地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 417-431.DOI: 10.13745/j.esf.sf.2025.7.15

• 智能储层透视 • 上一篇    下一篇

夹层型页岩油三维甜点分布预测方法研究:以鄂尔多斯盆地庆城油田B15区块延长组为例

万晓龙1,2,3(), 吴胜和1,2,*(), 周新平4, 徐振华1,2, 付金华5, 王梓沣1,2, 麻书玮4, 邬德刚1,2, 李桢4, 刘明成1,2   

  1. 1.中国石油大学(北京) 油气资源与工程全国重点实验室, 北京 102249
    2.中国石油大学(北京) 地球科学学院, 北京 102249
    3.中国石油长庆油田分公司 第十一采油厂, 甘肃 庆阳 745000
    4.中国石油长庆油田公司 勘探开发研究院, 陕西 西安 710018
    5.中国石油长庆油田公司, 陕西 西安 710018
  • 收稿日期:2025-06-20 修回日期:2025-07-10 出版日期:2025-09-25 发布日期:2025-10-14
  • 通信作者: 吴胜和
  • 作者简介:万晓龙(1978—),男,博士研究生,高级工程师,主要从事沉积学、储层表征与建模研究。E-mail: 1406319093@qq.com
  • 基金资助:
    中国石油长庆油田分公司关键核心技术攻关项目“鄂尔多斯盆地页岩油渗流机理及有效开发关键技术”(2023DZZ04);中石油与中国石油大学(北京)战略合作课题(ZLZX2020-02)

Research on the prediction method of 3D reservoir sweet spots distribution of shale oil in shale intercalated layer: A case from the Yanchang Formation of B15 block, Ordos Basin

WAN Xiaolong1,2,3(), WU Shenghe1,2,*(), ZHOU Xinping4, XU Zhenhua1,2, FU Jinhua5, WANG Zifeng1,2, MA Shuwei4, WU Degang1,2, LI Zhen4, LIU Mingcheng1,2   

  1. 1. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
    2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
    3. The 11th oil Production Plant, PetroChina Changqing Oilfield Company, Qingyang 745000, China
    4. Research Institute of Exploration & Development, PetroChina Changqing Oilfield Company, Xi’an 710018, China
    5. PetroChina Changqing Oilfield Company, Xi’an 710018, China
  • Received:2025-06-20 Revised:2025-07-10 Online:2025-09-25 Published:2025-10-14
  • Contact: WU Shenghe

摘要:

陆相夹层型页岩油甜点具有垂向较薄、侧向不连续的特点,因此,精确的三维甜点分布预测是提高水平井油层钻遇率及单井产能的关键。鄂尔多斯盆地延长组长7段具有丰富的夹层型页岩油资源,但已有的开发实践发现水平井甜点钻遇率差异大,在地震品质不高、井距较大资料条件下,尚未形成单一油层级次的三维甜点空间分布预测方法。本文以鄂尔多斯盆地B15区块延长组为研究对象,提出了多维-多元约束的智能化三维甜点预测思路,即:采用地震宏观约束与多井模式拟合的方法,实现甜点平面分布预测;采用基于微构造面的单甜点建模方法,通过二维甜点分布约束下的几何学形态智能构造算法构建甜点微构造面,实现单甜点三维建模;采用叠置模式约束的嵌入式方法,优化顶、底微构造面,将单甜点模型秩序嵌入得到多甜点三维模型。该方法再现了甜点的空间分布形态与复杂接触关系,可有效指导水平井井位部署,提高甜点钻遇率。

关键词: 鄂尔多斯盆地, 夹层型页岩油,三维甜点预测, 地质建模, 延长组

Abstract:

Sweet spots in the shale oil reservoirs in intercalated layer of continental basins are characterized by vertical thinness and lateral discontinuity. Therefore, accurately predicting their three-dimensional (3D) distribution is key to improving the horizontal well sweet spot encounter rate and single-well productivity. The Chang 7 Member of the Yanchang Formation in the Ordos Basin contains abundant reservoirs of shale oil in intercalated layer. However, previous development practices have revealed significant variations in the horizontal well sweet spot encounter rate. Under the constraints of low-quality seismic data and large well spacing, a robust method for predicting the 3D spatial distribution of sweet spots at the single-reservoir-layer level has not yet been established. This study takes the B15 block of the Yanchang Formation in the Ordos Basin as its research focus. To address this gap, we propose an intelligent 3D sweet spot prediction approach with multi-dimensional and multi-variable constraints. This method utilizes seismic data as a macroscopic constraint and employs multi-well correlation techniques to predict the planar distribution of sweet spots. Furthermore, it adopts a single-sweet-spot modeling method based on micro-architecture surfaces to achieve 3D modeling of individual sweet spots. The core of this modeling method lies in constructing micro-architecture surfaces for sweet spots using a geometric morphology intelligent construction algorithm under the constraints of the 2D sweet spot distribution. Utilizing an embedding method constrained by stratigraphic stacking patterns, we optimize the top and bottom micro-architecture surfaces and embed the single-sweet-spot models to generate a multi-sweet-spot 3D geological model. This approach effectively reproduces the spatial distribution patterns and complex contact relationships of the sweet spots. Consequently, it can effectively guide horizontal well placement and enhance the sweet spot encounter rate.

Key words: Ordos Basin, shale oil in shale intercalated layer, 3D sweet spot prediction, geological modeling, Yanchang Formation

中图分类号: