地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 470-481.DOI: 10.13745/j.esf.sf.2023.10.36
徐继山1(), 彭建兵2,3,*(
), 隋旺华1, 安海波4, 李作栋5, 徐文杰1, 董培杰1
收稿日期:
2023-02-21
修回日期:
2023-10-13
出版日期:
2024-05-25
发布日期:
2024-05-25
通信作者:
*彭建兵(1953—),男,教授,博士生导师,中国科学院院士,长期从事工程地质与灾害地质研究。E-mail: 作者简介:
徐继山(1982—),男,博士,副教授,硕士生导师,主要从事工程地质与地质灾害、第四纪地质学等研究。E-mail: xujs@cumt.edu.cn
基金资助:
XU Jishan1(), PENG Jianbing2,3,*(
), SUI Wanghua1, AN Haibo4, LI Zuodong5, XU Wenjie1, DONG Peijie1
Received:
2023-02-21
Revised:
2023-10-13
Online:
2024-05-25
Published:
2024-05-25
摘要:
新沂地区处于郯庐断裂带转换段的关键部位,自20世纪70年代以来在新沂地区共发现地裂缝灾害点28处。这些地裂缝以群发的形式发育在南马陵山以西、沂河—骆马湖以东的区域内,地裂灾害影响区面积达100 km2。新沂地裂缝与地层结构、地震活动、地下水开采等因素有着千丝万缕的联系,对其研究形成了多种观点。利用实地调查与勘探手段,新近查明了新沂地裂缝的基本特征,它们具有走向一致性、纵向尖灭性、局部群发性等特点,且与邻近断裂(郯庐断裂带次级断裂F3)具有高度一致性,属于区域构造控制型地裂缝。以新沂地区地质构造为原型,构建了逆断层作用下地裂缝成生物理试验模型。试验结果表明,随着逆断层断距加大而依次呈剪裂段、离层段、弯裂段等发展过程。结合新沂地区“地堑-地垒-地堑”组合结构,新沂地裂缝的成因机制可概括为“跷跷板”构造模型,在构造应力、自重应力、地下水波动等作用下,下沉段受挤压,上升段因抬升而弯裂,从而形成地裂缝。研究新沂地区地裂缝,对揭示郯庐断裂带“北-中-南”段构造变化和“深-浅-表”部结构联系具有重要的指示意义。
中图分类号:
徐继山, 彭建兵, 隋旺华, 安海波, 李作栋, 徐文杰, 董培杰. 郯庐断裂转换段新沂地裂缝成生机理及构造意义[J]. 地学前缘, 2024, 31(3): 470-481.
XU Jishan, PENG Jianbing, SUI Wanghua, AN Haibo, LI Zuodong, XU Wenjie, DONG Peijie. Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section[J]. Earth Science Frontiers, 2024, 31(3): 470-481.
图1 新沂区域地质及地裂缝分布 a—郯庐断裂带邻域构造图(据文献[21]补充修改),郯庐断裂带可分为三段,分别为苏皖段(TL-1)、沂沭段(TL-2)和东北段(TL-3);b—新沂地裂缝分布图(表1),F1—山左口—泗洪断裂,F2—新沂—新店断裂,F3—墨河—凌城断裂,F4—纪集—王集断裂,F5—马陵山—重岗山断裂,F6—皂河—宿迁断裂,F7—邵店—板浦断裂;c—地质剖面图,PP'为剖切线,Q、N、Z分别是第四系、新近系、震旦系,Ptf、Ptj分别是元古宇凤阳群、胶南群(变质岩系),K1q、K2w分别是下白垩统青山组、上白垩统王氏组。
Fig.1 Regional geology and distribution of Xinyi earth fissures a—map of Tan-Lu Fault zone (modified after [21]). b—map of Xinyi earth fissures (Table 1). c—geological profile map.
群组 | 编号 | 地理位置 | 经纬坐标 | 长度等级 | 走向 |
---|---|---|---|---|---|
fG-XY 新沂港 地裂群 | f1 | 杜墩村西北 | 34°18'59.04″N 118°15'51.87″E | 3 | N23°E |
f2 | 蒋黄村西 | 34°17'52.91″N 118°15'21.86″E | 2 | N23°E | |
f3 | 史圩村西 | 34°19'22.22″N 118°16'34.30″E | 2 | N17°E | |
f4 | 蒋黄村内 | 34°18'26.41″N 118°16'15.67″E | 2 | N17°E | |
f5 | 蒋黄村内 | 34°18'15.24″N 118°16'42.57″E | 4 | N17°E | |
f6 | 前史城东 | 34°18'34.00″N 118°17'08.45″E | 2 | N17°E | |
fG-QP 棋盘镇 地裂群 | f7 | 柳沟村东 | 34°16'08.97″N 118°13'36.30″E | 3 | N18°E |
f8 | 棋盘镇西北 | 34°15'15.69″N 118°13'50.79″E | 3 | N22°E | |
f9 | 张庙村内 | 34°14'18.11″N 118°13'12.50″E | 3 | N22°E | |
f10 | 墨芬村内 | 34°16'26.15″N 118°14'03.21″E | 2 | N19°E | |
f11 | 棋盘镇东北 | 34°16'22.71″N 118°14'44.60″E | 3 | N22°E | |
f12 | 棋盘镇东南 | 34°16'04.67″N 118°14'36.33″E | 1 | N68°W | |
f13 | 棋盘镇东南 | 34°15'54.36″N 118°14'53.92″E | 3 | N21°E | |
f14 | 西夏村西 | 34°16'40.76″N 118°16'05.32″E | 3 | N21°E | |
f15 | 棋盘镇内 | 34°14'52.49″N 118°14'52.88″E | 5 | N21°E | |
f16 | 大墩村内 | 34°12'33.24″N 118°13'16.64″E | 3 | N25°E | |
f17 | 马场村南 | 34°11'42.50″N 118°13'18.71″E | 2 | N74°W | |
f18 | 筛子村内 | 34°11'21.00″N 118°13'15.61″E | 3 | N23°E | |
fG-MH 墨河街 地裂群 | f19 | 许庄东南 | 34°17'41.74″N 118°18'15.71″E | 1 | N86°W |
f20 | 许庄东南 | 34°17'35.73″N 118°18'26.06″E | 4 | N15°E | |
f21 | 利民化工厂 | 34°17'57.20″N 118°19'10.56″E | 4 | N15°E | |
fG-CG 城岗村 地裂缝 | f22 | 城岗村内 | 34°13'04.19″N 118°16'16.71″E | 5 | N17°E |
f23 | 戚沟村东北 | 34°12'03.00″N 118°15'21.86″E | 3 | N21°E | |
f24 | 南涧村东北 | 34°10'38.86″N 118°15'11.51″E | 1 | N70°W | |
f25 | 古龙村西北 | 34°10'50.90″N 118°15'30.15″E | 3 | N21°E | |
f26 | 城岗村东北 | 34°13'23.10″N 118°17'21.90″E | 4 | N21°E | |
f27 | 王徐村西南 | 34°13'39.43″N 118°17'21.90″E | 1 | N74°W | |
f28 | 岗东村东 | 34°12'53.87″N 118°17'48.81″E | 4 | N23°E |
表1 新沂地裂缝群组统计
Table 1 Statistical overview of Xinyi earth fissure groups
群组 | 编号 | 地理位置 | 经纬坐标 | 长度等级 | 走向 |
---|---|---|---|---|---|
fG-XY 新沂港 地裂群 | f1 | 杜墩村西北 | 34°18'59.04″N 118°15'51.87″E | 3 | N23°E |
f2 | 蒋黄村西 | 34°17'52.91″N 118°15'21.86″E | 2 | N23°E | |
f3 | 史圩村西 | 34°19'22.22″N 118°16'34.30″E | 2 | N17°E | |
f4 | 蒋黄村内 | 34°18'26.41″N 118°16'15.67″E | 2 | N17°E | |
f5 | 蒋黄村内 | 34°18'15.24″N 118°16'42.57″E | 4 | N17°E | |
f6 | 前史城东 | 34°18'34.00″N 118°17'08.45″E | 2 | N17°E | |
fG-QP 棋盘镇 地裂群 | f7 | 柳沟村东 | 34°16'08.97″N 118°13'36.30″E | 3 | N18°E |
f8 | 棋盘镇西北 | 34°15'15.69″N 118°13'50.79″E | 3 | N22°E | |
f9 | 张庙村内 | 34°14'18.11″N 118°13'12.50″E | 3 | N22°E | |
f10 | 墨芬村内 | 34°16'26.15″N 118°14'03.21″E | 2 | N19°E | |
f11 | 棋盘镇东北 | 34°16'22.71″N 118°14'44.60″E | 3 | N22°E | |
f12 | 棋盘镇东南 | 34°16'04.67″N 118°14'36.33″E | 1 | N68°W | |
f13 | 棋盘镇东南 | 34°15'54.36″N 118°14'53.92″E | 3 | N21°E | |
f14 | 西夏村西 | 34°16'40.76″N 118°16'05.32″E | 3 | N21°E | |
f15 | 棋盘镇内 | 34°14'52.49″N 118°14'52.88″E | 5 | N21°E | |
f16 | 大墩村内 | 34°12'33.24″N 118°13'16.64″E | 3 | N25°E | |
f17 | 马场村南 | 34°11'42.50″N 118°13'18.71″E | 2 | N74°W | |
f18 | 筛子村内 | 34°11'21.00″N 118°13'15.61″E | 3 | N23°E | |
fG-MH 墨河街 地裂群 | f19 | 许庄东南 | 34°17'41.74″N 118°18'15.71″E | 1 | N86°W |
f20 | 许庄东南 | 34°17'35.73″N 118°18'26.06″E | 4 | N15°E | |
f21 | 利民化工厂 | 34°17'57.20″N 118°19'10.56″E | 4 | N15°E | |
fG-CG 城岗村 地裂缝 | f22 | 城岗村内 | 34°13'04.19″N 118°16'16.71″E | 5 | N17°E |
f23 | 戚沟村东北 | 34°12'03.00″N 118°15'21.86″E | 3 | N21°E | |
f24 | 南涧村东北 | 34°10'38.86″N 118°15'11.51″E | 1 | N70°W | |
f25 | 古龙村西北 | 34°10'50.90″N 118°15'30.15″E | 3 | N21°E | |
f26 | 城岗村东北 | 34°13'23.10″N 118°17'21.90″E | 4 | N21°E | |
f27 | 王徐村西南 | 34°13'39.43″N 118°17'21.90″E | 1 | N74°W | |
f28 | 岗东村东 | 34°12'53.87″N 118°17'48.81″E | 4 | N23°E |
等级 | 长度l范围/m |
---|---|
1 | l≤100 |
2 | 100<l≤200 |
3 | 200<l≤500 |
4 | 500<l≤1 000 |
5 | 1 000<l≤2 000 |
6 | 2 000<l≤5 000 |
7 | 5 000<l≤10 000 |
8 | 10 000<l≤22 500 |
9 | 22 500<l≤50 000 |
10 | l>50 000 |
表2 地裂缝长度等级划分标准(据文献[3])
Table 2 Classification standards for earth fissure lengths (Adapted from [3])
等级 | 长度l范围/m |
---|---|
1 | l≤100 |
2 | 100<l≤200 |
3 | 200<l≤500 |
4 | 500<l≤1 000 |
5 | 1 000<l≤2 000 |
6 | 2 000<l≤5 000 |
7 | 5 000<l≤10 000 |
8 | 10 000<l≤22 500 |
9 | 22 500<l≤50 000 |
10 | l>50 000 |
图3 新沂地裂缝典型地层剖面 a—棋盘地裂缝f15剖面图,其地理位置如图1中P1所示;b—城岗地裂缝f22剖面图,其地理位置如图1中P2所示;1—耕植土;2—粉质黏土;3—含砂姜黏土(钙质结核黏土);4—砂层;5—红黏土;6—砾砂层。
Fig.3 Typical stratigraphic sections of Xinyi earth fissures a—stratigraphic section of Qipan earth fissure (f15), its geographical location is shown in Fig.1, P1; b—stratigraphic section of Chenggang earth fissure, its geographical location is shown in Fig.1, P2.
图4 新沂地裂缝与地震活动的关系 圆形为地震,条形为地裂缝。
Fig.4 Relationship between earth fissures and seismic activity in Xinyi The circulars are earthquakes, and the strips are earth fissures.
图6 模型试验结果及破裂现象 a—剖面图;b—俯视图;c—右视图;d—细节图;e—变形区分带示意图。
Fig.6 Model test results and cracking phenomenon a—profile view; b—top view; c—right view; d—detail view;e—schematic diagram of deformation zones.
图7 模型试验应变及位移曲线 a—地表位移曲线;b—耕植土层应变曲线(图5中L1);c—粉质黏土层应变曲线(图5中L2);d—含砾砂层应变曲线(图5中L3)。
Fig.7 Strain and displacement curves in model tests a—surface displacement curves; b—strain curves of cultivated soil layer (Fig.5, L1);c—strain curves of silty clay layer (Fig.5, L2); d—strain curves of gravel bearing sand layer (Fig.5, L3).
图8 新沂地裂缝成因模式 a—表层破裂(地裂缝)图;b—浅层构造图;c—深部构造图;d—“跷跷板”构造模型;断层F1-F5的名称及位置见图1b所示; Q+N—第四系和新近系;Pre- —前寒武系;K—白垩系。
Fig.8 Genetic model of Xinyi earth fissures a—diagram of surface fissures (earth fissures); b—diagram of shallow structure; c—diagram of deep structure; d—seesaw-style tectonic model. The names and locations of faults F1-F5 are shown in Fig.1b.
[1] | HOWARD K W F, ZHOU W F. Overview of ground fissure research in China[J]. Environmental Earth Sciences, 2019, 78(3): 97. |
[2] | PENG J B, QIAO J W, SUN X H, et al. Distribution and generative mechanisms of ground fissures in China[J]. Journal of Asian Earth Sciences, 2020, 191: 104218. |
[3] | XU J S, PENG J B, DENG Y H, et al. Classification, grading criteria and quantitative expression of earth fissures: a case study in Daming Area, North China Plain[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 862-880. |
[4] | LEONARD R J. An earth fissure in southern Arizona[J]. The Journal of Geology, 1929, 37(8): 765-774. |
[5] | CONWAY B D. Land subsidence and earth fissures in south-central and southern Arizona, USA[J]. Hydrogeology Journal, 2016, 24(3): 649-655. |
[6] | HOLZER T L. Implications of ground-deformation measurements across earth fissures in subsidence areas in the southwestern USA[M]//Eighth International symposium on land subsidence. Wallingford: IAHS Publication, 2010: 9-19. |
[7] | KEATON J R, RUCKER M L, CHENG S S. Geomechanical analysis of an earth fissure induced by ground-water withdrawal for design of a proposed ash and sludge impoundment, southeastern Arizona[M]//Poland symposium on land subsidence. Sacramento, California: Association of Engineering Geologists, 1995: 217-226. |
[8] | RUCKER M L, FERGASON K C, PANDA B B. Subsidence characterization and modeling for engineered facilities in Arizona, USA[C]//Proceedings of the International Association of Hydrological Sciences(IAHS): Prevention and mitigation of natural and anthropogenic hazards due to land subsidence-Ninth International Symposium on Land Subsidence. Nagoya: IAHS, 2015: 59-62. |
[9] | LI Y T, TEATINI P, YU J, et al. Aseismic multifissure modeling in unfaulted heavily pumped basins: mechanisms and applications[J]. Water Resources Research, 2021, 57(10): 1-21. |
[10] | RUCKER M L, JEFFREY R K. Tracing an Earth fissure using Seismic-Refraction Methods with physical verification[C]//Proceedings of the Dr. Joseph F. Poland symposium on land subsidence. Belmont: Association of Engineering Geologists, Star Publishing Company, 1998: 207-216. |
[11] | 高中和, 竺清良, 季幼庭, 等. 江苏省地裂缝的分布特征、成因类型及防治对策研究[J]. 地震学刊, 1997, 17(1): 1-10. |
[12] | 王景明. 地裂缝及其灾害的理论与应用[M]. 西安: 陕西科学技术出版社, 2000: 1-574. |
[13] | 李昌存. 河北平原地裂缝研究[D]. 北京: 中国地质大学(北京), 2003. |
[14] | 徐继山. 华北陆缘盆地地裂缝成因机理研究[D]. 西安: 长安大学, 2012. |
[15] | 赵永福, 祁玉岭. 江苏新沂棋盘地裂缝成因及其危害[J]. 地震学刊, 1991(4): 47-50. |
[16] | 李起彤, 南金生, 陈晓明, 等. 新沂地裂缝及其地震前兆意义[J]. 地震, 1988, 8(6): 18-23. |
[17] | LIU Y, PENG J B, JIANG F Q, et al. Model test study on the formation and development of underground erosion ground fissures in the Kenya Rift Valley[J]. Journal of Mountain Science, 2022, 19(4): 1037-1050. |
[18] |
LIU N N, FENG X Y, HUANG Q B, et al. Dynamic characteristics of a ground fissure site[J]. Engineering Geology, 2019, 248: 220-229.
DOI |
[19] | XIONG Z M, ZHANG C, HUO X P, et al. Distributing disciplinarian of ground motion parameters on an earth fissure site during strong earthquakes[J]. Earthquake Engineering and Engineering Vibration, 2020, 19(3): 597-610. |
[20] | 王小凤, 李中坚, 陈柏林, 等. 郯庐断裂带[M]. 北京: 地质出版社, 2000. |
[21] | 李开善. 郯庐断裂带构造应力场初步探讨[J]. 中国地质科学院562综合大队集刊, 1987(6): 127-138. |
[22] | 李法浩, 解国爱, 田荣松, 等. 华北板块东南缘徐淮推覆-褶皱带的物理模拟[J]. 地质通报, 2018, 37(6): 1087-1100. |
[23] | SUN F B, PENG P, ZHOU X Q, et al. Provenance analysis of the late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the southeast North China Craton: implications for paleogeographic reconstruction[J]. Precambrian Research, 2020, 337: 105554. |
[24] | LAI H Y, LIU L P, LIU X, et al. Unmanned aerial vehicle oblique photography-based superposed fold analysis of outcrops in the Xuhuai region, North China[J]. Geological Journal, 2021, 56(4): 2212-2222. |
[25] | LI C B, JIANG R, ZENG J W, et al. Deep structures underneath the Sihong Segment of the Tan-Lu Fault Zone, eastern China: interpretations of gravity anomaly and seismic profiles[J]. Journal of Asian Earth Sciences, 2019, 176: 229-243. |
[26] | 王先美, 钟大赉, 张进江, 等. 沂沭断裂带晚白垩世—早古新世左行走滑的低温年代学约束[J]. 地质学报, 2007, 81(4): 454-465. |
[27] | 徐嘉炜. 徐嘉炜论郯庐断裂: 论文选集[M]. 合肥: 合肥工业大学出版社, 2015. |
[28] | 张鹏, 王良书, 钟锴, 等. 郯庐断裂带的分段性研究[J]. 地质论评, 2007, 53(5): 586-591, 721-722. |
[29] |
刘保金, 酆少英, 姬计法, 等. 郯庐断裂带中南段的岩石圈精细结构[J]. 地球物理学报, 2015, 58(5): 1610-1621.
DOI |
[30] | 李康. 郯庐断裂带(张渤带以南)地震破裂综合分段研究[D]. 北京: 中国地震局地质研究所, 2016. |
[31] |
郑祺方, 郑宇舟, 赵睿, 等. 郯庐断裂带南段的重磁场特征及其地质意义[J]. 地学前缘, 2022, 29(3): 292-303.
DOI |
[32] | 孟庆武. 山东苍山5.2级地震活动背景及震前地震活动[J]. 山西地震, 1998, 92(1): 55-60. |
[33] | 朱成林. 郯庐断裂带沂沭段及周边地区地壳形变特征和地震危险性分析[D]. 北京: 中国地震局, 2020. |
[34] |
朱艾斓, 徐锡伟, 王鹏, 等. 以精定位背景地震活动与震源机制解研究郯庐断裂带中南段现今活动习性[J]. 地学前缘, 2018, 25(1): 218-226.
DOI |
[35] |
曹筠, 冉勇康, 许汉刚, 等. 郯庐断裂带江苏段安丘—莒县断裂全新世活动及其构造意义[J]. 地球物理学报, 2018, 61(7): 2828-2844.
DOI |
[36] | 刘备, 朱光, 胡红雷, 等. 郯庐断裂带江苏段新构造活动规律分析[J]. 地质学报, 2015, 89(8): 1352-1366. |
[37] | TANG C S, ZHU C, CHENG Q, et al. Desiccation cracking of soils: a review of investigation approaches, underlying mechanisms, and influencing factors[J]. Earth-Science Reviews, 2021, 216: 103586. |
[38] | CHEN X X, LUO Z J, ZHOU S L. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation[J]. Journal of Hydrodynamics, 2014, 26(1): 155-164. |
[39] | 徐继山, 马润勇, 彭建兵, 等. 河间地区地裂缝分形特征研究[J]. 自然灾害学报, 2012, 21(3): 177-183. |
[40] | 江苏省地质矿产局. 江苏省及上海市区域地质志[M]. 北京: 地质出版社, 1984. |
[41] | JANG B, QU Z H, WANG J L, et al. Research on coupling mechanism of mine structure and gas occurrence[J]. Procedia Earth and Planetary Science, 2009, 1(1): 1029-1036. |
[42] | 熊彩霞, 汪吉林, 宋豪, 等. 徐宿弧形构造带徐州区段节理发育及应力场特征[J]. 地球科学前沿, 2022, 12(6): 804-812. |
[43] | ISHIMURA D, IWASA Y, TAKAHASHI N, et al. Paleoseismic events and shallow subsurface structure of the central part of the Futagawa fault, which generated the 2016 Mw 7.0 Kumamoto earthquake[J]. Geomorphology, 2022, 414: 108387. |
[44] | LIU K, LI Y G, NAN Y Y, et al. Detailed shallow structure of the seismogenic fault of the 1976 Ms 7.8 Tangshan earthquake, China[J]. Frontiers in Earth Science, 2022, 10: 946972. |
[45] | 马宝军, 漆家福, 牛树银, 等. 统一应力场中基底断裂对盖层复杂断块变形的影响: 来自砂箱实验的启示[J]. 地学前缘, 2009, 16(4): 105-116. |
[46] | LI H O, XU X W, JIANG M. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau: receiver functions and travel-time residuals analysis of North Hi-Climb[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1297-1305. |
[47] | SHEN Z K, ZHAO C K, YIN A, et al. Contemporary crustal deformation in East Asia constrained by Global Positioning System measurements[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5721-5734. |
[48] | HU X P, ZANG A, HEIDBACH O, et al. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 2017, 149: 20-28. |
[49] | CHANG L J, WANG C Y, DING Z F. Seismic anisotropy of upper mantle in Eastern China[J]. Science in China Series D: Earth Sciences, 2009, 52(6): 774-783. |
[50] | WEI W, XU J D, ZHAO D P, et al. East Asia mantle tomography: new insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 2012, 60: 88-103. |
[51] | WANG H B, ZHANG J J, FAN Y S, et al. Tectonic conversion on the northern margin of the North China Craton in the Early Triassic: constraints from geochronology and petrogenesis of the Datan plutonic complex, middle of Inner Mongolia, China[J]. Lithos, 2021, 388/389: 106038. |
[52] | ZHANG J J, ZHAO L, LIU S W, et al. Structures of syn-deformational granites in the longquanguan shear zone and their monazite electronic microprobe dating[J]. Acta Geologica Sinica (English Edition), 2006, 80(6): 864-874. |
[53] | LI S Z, ZHAO G C, DAI L M, et al. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 80-93. |
[54] | HUANG L, LIU C Y, KUSKY T M. Cenozoic evolution of the Tan-Lu Fault Zone (East China): constraints from seismic data[J]. Gondwana Research, 2015, 28(3): 1079-1095. |
[55] |
冯志强, 李萌, 郭元岭, 等. 中国典型大型走滑断裂及相关盆地成因研究[J]. 地学前缘, 2022, 29(6): 206-223.
DOI |
[56] | XU J S, MENG L C, AN H B, et al. The bending mechanism of Anping ground fissure in the Hebei Plain, North China[J]. Environmental Earth Sciences, 2015, 74(9): 6859-6870. |
[1] | 陈运泰. 特大地震及其引发的超级海啸的启示[J]. 地学前缘, 20140101, 21(1): 120-131. |
[2] | 万天丰. 论构造地质学和大地构造学的几个重要问题[J]. 地学前缘, 20140101, 21(1): 132-149. |
[3] | 刘远征, 马瑾, 马文涛. 探讨紫坪铺水库在汶川地震发生中的作用[J]. 地学前缘, 20140101, 21(1): 150-160. |
[4] | 上官拴通, 田兰兰, 潘苗苗, 杨风良, 岳高凡, 苏野, 齐晓飞. 干热岩开发断层滑动及诱发地震风险研究:以唐山马头营干热岩场地为例[J]. 地学前缘, 2024, 31(6): 252-260. |
[5] | 康凤新, 张保建, 崔洋, 姚松, 史猛, 秦鹏, 隋海波, 郑婷婷, 李嘉龙, 杨海涛, 李传磊, 刘春伟. 华北中东部高温地热能成因机制[J]. 地学前缘, 2024, 31(6): 31-51. |
[6] | 李云涛, 丁文龙, 韩俊, 黄诚, 王来源, 孟庆修. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[7] | 姜兆霞, 李三忠, 索艳慧, 吴立新. 海底氢能探测与开采技术展望[J]. 地学前缘, 2024, 31(4): 183-190. |
[8] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[9] | 成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14. |
[10] | 邓琰, 徐玉超, 范晔, 孙贵成, 董泽义, 韩冰. 大地电磁法的应用综述:以川滇地区为例[J]. 地学前缘, 2024, 31(1): 181-200. |
[11] | LIANG Guanghe. 南海中央海盆高精度地震勘探揭示的大陆漂移过程[J]. 地学前缘, 2023, 30(5): 430-449. |
[12] | 陈飞, 范洪军, 范廷恩, 张会来, 赵卫平, 井涌泉. 西非尼日尔三角洲盆地A油田深水浊积水道沉积体系沉积特征[J]. 地学前缘, 2023, 30(4): 209-217. |
[13] | 刘晓宇, 杨文采, 陈召曦, 瞿辰, 于常青. 青藏高原东部地块的属性与演化[J]. 地学前缘, 2023, 30(3): 233-241. |
[14] | 孙东, 杨涛, 曹楠, 覃亮, 胡骁, 魏萌, 蒙明辉, 张伟. 泸定MS 6.8地震同震地质灾害特点及防控建议[J]. 地学前缘, 2023, 30(3): 476-493. |
[15] | 陈波. 中国煤矿灾害与地震活动时空分布丛集特征的深入研究[J]. 地学前缘, 2023, 30(2): 548-560. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||