

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 384-404.DOI: 10.13745/j.esf.sf.2025.10.17
收稿日期:2025-08-16
修回日期:2025-09-23
出版日期:2026-11-25
发布日期:2025-11-10
作者简介:韩冬梅(1978—),女,博士,研究员,博士生导师,主要从事滨海水循环及其环境效应教学和科研工作。E-mail: handm@igsnrr.ac.cn
基金资助:
HAN Dongmei1,2(
), CAO Guoliang3, XIAO Yi1,2, SONG Xianfang1,2
Received:2025-08-16
Revised:2025-09-23
Online:2026-11-25
Published:2025-11-10
摘要:
海岸带地下水循环是陆海交互带水动力过程与生态环境演化的关键环节,其动态演变受自然与人类活动的双重驱动,并对沿海地区的资源、生态与可持续发展产生深远影响。本文系统综述了滨海地下水循环及其环境效应的研究进展,重点探讨了以下内容:海岸带水循环的多尺度过程,包括地表水-地下水相互作用、潮汐驱动下的地下水流动态及陆海界面水文交换;地下水循环演变的驱动要素,涵盖气候变化(包括降水格局改变、海平面上升)、人类活动(包括人口经济增长、土地利用变化、流域水资源开发)以及地质地貌的控水机制;地下水文过程引发的环境效应,包括营养物质与污染物迁移对近岸水质的调控、海水入侵与土壤盐渍化的生态威胁、海底地下水排泄(SGD)对海洋碳\氮循环的贡献,以及超采引发的地面沉降灾害;阐释了我国海岸带相关的环境效应特征。提出未来研究应加强高分辨率监测、多过程耦合模拟、人地系统协同管理与碳中和背景下的生态效应评估,支撑海岸带水资源安全保障与生态保护战略实施。
中图分类号:
韩冬梅, 曹国亮, 萧怡, 宋献方. 海岸带地下水循环及其环境效应研究进展与展望[J]. 地学前缘, 2026, 33(1): 384-404.
HAN Dongmei, CAO Guoliang, XIAO Yi, SONG Xianfang. Research progress and prospect of groundwater circulation in coastal zones and its environmental effects[J]. Earth Science Frontiers, 2026, 33(1): 384-404.
图1 滨海水文过程概念图 A—天然条件下的滨海水文过程;B—人为开采扰动下的滨海水文过程。说明:①潮汐/波浪驱动子系统(RSGDt/w);②海底地下淡水排泄FSGD;③密度流驱动子系统(海水再循环)RSGD;④封存咸水;⑤开采条件下咸水倒锥污染抽水井;⑥开采条件下穿过高渗透性含水层(比如,古河道砂体)的优先入侵。此外,还应包括河口区地表的咸淡水混合过程。(修改自 http://hdl.handle.net/2328/26647)。
Fig.1 Conceptual diagram of coastal hydrological processes
图2 我国北方海岸带地下水循环过程及其环境效应概念图
Fig.2 Conceptual diagram of groundwater circulation processes and associated environmental effects in China’s northern coastal zones
| [1] | RAMESH R, CHEN Z, CUMMINS V, et al. Land-Ocean interactions in the coastal zone: past,present and future[J]. Anthropocene, 2015,12: 85-98. |
| [2] | 骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10): 1133-1142. |
| [3] | LIN L, PUSSELLA P. Assessment of vulnerability for coastal erosion with GIS and AHP techniques: case study of the southern coastline of Sri Lanka[J]. Natural Resource Modeling, 2017,30: e12146. |
| [4] | 李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694. |
| [5] | HE Q, SILLIMAN B R. Climate change,human impacts,and coastal ecosystems in the Anthropocene[J]. Current Biology,2019,29: R1021-R1035. |
| [6] | 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020,39: 1-10. |
| [7] | POST V E A. Fresh and saline groundwater interaction in coastal aquifers: is our technology ready for the problems ahead[J]. Hydrogeology Journal, 2005,13: 120-123. |
| [8] |
SAWYERA H, DAVID C H, FAMIGLIETTI J S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities[J]. Science, 2016, 353(6300): 705-707.
DOI PMID |
| [9] | HAN D. Effects of human activities on China’s coastal groundwater[M]. Estuarine and Coastal Science. 2nd ed. Oxford: Elsevier, Academic Press, 2024: 412-433. |
| [10] | SOUSA L P, SOUSA A I, ALVES F L, et al. Ecosystem services provided by a complex coastal region: challenges of classification and mapping[J]. Scientific Reports, 2016,6: 22782. |
| [11] |
HAUER M.E, SAUNDERS R K, SHTOB D. Research note: demographic change on the United States coast,2020-2100[J]. Demography, 2022, 59(4): 1221-1232.
DOI URL |
| [12] | CAO A, ESTEBAN M, VALENZUELA V P B, et al. Future of Asian deltaic megacities under sea level rise and land subsidence: current adaptation pathways for Tokyo,Jakarta,Manila,and Ho Chi Minh City[J]. Current Opinion in Environmental Sustainability, 2021,50: 87-97. |
| [13] | 刘丹. "失去"的湿地[N]. 中国气象报,2023-02-08第4版. |
| [14] |
HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al. Mapping the global threat of land subsidence[J]. Science, 2021, 371(6524): 34-36.
