Moho面结构: 来自人工源宽角地震资料的约束[J]. 地球物理学报, 2015, 58(12): 4360-4372. |
[68] |
HOLDEN D J, ARCHIBALD N J, BOSCHETTI F, et al. Inferring geological structures using wavelet-based mul-tiscale edge analysis and forward models[J]. Exploration Geophysics, 2000, 31(4): 617-621.
DOI URL |
[69] | 吕庆田, 刘振东, 董树文, 等. “长江深断裂带”的构造性质: 深地震反射证据[J]. 地球物理学报, 2015, 58(12): 4344-4359. |
[70] |
LÜ Q T, YAN J Y, SHI D N, et al. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze metallogenic belt: an insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics, 2013, 606: 60-77.
DOI URL |
[71] | 中国地质调查局自然资源航空物探遥感中心. 1∶200 000网格化航磁数据 [DS/OL]. 2001 [2019-12-08]. http://geocloud.cgs.gov.cn/#/portal/geologicalDatabase/DetailsPage?child_id=v_cpgl_dzt_41202020320191031361&tableCode=v_cpgl_dzt&jddm=412. |
[72] | 安徽省勘查技术院. 1∶50 000地面磁测数据和1∶10 000泥河矿区磁测和重力数据[R]. 合肥: 安徽省勘查技术院, 2006. |
[73] | 迟清华, 程志中, 刘大文, 等. 铜陵矿集区地球化学块体三维结构与直接找矿信息评价[C]// 大型矿集区深部精细结构与含矿信息第4课题研究报告. 北京: 国土资源部, 2003. |
[74] | SKIRROW R. Uranium ore-forming systems of the Lake Frome region, South Australia: regional spatial controls and exploration criteria[J]. Geoscience Australia Record, 2009, 40: 148. |
[75] | 董树文, 邱瑞龙. 安庆—岳山地区构造作用及岩浆活动[M]. 北京: 地质出版社, 1993: 1-158. |
[76] |
ZHANG C, MA C Q, HOLTZ F. Origin of high-Mg adaki-tic magmatic enclaves from the Meichuan pluton, southern Dabie orogen(central China): implications for delami-nation of the lower continental crust and melt-mantle interaction[J]. Lithos, 2010, 119(3/4): 467-484.
DOI URL |
[77] |
ZHOU X M, LI W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduc-tion and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3/4): 269-287.
DOI URL |
[78] | 周新民, 李武显. 中国东南部晚中生代火成岩成因: 岩石圈消减和玄武岩底侵相结合的模式[J]. 自然科学进展, 2000, 10(3): 240-247. |
[79] | 邓晋福, 吴宗絮. 下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带[J]. 安徽地质, 2001, 11(2): 86-91. |
[80] | 陶奎元, 毛建仁, 杨祝良, 等. 中国东南部中生代岩石构造组合和复合动力学过程的记录[J]. 地学前缘, 1998, 5(4): 183-192. |
[81] | 邢凤鸣, 徐祥. 安徽扬子岩浆岩带与成矿[M]. 合肥: 安徽人民出版社, 1999: 1-170. |
[82] | LÜ Q T, SHI D N, YAN J Y, et al. The Mesozoic mineral systems of South China: lithospheric structure and deep processes constrained from integrated geophysical data: preliminary results[J]. Acta Geologica Sinica, 2018, 92(z1): 15. |
[83] |
SILLITOE R H. Porphyry copper system[J]. Economic Geology, 2010, 105: 3-41.
DOI URL |
[84] |
DRUMMOND B J, GOLEBY B R. Seismic reflection im-ages of major ore controlling structure in the Eastern Goldfields, Western Australia[J]. Exploration Geophysics, 1993, 24: 473-478.
DOI URL |
[85] | 侯增谦, 吕庆田, 王安建, 等. 初论陆-陆碰撞与成矿作用[J], 矿床地质, 2003, 22(4): 319-333. |
[86] |
HEINSON G, DIDANA Y, SOEFFKY P, et al. The crustal geophysical signature of a world-class magmatic mineral system[J]. Scientific Reports, 2018, 8(1): 10608.
DOI URL |
[87] |
VIGNERESSE J L. Control of granite emplacement by re-gional deformation[J]. Tectonophysics, 1995, 249(3/4): 173-186.
DOI URL |
[88] |
VIGNERESSE J L. Crustal regime of deformation and as-cent of granitic magma[J]. Tectonophysics, 1995, 249(3/4): 187-202.
DOI URL |
[89] |
SELWAY K. On the causes of electrical conductivity ano-malies in tectonically stable lithosphere[J]. Surveys in Geophysics, 2014, 35: 219-257.
DOI URL |
[90] |
LÜ Q T, QI G, YAN J Y. 3D geological model of Shizishan ore field constrained by gravity and magnetic interactive modeling: a case history[J]. Geophysics, 2013, 78(1): B25-B35.
DOI URL |
[91] | 祁光, 吕庆田, 严加永, 等. 基于先验信息约束的三维地质建模: 以庐枞矿集区为例[J]. 地质学报, 2014, 88(4): 466-477. |
[92] |
BOSCH M, GUILLEN A, LEDRU P. Lithologic tomogr-aphy: an application to geophysical data from the Codomain belt of northern Brittany, France[J]. Tectonophysics, 2001, 331(1/2): 197-227.
DOI URL |
[93] | 董树文, 李廷栋. SinoProbe: 中国深部探测实验[J]. 地质学报, 2009, 83(7): 895-909. |
[1] | GAO Rui, ZHOU Hui, GUO Xiaoyu, LU Zhanwu, LI Wenhui, WANG Haiyan, LI Hongqiang, XIONG Xiaosong, HUANG Xingfu, XU Xiao. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(5): 320-336. |
[2] | SUN Junyi,YU Wenjia,TANG Zexun,LI Zhong,LUO Zhaohua. Discovery of the ore-bearing mafic layered sill in the Lala Fe-Cu ore district, western Sichuan Province, China and its implications for petrogenesis and metallogenesis [J]. Earth Science Frontiers, 2019, 26(1): 313-325. |
[3] | ZHAO Zhidan,LIU Dong,WANG Qing,ZHU Dicheng,DONG Guochen,ZHOU Su,MO Xuanxue. Zircon trace elements and their use in probing deep processes. [J]. Earth Science Frontiers, 2018, 25(6): 124-135. |
[4] | HEI Hui-Xin, LUO Zhao-Hua, CHENG Jin-Hua, QIU Yi-Dan, DENG Dun-Feng, LI Jie, I.V.Vikentyev . Fluid dynamics model of mafic magma metallogenic system in Panxi Area. [J]. Earth Science Frontiers, 2015, 22(3): 333-347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||