地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 450-468.DOI: 10.13745/j.esf.sf.2023.7.1
Anastasiya SERGEEVA(), Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA
收稿日期:
2023-05-12
接受日期:
2023-06-28
出版日期:
2023-09-25
发布日期:
2023-10-20
作者简介:
E-mail address: anastavalers@gmail.com
Anastasiya SERGEEVA(), Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA
Received:
2023-05-12
Accepted:
2023-06-28
Online:
2023-09-25
Published:
2023-10-20
摘要:
俄罗斯北堪察加地区Evevpenta金矿床玄武岩主岩青磐岩化蚀变的矿物学组成,是以英安岩中的石英、冰长石-石英、石英-碳酸岩岩脉和热液角砾岩组成的脉系为特征。脉状矿物是天然金、碲化物、硫化物、硒化物和金-银氯化物。青磐岩化蚀变发生在距浅成热液脉较远的地方。然而,它的特征矿物组合对重建成矿环境有重要研究意义。在青磐岩化带内可识别出氟磷灰石-氟铝钛矿、石英-方解石-斜绿泥石、石英-方解石-硬石-蒙脱石、方解石-丝光沸石4种不同的热液蚀变组合。最早的矿物组合形成于酸性富F的热液中。热液流体中氟化物浓度为0.2~1.2 g/L,流体温度约550 ℃。酸性热液与橄榄玄武岩寄主岩石长期相互作用,导致pH升高至接近中性并发生绿泥石化作用。绿泥石化阶段热液富集Fe和Mg,温度约175~210 ℃时形成第1阶段绿泥石, 120~140 ℃时形成第2阶段绿泥石。蚀变的最后阶段形成沸石群矿物,其在pH约为9、温度>135 ℃的热液中析出。热液流体的高pH值可能是由于碳酸氢盐和碳酸盐的存在以及溶液中铁盐的去除。根据青磐岩化带蚀变矿物组合特征,探讨了Evevpenta脉系形成的物理化学条件。在热液体系形成阶段,随着碱性氯化钠溶液的循环,贵金属Cl-和OH-络合物的形成导致了矿石元素的运移。高pH溶液也能转移硫。
中图分类号:
Anastasiya SERGEEVA, Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA. 俄罗斯北堪察加Evevpenta金矿床玄武岩矿物次生蚀变特征及其成矿指示作用[J]. 地学前缘, 2023, 30(5): 450-468.
Anastasiya SERGEEVA, Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA. Secondary minerals in basalts of the Evevpenta gold occurrence (North Kamchatka, Russia) as indicators of ore forming processes[J]. Earth Science Frontiers, 2023, 30(5): 450-468.
Fig.1 Geological scheme of (a) the Evevpenta gold occurrence and (b) volcanic belts of the Kamchatka Peninsula (Tsukanov 2015) 1-proluvial Quaternary sediments; 2-lavas and pyroclastic rocks of the Tolyatovayam volcanic formation (Late Miocene-Early Pliocene); 3-lavas and pyroclastic rocks of the Umuvayam volcanic formation (Middle-Late Miocene); 4-subvolcanic bodies of andesites of the Tolyatovayam volcanic formation; 5-basalt dikes Tolyatovayam volcanic formation; 6-subvolcanicdacite bodies Umuvayam volcanic formation; 7-argillic alteration; 8-propylitic alteration; 9-adularia-quartz stockwork; 10-adularia-quartz veins; 11-faults; 12-faults covered by Quaternary sediments.
Fig.2 Specimen of olivine basalt from a geological exploration surface mine working in the study area with radiant sun aggregates of modernite (a), and core samples obtained as a result of core drilling (depth 112-1145 m) of the Evevpenta ore occurrence representing a zone of propylitic alterations with calcite veins in basalt (b)
Fig.3 X-ray diffraction (XRD) diffractograms for alteration mineral assemblages of I-IV microzones from which sample of olivine basalt (abbreviations given in Table 1).