DOI URL |
| [15] | HAN D, CURRELL M J. Review of drivers and threats to coastal groundwater quality in China[J]. Science of the Total Environment, 2022,806: 150913. |
| [16] | 高茂生, 骆永明. 我国重点海岸带地下水资源问题与海水入侵防控[J]. 中国科学院院刊, 2016,31: 1197-1203. |
| [17] | TANIGUCHI M, BURNETT W C, CABLE J E, et al. Investigation of submarine groundwater discharge[J]. Hydrological Processes, 2002,16: 2115-2129. |
| [18] | ZANNONI D, STEEN-LARSEN H C, Rampazzo G, et al. The atmospheric water cycle of a coastal lagoon: an isotope study of the interactions between water vapor,precipitation and surface waters[J]. Journal of Hydrology, 2019,572: 630-644. |
| [19] | EROSTATE M, HUNEAU F, GAREL E, et al. Groundwater dependent ecosystems in coastal Mediterranean regions: characterization,challenges and management for their protection[J]. Water Research, 2020,172: 115461. |
| [20] | GRIFFIS T J, WOOD J D, BAKER J M, et al. Investigating the source,transport,and isotope composition of water vapor in the planetary boundary layer[J]. Atmospheric Chemistry and Physics, 2016,16: 5139-5157. |
| [21] | BENETTI M, SVEINBJÖRNSDÓTTIR A E, ÓLAFSDÓTTIR R M J, et al. Inter-comparison of salt effect correction for δ18O and δ2H measurements in seawater by CRDS and IRMS using the gas-H2O equilibration method[J]. Marine Chemistry, 2020,194: 114-123. |
| [22] | GREENE S, JOHNES P J, BLOOMFIELD J, et al. A geospatial framework to support integrated biogeochemical modelling in the United Kingdom[J]. Environmental Modelling & Software, 2015,68: 219-232. |
| [23] |
KALERIS V. Submarine groundwater discharge: effects of hydrogeology and of near shore surface water bodies[J]. Journal of Hydrology, 2006, 325(1/2/3/4): 96-117.
DOI URL |
| [24] | MOORE W S. The subterranean estuary: a reaction zone of groundwater and seawater[J]. Marine Chemistry, 1999,65: 111-125. |
| [25] | 吴吉春, 吴永祥, 林锦, 等. 黄渤海沿海地区地下水管理与海水入侵防治研究[J]. 中国环境管理, 2018, 10(2): 91-92. |
| [26] | OUDE ESSINK G H P, VAN BAAREN E S, DE LOUW P G B. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands[J]. Water Resources Research, 2010,46: W00F04. |
| [27] | CARY L, PETELET-GIRAUD E, BERTRAND G, et al. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco,Brazil): a multi-isotope approach[J]. Science of the Total Environment, 2015,530/531: 411-429. |
| [28] | FERGUSON G, GLEESON T. Vulnerability of coastal aquifers to groundwater use and climate change[J]. Nature Climate Change, 2012,2: 342-345. |
| [29] | MICHAEL H A, RUSSONIELLO C J, BYRON L A. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems[J]. Water Resources Research, 2013,49: 2228-2240. |
| [30] | HOU Y, ZHAO G, CHEN X, et al. Improving satellite retrieval of coastal aquaculture pond by adding water quality parameters[J]. Remote Sensing, 2022,14: 3306. |
| [31] | MAHMOODZADEH D, KARAMOUZ M. Seawater intrusion in heterogeneous coastal aquifers under flooding events[J]. Journal of Hydrology, 2019,568: 1118-1130. |
| [32] | CANTELON J A, GUIMOND J A, ROBINSON C E, et al. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review[J]. Water Resources Research, 2022,58: e2022WR032614. |
| [33] | 薛禹群, 谢春红, 吴吉春, 等. 龙口-莱州地区海水入侵含水层三维数值模拟[J]. 水利学报, 1993,11: 20-33. |
| [34] | 郭占荣, 黄奕普. 海水入侵问题研究综述[J]. 水文, 2003, 23(3): 10-15. |
| [35] | WERNER A D, BAKKER M, POST V E A, et al. Seawater intrusion processes,investigation and management: recent advances and future challenges[J]. Advances in Water Resources, 2013,51: 3-26. |
| [36] | HAN D M, CURRELL M J. Delineating multiple salinization processes in a coastal plain aquifer,northern China: hydrochemical and isotopic evidence[J]. Hydrology and Earth System Sciences, 2018,22: 3473-3491. |
| [37] | CHO H M, KIM G, KWON E Y, et al. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean[J]. Scientific Reports, 2018,8: 2439. |
| [38] | GARCIA-ORELLANA J, RODELLAS V, TAMBORSKI J, et al. Radium isotopes as submarine groundwater discharge tracers: review and recommendations[J]. Earth-Science Reviews, 2021,220: 103681. |
| [39] | BURNETT W C, BOKUNIEWICZ H, HUETTEL M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003,66: 3-33. |
| [40] | QUANTE M, MATTHIAS V Water in the Earth’s atmosphere[J]. Journal de Physique IV, 2006, 139(1): 37-61. |
| [41] | GIMENO L, NIETO R, DRUMOND A, et al. Ocean evaporation and precipitation[M]. Encyclopedia of Sustainability Science and Technology, New York: Springer, 2012. |
| [42] | CHANDANPURKAR H, FAMIGLIETTI J S, GOPALAN K, et al. Unprecedented continental drying,shrinking freshwater availability,and increasing land contributions to sea level rise[J]. Science Advances, 2025, 11(30): eadx0298. |
| [43] | ZHANG M, WANG H, PANG X, et al. Characteristics of soil salinity in the typical area of Yellow River Delta and its control measures[J]. IOP Conference Series: Earth and Environmental Science, 2017,64: 12078. |
| [44] | 张迪, 王煜, 郑小康, 等. 大沽河流域海水入侵数值模型全局敏感性分析及其对滨海含水层管理的启示[J]. 水资源保护, 2024, 40(1): 100-107. |
| [45] | LOC H H, LIXIAN M L, PARK E, et al. How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta,a review[J]. Science of the Total Environment, 2021,794: 148651. |
| [46] | LOC H H, VAN BINH D, PARK E, et al. Intensifying saline water intrusion and drought in the Mekong Delta: from physical evidence to policy outlooks[J]. Science of the Total Environment, 2021,757: 143919. |
| [47] | ESLAMI S, HOEKSTRA P, MINDERHOUD P S J, et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors[J]. Communications Earth & Environment, 2021,2: 142. |
| [48] | TRAN D D, THUC P T B, PARK E, et al. Extent of saltwater intrusion and freshwater exploitability in the coastal Vietnamese Mekong Delta assessed by gauging records and numerical simulations[J]. Journal of Hydrology, 2024,630: 130655. |
| [49] | HAGAGE M, HEWAIDY A G A, ABDULAZIZ A M. Saltwater intrusion and land subsidence destroy northern Nile Delta archaeological sites: an assessment using hydrochemical indices,SAR satellite imagery,and analytic hierarchy process (AHP)[J]. Marine Pollution Bulletin, 2025,212: 117460. |
| [50] | LI J, LIU Y, DAI W, et al. Nitrate attenuation with rising groundwater levels: an integrated assessment using isotope tracers and microbial signatures[J]. Journal of Hydrology, 2023,624: 129911. |
| [51] | ALI S, RAN J, LUAN Y, et al. The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain[J]. Science of the Total Environment, 2024,908: 168239. |
| [52] | LEE S, CURRELL M, CENDÓN D I. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes,and environmental significance[J]. Science of the Total Environment, 2016,544: 995-1007. |
| [53] | HAN D M, CAO G, CURRELL M J, et al. Groundwater salinization and flushing during glacial-interglacial cycles: insights from aquitard porewater tracer profiles in the North China Plain[J]. Water Resources Research, 2020, 56(1): e2020WR027879. |
| [54] | HUANG Y, YANG J, Yu X, et al. Hydrogeochemical analysis and paleo-hydrogeological modeling of shallow groundwater salinization processes in North China Plain[J]. Journal of Hydrology, 2025,651: 132616. |
| [55] | SOLA F, FERNÁNDEZ-CORTÉS A, VALLEJOS A. Paleo-coastline reconstruction based on the hydrogeochemistry of coastal aquifers[J/OL]. Hydrogeology Journal, 2025.[2025-06-10]. https://link.springer.com/article/10.1007/s10040-025-02900-8 |
| [56] |
YECHIELI Y, KAFRI U, SIVAN O. The inter-relationship between coastal sub-aquifers and the Mediterranean Sea,deduced from radioactive isotopes analysis[J]. Hydrogeology Journal, 2009, 17(2): 265-274.
DOI URL |
| [57] | RICHARDSON C M, DAVIS K L, RUIZ-GONZÁLEZ C, et al. The impacts of climate change on coastal groundwater[J]. Nature Reviews Earth & Environment, 2024, 5:100-119. |
| [58] |
SHERIF M M, SINGH V P. Effect of climate change on sea water intrusion in coastal aquifers[J]. Hydrological Processes, 1999, 13(8): 1277-1287.
DOI URL |
| [59] |
ABD-ELHAMID H F, ABD-ELATY I, HUSSAIN M.S. Mitigation of seawater intrusion in coastal aquifers using coastal earth fill considering future sea level rise[J]. Environmental Science and Pollution Research, 2020, 27(23): 23234-23245.
DOI |
| [60] | CANTELON J A, LEROUX N K, MULLIGAN R P, et al. Interrelated coastal flooding,erosion,and groundwater salinization on a barrier island during Hurricane Fiona[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(1): e2023JF007551. |
| [61] |
CANTELON J A, KURYLYK B L. Storm surge,seawater flooding,and sea-level rise paradoxically drive fresh surface water expansion[J]. Environmental Research Letters, 2024, 19(12): 124038.
DOI |
| [62] |
NISHIKAWA T, SIADE A J, REICHARD E G, et al. Stratigraphic controls on seawater intrusion and implications for groundwater management,Dominguez Gap area of Los Angeles,California,USA[J]. Hydrogeology Journal, 2009, 17(8): 1699-1713.
DOI URL |
| [63] | KREYNS P, GENG X, MICHAEL H A. The influence of connected heterogeneity on groundwater flow and salinity distributions in coastal volcanic aquifers[J]. Journal of Hydrology, 2020,586: 124863. |
| [64] | ABDOULHALIK A, ABDELRAHMAN A M, AHMED A A. Impact of layered heterogeneity on transient saltwater upconing in coastal aquifers[J]. Journal of Hydrology, 2020,581: 124393. |
| [65] | ABDOULHALIK A, AHMAD A A, ABD-ELATY I. Effects of layered heterogeneity on mixed physical barrier performance to prevent seawater intrusion in coastal aquifers[J]. Journal of Hydrology, 2024,637: 131343. |
| [66] |
ALLEY W M, HEALY R W, LABAUGH J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296(5575): 1985-1990.
DOI PMID |
| [67] | 李国敏, 陈崇希. 海水入侵研究现状与展望[J]. 地学前缘, 1996, 3(1/2): 161-168. |
| [68] |
CALVACHE M L, PULIDO-BOSCH A. Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain[J]. Environmental Geology, 1997, 30(3/4): 215-223.
DOI URL |
| [69] | BEAR J A, CHENG H -D, SOREK S, et al. Seawater intrusion in coastal aquifers - Concepts,methods and practices[M]. Dordrecht, Boston, London: Kluwer Academic Publishers, 1999. |
| [70] | 成建梅, 陈崇希, 吉孟瑞, 等. 山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究[J]. 地学前缘, 2001, 8(1): 179-184. |
| [71] |
ABARCA E, KARAM H, HEMOND H F, et al. Transient groundwater dynamics in a coastal aquifer: the effects of tides,the lunar cycle and the beach profile[J]. Water Resources Research, 2013, 49(4): 2473-2488.
DOI URL |
| [72] | DANIEL C C III, MILLER R D, WREGE B M. Application of geophysical methods to the delineation of paleochannels and missing confining units above the Castle Hayne aquifer at US Marine Corps Air Station,Cherry Point, North Carolina[R]. Raleigh,North Carolina: Water Resources Investigations Report 95-4252, 1996. |
| [73] |
MULLIGAN A E, EVANS R L, LIZARRALDE D. The role of paleochannels in groundwater/seawater exchange[J]. Journal of Hydrology, 2007, 335(3/4): 313-329.
DOI URL |
| [74] | 韩美, 李道高, 赵明华, 等. 莱州湾南岸平原地面古河道研究[J]. 地理科学, 1999, 19(5): 451-456. |
| [75] | 李道高, 韩美, 赵明华, 等. 渤海莱州湾南岸平原浅埋古河道带及其与海(咸)水入侵关系研究[J]. 海洋学报, 1999, 21(6): 64-71. |
| [76] | 刘恩峰, 张祖陆, 沈吉, 等. 晚更新世以来潍河古河道沉积及其对现代咸水入侵的控制[J]. 高校地质学报, 2003, 1(1): 47-53. |
| [77] |
COUTELLIER V, STANLEY D J. Late Quaternary stratigraphy and paleogeography of the eastern Nile Delta,Egypt[J]. Marine Geology, 1987, 77(3/4): 257-275.
DOI URL |
| [78] | GOSWAMI A B. A study of salt water encroachment in the coastal aquifer at Digha,Midnapore district,West Bengal,India[J]. Hydrological Sciences Journal, 1968, 13(2): 77-87. |
| [79] |
RAO K N, SUBRAELU P, RAO T V, et al. Sea-level rise and coastal vulnerability: an assessment of Andhra Pradesh coast,India through remote sensing and GIS[J]. Journal of Coastal Conservation, 2008, 12(4): 195-207.
DOI URL |
| [80] |
FALGÀS E, LEDO J, MARCUELLO A, et al. Monitoring freshwater-seawater interface dynamics with audiomagnetotelluric data[J]. Near Surface Geophysics, 2009, 7(5/6): 391-399.
DOI URL |
| [81] | 吴忱. 华北平原古河道研究[M]. 北京: 中国科学技术出版社, 1991. |
| [82] |
WU C, ZHU X, HE N, et al. Compiling the map of shallow-buried palaeochannels on the North China Plain[J]. Geomorphology, 1996, 18(1): 47-52.
DOI URL |
| [83] |
COSBY A G, LEBAKULA V, SMITH C N, et al. Accelerating growth of human coastal populations at the global and continent levels: 2000-2018[J]. Scientific Reports, 2024, 14(1): 22489.
DOI PMID |
| [84] |
NEUMANN B, VAFEIDIS A T, ZIMMERMANN J, et al. Future coastal population growth and exposure to sea-level rise and coastal flooding: a global assessment[J]. PLOS One, 2015, 10(3): e0118575.
DOI URL |
| [85] | POST V E A, EICHHOLZ M, BRENTFÜHRER R. Groundwater management in coastal zones[R]. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),Hannover, Germany,2018: 107. |
| [86] | SCANLON B R, FAKHREDDINE S, RATEB A, et al. Global water resources and the role of groundwater in a resilient water future[J]. Nature Reviews Earth & Environment, 2023, 4(2): 87-101. |
| [87] | XIAO Y, HAN D M, CURRELL M J, et al. Review of endocrine disrupting compounds (EDCs) in China’s water environments: implications for environmental fate,transport and health risks[J]. Water Research, 2023,245: 120645. |
| [88] | DAO P U, HEUZARD A G, LE T X H, et al. The impacts of climate change on groundwater quality: a review[J]. Science of the Total Environment, 2024,912: 169241. |
| [89] |
ENWRIGHT N M, GRIFFITH K T, OSLAND M J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise[J]. Frontiers in Ecology and the Environment, 2016, 14(5): 307-316.
DOI URL |
| [90] | JIANG Y, LI J, ZHANG Z, et al. Dynamics of coastal land-based aquaculture pond in China and Southeast Asia from 1990 to 2020[J]. International Journal of Applied Earth Observation and Geoinformation, 2024,127: 103654. |
| [91] | 中国地质调查局. 中国地面沉降现状图[M]. 北京: 地质出版社, 2017. |
| [92] | 何萍, 全占军, 侯利萍, 等. 京津冀区域生态状况、问题与研究需求[J]. 环境科学研究, 2025, 38(3): 941-956. |
| [93] | WINKLER K, FUCHS R, ROUNSEVELL M, et al. Global land use changes are four times greater than previously estimated[J]. Nature Communications, 2021,12: 2501. |
| [94] | POTAPOV P, HANSEN M C, PICKENS A, et al. The global 2000-2020 land cover and land use change dataset derived from the Landsat archive: first results[J]. Frontiers in Remote Sensing, 2022,3: 856903. |
| [95] | MAGGI F, TANG F H M, LA CECILIA D, et al. PEST-CHEMGRIDS,global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025[J]. Scientific Data, 2019,6: 170. |
| [96] |
COELLO F, DECORTE T, JANSSENS I, et al. Global crop-specific fertilization dataset from 1961-2019[J]. Scientific Data, 2025, 12:40.
DOI PMID |
| [97] | REN C, WANG Z, ZHANG Y, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984-2016[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,82: 101902. |
| [98] | JIAM, WANG Z, MAO D, et al. Rapid,robust,and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021,255: 112285. |
| [99] | MAO D, YANG H, WANG Z, et al. Reverse the hidden loss of China’s wetlands[J]. Science, 2022, 376(6596): 1061-1061. |
| [100] | YU X, XU B, YAO R, et al. Temporal dynamics of soil salinization due to vertical and lateral saltwater intrusion at an onshore aquaculture farm[J]. Agricultural Water Management, 2024,306: 109179. |
| [101] | ZHANG J, LU C, WERNER A D. Analytical and experimental investigation of the impact of land reclamation on steady-state seawater extent in coastal aquifers[J]. Water Resources Research, 2021, 57(7): e2020WR029028. |
| [102] | ZHAN L, XIN P, CHEN J. Subsurface salinity distribution and evolution in low-permeability coastal areas after land reclamation: field investigation[J]. Journal of Hydrology, 2022,612: 128250. |
| [103] | SENGUPTA D, CHOI Y R, TIAN B, et al. Mapping 21st century global coastal land reclamation[J]. Earth’s Future, 2023,11: e2022EF002927. |
| [104] | GUO H, JIAO J J. Changes of coastal groundwater systems in response to large-scale land reclamation[M]. New York: Nova Science Publishers,2008: 79-136. |
| [105] |
LEUNG C.M, JIAO J J. Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area,Hong Kong[J]. Water Research, 2006, 40(4): 753-767.
DOI URL |
| [106] | CHEN K, JIAO J J. Hydrochemical evolution of ground water in Shenzhen after land reclamation: major ion chemistry of coastal ground water[C]. Albuquerque,NM,USA:Proceedings of the 2007 Ground Water Summit, 2007. |
| [107] | KENNISH M J. Coastal salt marsh systems in the US: a review of anthropogenic impacts[J]. Journal of Coastal Research, 2001, 17(4): 731-748. |
| [108] |
HEALY M G, HICKEY K R. Historic land reclamation in the intertidal wetlands of the Shannon Estuary,Western Ireland[J]. Journal of Coastal Research, 2002, 36(2): 365-373.
DOI URL |
| [109] | SPALDING M, MCIVOR A, TONNEIJCK F, et al. Mangroves for coastal defence: guidelines for coastal managers and policy makers[R]. Wageningen: Wetlands International, Arlington: The Nature Conservancy. |
| [110] | SU X, LIU M, YUAN J, et al. Potential risk of co-occurrence of microplastics and chlorinated persistent organic pollutants to coastal wetlands: Evidence from a case study[J]. Environmental Pollution, 2023,320: 121087. |
| [111] | ADYASARI D, MONTIEL D, MORTAZAVI B, et al. Storm-driven fresh submarine groundwater discharge and nutrient fluxes from a barrier island[J]. Frontiers in Marine Science, 2021,8: 679010. |
| [112] |
JANSSON R, NILSSON C, RENOFALT B. Fragmentation of riparian floras in rivers with multiple dams[J]. Ecology, 2000, 81(3): 899-903.
DOI URL |
| [113] |
MAGILLIGAN F J, NISLOW K H, GRABER B E. Scale-independent assessment of discharge reduction and riparian disconnectivity following flow regulation by dams[J]. Geology, 2003, 31(6): 569-572.
DOI URL |
| [114] |
ROOD S B, SAMUELSON G M, BRAATNE J H, et al. Managing river flows to restore floodplain forests[J]. Frontiers in Ecology and the Environment, 2005, 3(4): 193-201.
DOI URL |
| [115] |
GRAF W L. Downstream hydrologic and geomorphic effects of large dams on American rivers[J]. Geomorphology, 2006, 79(3/4): 336-360.
DOI URL |
| [116] | 廖文婷, 邓红兵, 李若男, 等. 水利工程对坝下径流的影响--以葛洲坝、三峡水利枢纽为例[J]. 生态学报, 2018, 38(5): 1750-1757. |
| [117] | 林中源, 胡晓张, 邹华志, 等. 磨刀门咸潮上溯对河口拦门沙地形变化的响应研究[J]. 水资源保护, 2024, 40(2): 104-111. |
| [118] | TACKLEY H A, KURYLYK B L, LAKE C B. Impacts of groundwater dynamics around a macro-tidal river on agricultural soil salinity[J]. Science of the Total Environment, 2024,927: 172344. |
| [119] | COOK S E, WARNER J C, RUSSELL K L. A numerical investigation of the mechanisms controlling salt intrusion in the Delaware Bay estuary[J]. Estuarine,Coastal and Shelf Science, 2023,283: 108257. |
| [120] | 诸裕良, 闫晓璐, 林晓瑜. 珠江口盐水入侵预测模式研究[J]. 水利学报, 2013, 44(9): 1009-1014. |
| [121] | YI X, LIU J, YANG S, et al. Impact of channel deepening on the saltwater intrusion process in the Qinjiang River estuary,Southeast China[J]. Estuarine,Coastal and Shelf Science, 2024,300: 108718. |
| [122] | YUAN F, LU C, YANG F, et al. Differences in the lag characteristics of saltwater intrusion in the sub-estuaries of the Pearl River Estuary and their implications for water allocation[J]. Regional Studies in Marine Science, 2025,82: 104011. |
| [123] | ZHANG P, HAN H, SANG Y, et al. Risk quantification of saltwater intrusion in Modaomen Estuary of the Pearl River Delta,South China[J]. Journal of Hydrology, 2025, 661(Part C): 133755. |
| [124] | ZHANG B, ZHENG T, ZHENG X, et al. Dynamics of upstream saltwater intrusion driven by tidal river in coastal aquifers[J]. Science of the Total Environment, 2023,877: 162857. |
| [125] | YE Y, TANG T, XIE Y, et al. Saltwater intrusion in estuarine aquifers through tidal river-groundwater interactions: three-dimensional experiments and fully coupled numerical simulations[J]. Journal of Hydrology, 2025,659: 133281. |
| [126] |
HINGST M C, MCQUIGGAN R W, PETERS C N, et al. Surface water-groundwater connections as pathways for inland salinization of coastal aquifers[J]. Groundwater, 2023, 61(4): 626-638.
DOI URL |
| [127] |
NABI G, ALI M, KHAN S, et al. The crisis of water shortage and pollution in Pakistan: risk to public health,biodiversity,and ecosystem[J]. Environmental Science and Pollution Research, 2019, 26(12): 10443-10445.
DOI |
| [128] | 田娜. 基于数值模拟的咸潮上溯特性与评价指标研究[D]. 青岛: 中国海洋大学, 2013. |
| [129] | SU Q, KAMBALE R D, TZENG J H, et al. The growing trend of saltwater intrusion and its impact on coastal agriculture: challenges and opportunities[J]. Science of the Total Environment, 2025,966: 178701. |
| [130] | CHEN G, BAI J, WANG J, et al. Responses of soil respiration to simulated groundwater table and salinity fluctuations in tidal freshwater,brackish and salt marshes[J]. Journal of Hydrology, 2022,612: 128215. |
| [131] | ZHANG L, WU Y, Ni Z, et al. Saltwater intrusion regulates the distribution and partitioning of heavy metals in water in a dynamic estuary,South China[J]. Marine Environmental Research, 2023,186: 105943. |
| [132] | 刘衍美, 徐有杰, 解风云, 等. 大沽河海水入侵综合治理效果分析与防治对策[J]. 山东水利, 2006,12: 13-14. |
| [133] | LIU B, PENG S, LIAO Y, et al. The causes and impacts of water resources crises in the Pearl River Delta[J]. Journal of Cleaner Production, 2018,177: 413-425. |
| [134] | FIGUEROA S M, SON M, LEE G. Effect of estuarine dam location and discharge interval on estuarine hydrodynamics,sediment dynamics,and morphodynamics[J]. Frontiers in Marine Science, 2022,9: 1035501. |
| [135] | WU H, LU C. Seasonal fluctuations in the groundwater level accelerate the removal of residual saltwater upstream of subsurface dams[J]. Journal of Hydrology, 2023,625: 130026. |
| [136] | YIN J, WANG N, LU C, et al. Fast desalinization of residual saltwater using subsurface dams combined with saltwater discharge or freshwater recharge[J]. Journal of Hydrology, 2023,619: 129282. |
| [137] | GAO S, ZHENG T, ZHANG B, et al. Combined effects of aquifer heterogeneity and subsurface dam on nitrate contamination in coastal aquifers[J]. Journal of Environmental Management, 2024,351: 119740. |
| [138] | ZHU C, VAN MAREN D S, GUO L, et al. Impact of reduced fluvial sediment supply on saltwater intrusion in the Yangtze Estuary[J]. Earth’s Future, 2023,11: e2022EF003274. |
| [139] |
BURNETT W.C, TANIGUCHI M, OBERDORFER J. Measurement and significance of the direct discharge of groundwater into the coastal zone[J]. Journal of Sea Research, 2001, 46(2): 109-116.
DOI URL |
| [140] |
MOORE W S. The role of submarine groundwater discharge in coastal biogeochemistry[J]. Journal of Geochemical Exploration, 2006, 88(1): 389-393.
DOI URL |
| [141] | LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor,Hong Kong using multiple geotracer-based models,and their implications of red tide outbreaks[J]. Water Research, 2016,102: 11-31. |
| [142] | DAVID M, BAILLY-COMTE V, MUNARON D, et al. Groundwater discharge to coastal streams: a significant pathway for nitrogen inputs to a hypertrophic Mediterranean coastal lagoon[J]. Science of the Total Environment, 2019,677: 142-155. |
| [143] | LUIJENDIJK E, GLEESON T, MOOSDORF N. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems[J]. Nature Communications, 2020,11: 1260. |
| [144] |
KROEZE C, HOFSTRA N, IVENS W, et al. The links between global carbon,water and nutrient cycles in an urbanizing world: the case of coastal eutrophication[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 566-572.
DOI URL |
| [145] | ANWAR N, ROBINSON C, BARRY D.A. Influence of tides and waves on the fate of nutrients in a nearshore aquifer: numerical simulations[J]. Advances in Water Resources, 2014,73: 203-213. |
| [146] |
MCALLISTER S, BARNETT J M, HEISS J W, et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer[J]. Limnology and Oceanography, 2015, 60(1): 329-345.
DOI URL |
| [147] | BECK M, RECKHARDT A, AMELSBERG J, et al. The drivers of biogeochemistry in beach ecosystems: a cross-shore transect from the dunes to the low water line[J]. Marine Chemistry, 2017,190: 35-50. |
| [148] | SANTOS I R, CHEN X, LECHER A L, et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry[J]. Nature Reviews Earth & Environment, 2021, 2(5): 307-323. |
| [149] | XIONG G, ZHU X, LIU M, et al. Nitrogen cycle pattern variations during seawater-groundwater-river interactions enhance the nitrogen availability in the coastal earth critical zone[J]. Journal of Hydrology, 2023,624: 129932. |
| [150] | WANKEL S D, KENDALL C, PENNINGTON J T, et al. Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: observations from Monterey Bay,California[J]. Global Biogeochemical Cycles, 2007,21: GB2009. |
| [151] | KWON E, PARK J, PARK W B, et al. Nitrate contamination of coastal groundwater: sources and transport mechanisms along a volcanic aquifer[J]. Science of the Total Environment, 2021,768: 145204. |
| [152] | SPITERI C, SLOMP C, TUNCAY K, et al. Modeling biogeochemical processes in subterranean estuaries: effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients[J]. Water Resources Research, 2008,44: W04701. |
| [153] |
HEISS J W, POST V E A, LAATTOE T, et al. Physical controls on biogeochemical processes in intertidal zones of beach aquifers[J]. Water Resources Research, 2017, 53(11): 9225-9244.
DOI URL |
| [154] |
HEISS J W, MICHAEL H A, KONESHLOO M. Denitrification hotspots in intertidal mixing zones linked to geologic heterogeneity[J]. Environmental Research Letters, 2020, 15(8): 084015.
DOI |
| [155] | GAO S, ZHENG T, ZHENG X, et al. Influence of layered heterogeneity on nitrate enrichment induced by cut-off walls in coastal aquifers[J]. Journal of Hydrology, 2022,609: 127722. |
| [156] |
WEISSMAN D, OUYANG T, TULLY K L. Saltwater intrusion affects nitrogen,phosphorus and iron transformations under oxic and anoxic conditions: an incubation experiment[J]. Biogeochemistry, 2021, 154(3): 451-469.
DOI |
| [157] | DUN Y, LING J, WANG R, et al. Hydrochemical evolution and nitrogen behaviors in coastal groundwater suffered from seawater intrusion and anthropogenic inputs[J]. Frontiers in Marine Science, 2022,9: 945330. |
| [158] | FENG F, JIANG Y, JIA Y, et al. Risks of nutrients and metal(loid)s mobilization triggered by groundwater recharge containing reactive organic matter[J]. Journal of Hydrology, 2023,623: 129780. |
| [159] |
SANG S, DAI H, HU B X, et al. Distribution characteristics and factors influencing microbial communities in the core soils of a seawater intrusion area in Longkou City,China[J]. Hydrogeology Journal, 2022, 30(6): 1833-1845.
DOI |
| [160] | ROCHA C, JIANG S, IBÁNHEZ J S P, et al. The effects of subterranean estuary dynamics on nutrient resource ratio availability to microphytobenthos in a coastal lagoon[J]. Science of the Total Environment, 2022,851: 157522. |
| [161] |
HAILEGNAW N S, BAYABIL H K, Li Y C. Environmental implications of salinity and flooding induced changes in porewater nitrogen and phosphorous dynamics[J]. Environmental Pollutants and Bioavailability, 2023, 35(1): 2269314.
DOI URL |
| [162] |
NIU X, JIA X, YANG X, et al. Tracing the sources and fate of NO3: in the vadose zone-groundwater system of a thousand-year-cultivated region[J]. Environmental Science & Technology, 2022, 56(13): 9335-9345.
DOI URL |
| [163] | CRAYOL E, HUNEAU F, GAREL E, et al. Socio-hydrogeological survey and assessment of organic pollutants to highlight and trace back pollution fluxes threatening a coastal groundwater-dependent ecosystem[J]. Science of the Total Environment, 2023,898: 165343. |
| [164] | 周光扬, 周鹏鹏, 王广才, 等. 海岸带地下水中氮生物地球化学过程研究进展[J]. 环境化学, 2023, 42(1): 1-12. |
| [165] |
BARZEN-HANSON K, ROBERTS S C, CHOYKE S, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams and AFFF-impacted groundwater[J]. Environmental Science & Technology, 2017, 51(4): 2047-2057.
DOI URL |
| [166] | 陈雅婷, 赵昕宇, 李艳红, 等. 我国污染场地中新污染物的环境行为和修复进展[J]. 环境工程, 2024, 42(1): 1-14. |
| [167] | BADUEL C, MUELLER J F, ROTANDER A, et al. Discovery of novel per- and polyfluoroalkyl substances at a firefighting training ground and preliminary investigation of their fate and mobility[J]. Chemosphere, 2017,185: 1030-1038. |
| [168] | LIU M J, XIAO C L, LIANG X J, et al. Response of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: a case study of Shuangliao City,Northeast China[J]. Ecotoxicology and Environmental Safety, 2022,236: 113473. |
| [169] | 刘世洋, 武婉璐, 金彪, 等. PFASs 在地下水中的界面吸附行为研究进展[J]. 环境化学, 2023, 42(6): 1771-1783. |
| [170] | XU B, LIU S, ZHOU J L, et al. PFAS and their substitutes in groundwater: occurrence,transformation and remediation[J]. Journal of Hazardous Materials, 2021,412: 125159. |
| [171] | HAWASH H B, MONEER A A, GALHOUM A A, et al. Occurrence and spatial distribution of pharmaceuticals and personal care products in the aquatic environment,their characteristics,and adopted legislations[J]. Journal of Water Process Engineering, 2023,52: 103490. |
| [172] | LI G, TöRNQVIST T E, DANGENDORF S. Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change[J]. Nature Communications, 2024,15: 1226. |
| [173] | LV X, SUN Y, Ji R, et al. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid in saturated sand and limestone porous media[J]. Water Research, 2018,141: 251-258. |
| [174] | TSOU K, DUAN Y, PARKS A, et al. Per- and polyfluoroalkyl substance release from aqueous film-forming foam impacted solids exposed to stormwater and saltwater[J]. ACS ES&T Water, 2024, 4(2): 661-668. |
| [175] | ZENG J, BRUSSEAU M L, Guo B. Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone[J]. Journal of Hydrology, 2021,603: 127172. |
| [176] | 陈一波, 宋国宝, 赵文星, 等. 中国海水养殖污染负荷估算[J]. 海洋环境科学, 2016, 35(1): 1-7. |
| [177] | LIU J, SU N, WANG X, et al. Submarine groundwater discharge and associated nutrient fluxes into the Southern Yellow Sea: a case study for semi-enclosed and oligotrophic seas[J]. Journal of Geophysical Research: Oceans, 2017,122: 139-152. |
| [178] |
WANG B, CAO L, MICHELI F, et al. The effects of intensive aquaculture on nutrient residence time and transport in a coastal embayment[J]. Environmental Fluid Mechanics, 2018, 18(6): 1321-1349.