Stage | Mineral assemblages |
---|---|
I (host rock) | Rock-forming minerals: plagioclase (labradorite-andesine)+monoclinic pyroxene relicts of olivine Secondary minerals: fluorapatite+aluminum- and fluorine-rich titanite |
II (chloritization) | Secondary minerals: clinochlore+quartz+calcite |
III (zeolitization) | Secondary minerals: calcite+stilbite+quartz+montmorillonite |
IV (zeolitization) | Secondary minerals: calcite+mordenite |
Table 1 Mineral assemblages found in hydrothermally altered olivine basalt from the Evevpenta gold occurrence
Stage | Mineral assemblages |
---|---|
I (host rock) | Rock-forming minerals: plagioclase (labradorite-andesine)+monoclinic pyroxene relicts of olivine Secondary minerals: fluorapatite+aluminum- and fluorine-rich titanite |
II (chloritization) | Secondary minerals: clinochlore+quartz+calcite |
III (zeolitization) | Secondary minerals: calcite+stilbite+quartz+montmorillonite |
IV (zeolitization) | Secondary minerals: calcite+mordenite |
Mineral name, Symmetry group | Chemical Formula | Unit-cell parameters/Å |
---|---|---|
Clinochlore, C2 | [Mg3.29Al1.30Fe1.13Mn0.04][Al0.74Si3.26]O10(OH)8 | a: 5.36 b: 9.20 c: 14.24 β: 95.59 |
Calcite R-3/2c | CaCO3 | a: 4.99 c: 17.02 |
Mordenite, Cmcm | Na0.47Ca0.25K0.05[Al1.05Si4.95]O12·nH2O | a: 18.13 b: 20.43 c: 7.52 |
Diopside, C2/c | [Mg0.84Ca0.83Fe0.25Na0.02Al0.02Ti0.02Mn0.01]Al0.12Si1.88O6 | a:9.82 b:8.87 c: 5.23 β:105.79 |
Labradorite-andesine, C-1 | A | a:8.17 b: 12.85 c:7.10 α: 93.45 β: 116.04 γ: 90.12 |
Table 2 Composition and unit-cell parameters of secondary minerals from the Evevpenta gold occurrence
Mineral name, Symmetry group | Chemical Formula | Unit-cell parameters/Å |
---|---|---|
Clinochlore, C2 | [Mg3.29Al1.30Fe1.13Mn0.04][Al0.74Si3.26]O10(OH)8 | a: 5.36 b: 9.20 c: 14.24 β: 95.59 |
Calcite R-3/2c | CaCO3 | a: 4.99 c: 17.02 |
Mordenite, Cmcm | Na0.47Ca0.25K0.05[Al1.05Si4.95]O12·nH2O | a: 18.13 b: 20.43 c: 7.52 |
Diopside, C2/c | [Mg0.84Ca0.83Fe0.25Na0.02Al0.02Ti0.02Mn0.01]Al0.12Si1.88O6 | a:9.82 b:8.87 c: 5.23 β:105.79 |
Labradorite-andesine, C-1 | A | a:8.17 b: 12.85 c:7.10 α: 93.45 β: 116.04 γ: 90.12 |
Absorption bands/cm-1 | Assignment | Mineral | |
---|---|---|---|
Chloritized basalt | Mordenite sample | ||
3596 | ν(H2O) | Mordenite | |
3561 | ν(OH) | Clinochlore | |
3448 | ν(H2O) | Mordenite | |
3422 | Clinochlore | ||
3258 | ν(H2O) | Mordenite | |
1638 | 1646 | δ(H2O) | Mordenite Clinochlore |
1440 | 1426 | ν3(CO3) | Calcite |
1223 | ν(SiO4)as | Mordenite | |
1174 | ν(SiO4)as | Mordenite | |
1052 | ν(SiO4)as | Mordenite | |
1022 | ν(TO4)as | Plagioclase | |
877 | ν2(CO3) | Calcite | |
794 | ν(TO4)s | Mordenite | |
714 | ν(AlO4)s | Mordenite | |
776 | ν(SiO4) | Plagioclase | |
639 | δ(O-T-O) | Plagioclase | |
622 | ν(TO4) 5-rings (channel) | Mordenite | |
586 | δ(O-T-O) | Plagioclase | |
540 | δ(O-T-O) | Plagioclase | |
550 | ν(TO4) 5-rings (channel) | Mordenite | |
451 | δ(O-T-O) | Mordenite | |
460 | δ(O-T-O) | SiO4-phase | |
439 | δ(O-T-O) | Plagioclase | |
400 | δ(O-T-O) | Plagioclase |
Table 3 Absorption bands of host rock and mordenite-calcite assemblages (T: Si Al)
Absorption bands/cm-1 | Assignment | Mineral | |
---|---|---|---|
Chloritized basalt | Mordenite sample | ||
3596 | ν(H2O) | Mordenite | |
3561 | ν(OH) | Clinochlore | |
3448 | ν(H2O) | Mordenite | |
3422 | Clinochlore | ||
3258 | ν(H2O) | Mordenite | |
1638 | 1646 | δ(H2O) | Mordenite Clinochlore |
1440 | 1426 | ν3(CO3) | Calcite |
1223 | ν(SiO4)as | Mordenite | |
1174 | ν(SiO4)as | Mordenite | |
1052 | ν(SiO4)as | Mordenite | |
1022 | ν(TO4)as | Plagioclase | |
877 | ν2(CO3) | Calcite | |
794 | ν(TO4)s | Mordenite | |
714 | ν(AlO4)s | Mordenite | |
776 | ν(SiO4) | Plagioclase | |
639 | δ(O-T-O) | Plagioclase | |
622 | ν(TO4) 5-rings (channel) | Mordenite | |
586 | δ(O-T-O) | Plagioclase | |
540 | δ(O-T-O) | Plagioclase | |
550 | ν(TO4) 5-rings (channel) | Mordenite | |
451 | δ(O-T-O) | Mordenite | |
460 | δ(O-T-O) | SiO4-phase | |
439 | δ(O-T-O) | Plagioclase | |
400 | δ(O-T-O) | Plagioclase |
Fig.5 BSE-images showing mordenite enclosed in silica (a); Sr-bearing barite (b); and inclusion of Sb-bearing phase in mordenite (c) Abbreviations of minerals given according to Warr (2021): Mor-mordenite; Silicate-silica minerals; Sr-Brt-Sr-bearing barite.
Fig.6 Representative BSE images of hydrothermally altered basalts from the Evevpenta gold occurrence a-plagioclase phenocrysts are rimmed by several layers of secondary minerals; b-enlarged fragment of 6a showing details of a chlorite rim in plagioclase; c-plagioclase microlites overgrown by titanite and adularia; d-inclusion of fluorapatite in diopside; e-fluorapatite and silica minerals intergrown with clinochlore; f-amygdala filled with early (Chl I) and late (Chl II) chlorite; g-titanomagnetite in association with groundmass diopside and plagioclase; h-aluminum- and fluorine-rich titanite between plagioclase microlites in groundmass. Abbreviations of minerals given according to Warr (2021): Pl-plagioclase, Chl-chlorite, Tnt-titanite, Adl-adularia, Cpx-clinopyroxene, Ap-apatite, Mag-magnetite, Silicate-silica minerals, Ca-Pl-calcic plagioclase, Na-Pl-sodic plagioclase.
Minerals | wB/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | CaO | F | TFeO | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | V2O5 | |
Fluorapatite | 0 | 53.45 | 3.71 | 0.65 | 0 | 0.52 | 0 | 0 | 40.19 | 0.49 | 0 | 0 |
Diopside | 3.3 | 20.93 | 0 | 7.96 | 0 | 15.06 | 0.29 | 0.27 | 0 | 50.41 | 0.88 | 0 |
Clinochlore | 16.71 | 1.02 | 0 | 12.74 | 0 | 21.63 | 0.63 | 0 | 0 | 33.22 | 0 | 0 |
Plagioclase | 28.31-20.51 | 11.21-1.57 | 0 | 0.97-0.61 | 1.06-1.72 | 0.00-0.32 | 0 | 4.34-8.91 | 0 | 53.16-61.91 | 0 | 0 |
Sanidine | 20.17 | 1.19 | 0 | 0.62 | 9.69 | 0 | 0 | 3.96 | 0 | 63.95 | 0 | 0 |
Titanite | 6.16 | 27.04 | 1.67 | 1.39 | 0 | 0 | 0 | 0 | 0 | 32.81 | 27.17 | 1.09 |
Table 4 EPMA data for minerals from altered basalt
Minerals | wB/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | CaO | F | TFeO | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | V2O5 | |
Fluorapatite | 0 | 53.45 | 3.71 | 0.65 | 0 | 0.52 | 0 | 0 | 40.19 | 0.49 | 0 | 0 |
Diopside | 3.3 | 20.93 | 0 | 7.96 | 0 | 15.06 | 0.29 | 0.27 | 0 | 50.41 | 0.88 | 0 |
Clinochlore | 16.71 | 1.02 | 0 | 12.74 | 0 | 21.63 | 0.63 | 0 | 0 | 33.22 | 0 | 0 |
Plagioclase | 28.31-20.51 | 11.21-1.57 | 0 | 0.97-0.61 | 1.06-1.72 | 0.00-0.32 | 0 | 4.34-8.91 | 0 | 53.16-61.91 | 0 | 0 |
Sanidine | 20.17 | 1.19 | 0 | 0.62 | 9.69 | 0 | 0 | 3.96 | 0 | 63.95 | 0 | 0 |
Titanite | 6.16 | 27.04 | 1.67 | 1.39 | 0 | 0 | 0 | 0 | 0 | 32.81 | 27.17 | 1.09 |
Fig.7 Classification diagrams of chlorite from the Evevpenta gold occurrence, based on: a-Fe/(Fe+Mg) versus Si values (after Hey 1954); b-octahedral Al versus tetrahedral Al; c-Mg/(Fe+Mg) versus Al octahedral (after Bailey 1988); d-(Mg+Fe) versus Si values (Wiewióra and Weiss 1990; Ilalova and Gulbin 2019)
Fig.8 Scheme of geocrystallochemical classification of chlorites (Kotelnikov et al., 2009) 1-chlorites from kimberlites; 2-Mg-chlorites from serpentinites; 3-Mg-chlorites from halites and Mg-K-salts of high stages of salinization of basins; 4-Fe-Mg-chlorites of basic igneous rocks; 5-Fe-Mg-chlorites of clastogenic formations; 6-Fe-chlorites of iron ores; 7-ditrioctahedral Al-Fe-Mg-chlorites; 8-Mg-chlorites of evaporate chemogenic-terigenous formations; 9-chlorites of the Evevpenta gold occurrence.
Fig.9 Scheme of the stages of mineral formation of the Evevpenta ore occurrence based on alteration mineral assemblages I-fluorapatite aluminum- and fluorine-rich titanite mineral assemblages, the hydrothermal acidic fluid was accompanied by acid-volatile species such as HCl and HF; II-clinochlore quartz calcite mineral assemblages, the hydrothermal fluid was near-neutral containing NaCl, CO2, NaHCO3; III-calcite stilbite mordenite quartz montmorillonite mineral assemblages, the hydrothermal fluid was alkaline containing NaCl, NaHCO3, Na2CO3 and meteoric waters.
[1] | ABIEV R S, BIBIK E E, VLASOV E A, et al., 2004. A new handbook of chemist for technology: electrode processes, chemical kinetics and diffusion, colloidal chemistry[M]. SPb: ANO NGO Professional: 1-838. |
[2] |
ALEKSANDROV S M, TRONEVA M A, 2007. Composition, mineral assemblages, and genesis of titanite and malayaite in skarns[J]. Geochemistry International, 45 (10): 1012-1024.
DOI URL |
[3] |
ATKINSON A J, CARPENTER M A, SALJE E K H, 1999. Hard mode infrared spectroscopy of plagioclase feldspars[J]. European Journal of Mineralogy, 11 (1): 7-21.
DOI URL |
[4] | BAERLOCHER C, MCCUSKER L B, OLSON D H, 2007. Atlas of zeolite framework types[M]. 6th ed. Piscataway: Elsevier: 1-284. |
[5] | BAILEY S W, 1988. Chlorites: structures and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 19 (1): 347-403. |
[6] | BASHARINA L A, 1958. Fumarole gases of Klyuchevskoy and Sheveluch volcanoes[J]. Proceedings of the Laboratory of Volcanology of the Academy of Sciences of the USSR, 13 (1): 155-159. |
[7] |
BAZIN P, ALENDA A, THIBAULT-STARZYK F, 2010. Interaction of water and ammonium in NaHY zeolite as detected by combined IR and gravimetric analysis (AGIR)[J]. Dalton Transactions, 39 (36): 8432-8436.
DOI URL |
[8] |
BROOM-FENDLEY S, SIEGFRIED P R, WALL F, et al., 2021. The origin and composition of carbonatite-derived carbonate-bearing fluor apatite deposits[J]. Mineralium Deposita, 56 (5): 863-884.
DOI |
[9] |
CATHELINEAU M, 1988. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 23: 471-485.
DOI URL |
[10] | DRAKE B D, CAMPBELL K A, ROWLAND J V, et al., 2014. Evolution of a dynamic paleo-hydrothermal system at Mangatete Taupo Volcanic Zone[J]. New Zealand Journal of Volcanology and Geothermal Research, 282: 19-35. |
[11] |
DUFFELL H J, OPPENHEIMER C, PYLE D M, et al., 2003. Changes in gas composition prior to a minor explosive eruption at Masaya volcano Nicaragua[J]. Journal of Volcanology and Geothermal Research, 126 (3/4): 327-339.
DOI URL |
[12] |
FAURE K, MATSUHISA Y, METSUGI H, et al., 2002. The Hishikari Au-Ag epithermal deposit Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids[J]. Economic Geology, 97 (3): 481-498.
DOI URL |
[13] |
GAO X B, XU M, HU Q H, et al., 2016. Leaching behavior of trace elements in coal spoils from Yangquan coal mine, northern China[J]. Journal of Earth Science, 27 (5): 891-900.
DOI URL |
[14] |
GÓMEZ-HORTIGÜELA L, PINAR A B, PÉREZ-PARIENTE J, et al., 2014. Ion-exchange in natural zeolite stilbite and significance in defluoridation ability[J]. Microporous and Mesoporous Materials, 193: 93-102.
DOI URL |
[15] |
HEY M H, 1954. A new review of the chlorites[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 30 (224): 277-292.
DOI URL |
[16] |
ILALOVA R K, GULBIN Y L, 2019. Thermometry of nickel bearing chlorites from the Kolskii Massif (northern Urals)[J]. Geology of Ore Deposits, 61 (8): 736-746.
DOI |
[17] |
JANSEN J C, VAN DER GAAG F J, VAN BEKKUM H, 1984. Identification of ZSM-type and other 5-ring containing zeolites by IR spectroscopy[J]. Zeolites, 4 (4): 369-372.
DOI URL |
[18] | JOWETT E C, 1991. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer[C]// Geological Association of Canada, Mineralogical Association of Canada, US Society of Economic Geologists Joint Annual Meeting, Abstracts 16: A62. |
[19] |
KALACHEVA E G, RYCHAGOV S N, KOROLEVA G P, et al., 2016. The geochemistry of steam hydrothermal occurrences in the Koshelev volcanic massif southern Kamchatka[J] Journal of Volcanology and Seismology, 10 (3): 188-202.
DOI URL |
[20] |
KALACHEVA E G, TARAN Y A, KOTENKO T A, et al., 2017. The hydrothermal system of Mendeleev Volcano Kunashir Island Kuril Islands: the geochemistry and the transport of magmatic components[J]. Journal of Volcanology and Seismology, 11 (5): 335-352.
DOI URL |
[21] |
KALACHEVA E G, TARAN Y A, VOLOSHINA E V, et al., 2018. Geochemistry of thermal waters of Ketoi Island Kuril island arc[J]. Journal of Volcanology and Seismology, 12 (3): 172-186.
DOI |
[22] |
KIRYUKHIN A V, VOROZHEIKINA L A, VORONIN P О, et al., 2017. Thermal and permeability structure and recharge conditions of the low temperature Paratunsky geothermal reservoirs in Kamchatka Russia[J]. Geothermics, 70: 47-61.
DOI URL |
[23] |
KIRYUKHIN A V, POLYAKOV A Y, USACHEVA O O, et al., 2018. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka Russia)[J]. Journal of Volcanology and Geothermal Research, 356: 36-55.
DOI URL |
[24] | KIRYUKHIN A V, KIRYUKHIN V A, MANUKHIN Y F, 2010. Hydrogeology of volcanogenes[M]. SPb: Nauka: 1-395 (in Russian). |
[25] |
KONSTANTINOVSKAIA E A, 2001. Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia)[J]. Tectonophysics, 333 (1/2): 75-94.
DOI URL |
[26] | KOTELNIKOV A R, SUK N I, KOTELNIKOVA Z A, et al., 2012. Mineral geothermometers for low-temperature paragenesis[J]. Vestnik Otdelenia nauk o Zemle, 4: NZ9001. |
[27] | KOTELNIKOV D D, ZINCHUK N N, ZHUKHLISTOV A P, 2009. Crystallochemical morphological and genetic characteristics of chlorites in the Earth's mantle. Article 1: sources of formation and identification of chlorite varieties[J]. Proceedings of Higher Education Institutions Geology and Exploration, 4: 9-19. |
[28] |
KRANIDIOTIS P, MACLEAN W H, 1987. Systematics of chlorite alteration at the P helps dodge massive sulfide deposit Matagami Quebec[J]. Economic Geology, 82: 1898-1911.
DOI URL |
[29] |
LEI H, XU H, 2018. A review of ultrahigh temperature metamorphism[J]. Journal of Earth Science, 29 (5): 1167-1180.
DOI |
[30] |
MAHABOLE M P, LAKHANE M A, CHOUDHARI A L, et al., 2013. Comparative study of natural calcium stilbite and magnesium exchanged stilbite for ethanol sensing[J]. Journal of Porous Materials, 20 (4): 607-617.
DOI URL |
[31] | Map of mineral resources of Kamchatka region at a scale of 1∶500 000, 1999. Brief explanatory note. Catalog of mineral deposits occurrences mineralization points and mineral dispersion halos[M]. Saint-Petersburg: Vsegei:563. |
[32] | MOROZ Y F, SAMOILOVA O M, 2018. On the geoelectrical difference between the Kuril-Kamchatka and Bering Sea segments of the Pacific Transition Zone[J]. Geodynamicsand Tectonophysics, 9 (2): 489-501. |
[33] |
MOROZ Y F, SAMOILOVA O M, MOROZ T A, 2015. Electric conductivity at depth: the southern coast of North Kamchatka[J]. Journal of Volcanology and Seismology, 9 (2): 125-139.
DOI URL |
[34] |
PEREVOZNIKOVA E V, MIROSHNICHENKO N V, 2009. Tausonite and aluminum-fluorine titanite from the metamorphosed metalliferous sediments of the Triassic chert formation of the Sikhote Alin[J]. Russian Journal of Pacific Geology, 3 (3): 294-297.
DOI URL |
[35] | RAN S L, SHEN S Y, CHENG X Z, 2004. Research on the occurrence of titanium in coal-measure kaoline in Songyi Hubei[J]. Journal of Earth Science, 15: 20180716015235. |
[36] |
RATEEV M A, SADCHIKOVA T A, SHABROVA V P, 2008. Clay minerals in Recent sediments of the world ocean and their relation to types of lithogenesis[J]. Lithology and Mineral Resources, 43 (2): 125-135.
DOI URL |
[37] |
RYCHAGOV S N, DAVLETBAEV R G, KOVINA O V, et al., 2012. Cation migration in hydrothermal clays: the problem of mineralization criteria in gas-hydrothermal fluids of hydrothermal fields in southern Kamchatka[J]. Journal of Volcanology and Seismology, 6(4): 230-242.
DOI URL |
[38] | RYCHAGOV S N, SANDIMIROVA Е I, CHERNOV M S, et al., 2022. Mineral formation at the East Pauzhetka thermal field (South Kamchatka) as an indication of influence of a deep-seated alkaline fluid and an epithermal ore-forming system[J]. Russian Geology and Geophysics, 10: 34-40. |
[39] | SANDIMIROVA E I, RYCHAGOV S N, SERGEEVA A V, et al., 2022. Zeolite mineralization in mudstones of the East Pauzhetka thermal field as an indicator of the discharge of alkaline fluids in a present-day hydrothermal system Southern Kamchatka[J]. Volcanolog Seismol, 16: 432-450. |
[40] | SHAFIGULLINA G T, ZNAMENSKII S E, KOSAREV A M, 2020. Conditions for the formation of gold-porphyry mineralization of the Bolshoi Karan deposit (southern Urals) according to chlorite geothermometry[J]. Geological Bulletin, 2: 45-53. |
[41] |
SAWYER G M, OPPENHEIMER C, TSANEV V I, et al., 2008. Magmatic degassing at Erta’Ale volcano Ethiopia[J]. Journal of Volcanology and Geothermal Research, 178 (4): 837-846.
DOI URL |
[42] | SERGEEVA A V, DENISOV D K, NAZAROVA M A, 2019. Clay mineral assemblages in recent thermal anomalies of southern Kamchatka Russian[J]. Geology and Geophysics, 60 (11): 1267-1277. |
[43] |
SERGEEVA A V, ZHITOVA E S, NUZHDAEV A A, et al., 2022. Modeling the process of mineral generation in thermal anomalies with ammonium sulfate thermal waters: the role of рН[J]. Journal of Volcanology and Seismology, 16(1): 35-48.
DOI |
[44] |
SHAROVA O I, CHUDNENKO K V, AVCHENKO O V, et al., 2012. Aluminum-fluorine sphene (titanite) as an indicator of Fluorine fluid[J]. Doklady Earth Sciences, 442: 126-130.
DOI URL |
[45] | SLYADNEV B I, BOROVTSOV A K, SIDORENKO V I, et al., 2013. State geological map of the Russian Federation scale 1∶1 000 000 (third generation) Koryak-Kuril series Sheet O-58-Ust-Kamchatsk[M]. Saint-Petersburg: Vsegei. |
[46] |
TARAN Y A, BERNARD A, GAVILANES J C, et al., 2001. Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico: implications for magmatic gas-atmosphere interaction[J]. Journal of Volcanology and Geothermal Research, 108 (1/2/3/4): 245-264.
DOI URL |
[47] | TSUKANOV N V, 2015. Tectono-stratigraphic terranes of Kamchatka active margins: structure composition and geodynamics[C]// GORDEEV E I. Materials of the Annual Conference “Volcanism and Related Processes”. Kamchatka Krai, Russia: Petropavlovsk-Kamchatsky: 97-103. |
[48] |
VOLKOV A V, PROKOF’EV V Y, 2011. Formation conditions and composition of ore-forming fluids in the Promezhutochnoe gold and silver deposit (Central Chukchi Peninsula, Russia)[J]. Russian Geology and Geophysics, 52 (11): 1448-1460.
DOI URL |
[49] |
WARR L N, 2021. IMA-CNMNC approved mineral symbols[J]. Mineralogical Magazine, 85 (3): 291-320.
DOI URL |
[50] |
WIEWIÓRA A, WEISS Z, 1990. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II the chlorite group[J]. Clay Minerals, 25 (1): 83-92.
DOI URL |
[51] |
XIAO B, CHEN H, HOLLINGS P, et al., 2018. Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems: insights from chlorite chemistry[J]. Ore Geology Reviews, 102: 437-448.
DOI URL |
[52] | ZANG W, FYFE W S, 1995. Chloritization of the hydrothermally altered bedrocks at the Igarapé Bahia gold deposit Carajás Brazil[J]. Mineralium Deposita, 30: 30-38. |
[53] | ZENTILLI M, OMELON C R, HANLEY J, et al., 2019. Paleo-hydrothermal predecessor to perennial spring activity in thick permafrost in the Canadian High Arctic, and its relation to deep salt structures: expedition fiord axel Heiberg Island, Nunavut[J]. Geofluids. DOI:10.1155/2019/9502904. |
[54] | ZHEGUNOV P S, KUTYREV A V, ZHITOVA E S, et al., 2023. Mineralization of the Evevpenta epithermal gold-silver ore occurrence (Kamchatka Peninsula Russia)[J]. Volcanology and Seismology, Under review. |
[55] | ZINCHENKO A V, IZOTOVA S G, RUMYANTSEV A V, 2004. A new handbook of chemist and technologist: chemical equilibrium properties of solutions[M]. SPb: ANO NGO Professional: 1-998. |
[56] |
ZIEMANN M A, FÖRSTER H J, HARLOV D E, et al., 2005. Origin of fluorapatite-monazite assemblages in a metamorphosed sillimanite-bearing pegmatoid Reinbolt Hills East Antarctica[J]. European Journal of Mineralogy, 17 (4): 567-579.
DOI URL |
[1] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[2] | 王岩, 王登红, 王成辉, 黎华, 刘金宇, 孙赫, 高新宇, 金雅楠, 秦燕, 黄凡. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘, 2024, 31(4): 438-455. |
[3] | 曹胜桃, 胡瑞忠, 周永章, 刘建中, 谭亲平, 高伟, 郑禄林, 郑禄璟, 宋威方. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72. |
[4] | 李方兰, 刘学龙, 周云满, 赵成峰, 李守奎, 王基元, 陆波德, 李庆锐, 张卫文, 王海, 曹振梁, 周杰虎. 滇西保山地块陡崖铁铜多金属矿床石榴子石年代学及其地球化学特征[J]. 地学前缘, 2024, 31(3): 113-132. |
[5] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[6] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[7] | 王岩, 秦燕, 黎华, 王登红, 孙赫, 王成辉, 黄凡. 东北地区金矿成矿规律及找矿方向[J]. 地学前缘, 2024, 31(3): 235-244. |
[8] | 张爱奎, 袁万明, 刘光莲, 张勇, 汪周鑫, 孙非非, 刘智刚. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, 2024, 31(3): 260-283. |
[9] | 涂春霖, 和成忠, 马一奇, 尹林虎, 陶兰初, 杨明花. 珠江流域沉积物重金属污染特征、生态风险及来源解析[J]. 地学前缘, 2024, 31(3): 410-419. |
[10] | 刘海, 魏伟, 宋阳, 潘杨, 李迎春. 霍邱县城湖泊沉积物重金属污染特征、潜在生态风险及来源[J]. 地学前缘, 2024, 31(3): 420-431. |
[11] | 李杉杉, 张荣, 费杨, 梁家辉, 杨兵, 王萌, 师华定, 陈世宝. Fe对稻田土壤重金属迁移转化影响机制及研究进展[J]. 地学前缘, 2024, 31(2): 103-110. |
[12] | 王萌, 俞磊, 秦璐瑶, 孙晓艺, 王静, 刘佳晓, 陈世宝. 土壤环境基准的科学问题与研究方法:以Cd为例[J]. 地学前缘, 2024, 31(2): 147-156. |
[13] | 雷鸣, 周一敏, 黄大睿, 黄雅媛, 王薪琪, 李冰玉, 杜辉辉, 刘孝利, 铁柏清. 湖南耕地土壤和稻米重金属污染防控实践与思考[J]. 地学前缘, 2024, 31(2): 173-182. |
[14] | 刘永兵, 宿俊杰, 郭威, 王英男, 殷亚秋. 冀北花岗岩地区坡积-冲洪积型污染耕地土壤治理比较研究[J]. 地学前缘, 2024, 31(2): 196-203. |
[15] | 丁祥, 袁贝, 杜平, 刘虎鹏, 张云慧, 陈娟. 典型矿冶城市土壤重金属累积驱动因子研究和概率风险评估[J]. 地学前缘, 2024, 31(2): 31-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||