DOI |
| [179] | NEOFITOU N, PAPADIMITRIOU K, DOMENIKIOTIS C, et al. GIS in environmental monitoring and assessment of fish farming impacts on nutrients of Pagasitikos Gulf,Eastern Mediterranean[J]. Aquaculture, 2019,501: 62-75. |
| [180] |
WERNER A.D, SIMMONS C T. Impact of sea-level rise on seawater intrusion in coastal aquifers[J]. Ground Water, 2009, 47(2): 197-204.
DOI URL |
| [181] |
LANGEVIN C D, ZYGNERSKI M. Effect of sea-level rise on saltwater intrusion near a coastal well field in southeastern Florida[J]. Ground Water, 2013, 51(5): 781-803.
DOI URL |
| [182] | 奚建国, 邱桢安. 咸潮入侵对长江河口地区地下质的影响[J]. 上海地质, 1991, 37(1): 25-34. |
| [183] | 覃光雄, 胡晓农, 张晓影, 等. 珠江河口区地下水盐分空间变异特征分析[J]. 海洋环境科学, 2018, 37(6): 835-842. |
| [184] | IJAZ M W, MAHAR R B, ANSARI K, et al. Optimization of salinity intrusion control through freshwater and tidal inlet modifications for the Indus River Estuary[J]. Estuarine,Coastal and Shelf Science, 2019,224: 51-61. |
| [185] |
曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水-地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
DOI |
| [186] | 李禔来, 李谊纯, 高祥宇, 等. 长江口整治工程对盐水入侵影响研究[J]. 海洋工程, 2005, 23(3): 31-38. |
| [187] | 孔兰, 陈晓宏, 杜建, 等. 基于数学模型的海平面上升对咸潮上溯的影响[J]. 自然资源学报, 2010, 25(7): 1097-1104. |
| [188] | 栾华龙, 柯科腾, 葛建忠, 等. 长江口规划工程影响下的咸潮入侵数值模拟[J]. 海洋科学进展, 2018, 36(4): 525-539. |
| [189] | 薛鑫. 径流量变化和海平面上升对南渡江河口咸潮入侵影响研究[D]. 海口: 海南大学, 2020. |
| [190] | 陈奔月. 闽江咸潮上溯与保障供水安全综合措施的现状与思考[J]. 水利科技, 2020, 1(1): 5-10. |
| [191] | 张敏, 陈钰祥, 罗军, 等. 珠江河口枯季咸潮上溯特征与机制分析[J]. 海洋预报, 2021, 38(5): 8-16. |
| [192] | FESEKER T. Numerical studies on saltwater intrusion in a coastal aquifer in northwestern Germany[J]. Hydrogeology Journal, 2007,15: 267-279. |
| [193] |
MORGAN L K, STOECKL L, WERNER A D, et al. An assessment of seawater intrusion overshoot using physical and numerical modeling[J]. Water Resources Research, 2013, 49(10): 6522-6526.
DOI URL |
| [194] |
MORGAN L K, BAKKER M, WERNER A D. Occurrence of seawater intrusion overshoot[J]. Water Resources Research, 2015, 51(4): 1989-1999.
DOI URL |
| [195] | WALTHER M, STOECKL L, MORGAN L K. Post-pumping seawater intrusion at the field scale: implications for coastal aquifer management[J]. Advances in Water Resources, 2020,138: 103561. |
| [196] |
WALTHER M, BILKE L, DELFS J, et al. Assessing the saltwater remediation potential of a three-dimensional,heterogeneous,coastal aquifer system[J]. Environmental Earth Sciences, 2014, 72(10): 3827-3837.
DOI URL |
| [197] | STOECKL L, WALTHER M, MORGAN K. Physical and numerical modelling of post-pumping seawater intrusion[J]. Geofluids,2019: 7191370. |
| [198] |
LUYUN R, MOMII K, NAKAGAWA K. Effects of recharge wells and flow barriers on seawater intrusion[J]. Ground Water, 2011, 49(2): 239-248.
DOI PMID |
| [199] | MASCIOPINTO C. Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers[J]. Journal of Environmental Management, 2013,130: 306-312. |
| [200] |
LU C, SHI W, XIN P, et al. Replenishing an unconfined coastal aquifer to control seawater intrusion: injection or infiltration[J]. Water Resources Research, 2017, 53(6): 4775-4786.
DOI URL |
| [201] | EBELING P, HäNDEL F, WALTHER M. Potential of mixed hydraulic barriers to remediate seawater intrusion[J]. Science of the Total Environment, 2019,693: 133478. |
| [202] | PU L, XIN P, YU X, et al. Temperature of artificial freshwater recharge significantly affects salinity distributions in coastal confined aquifers[J]. Advances in Water Resources, 2021,156: 104020. |
| [203] |
GUNARATNE A, BENTOTA A, CAI Y Z, et al. Functional,digestibility,and antioxidant properties of brown and polished rice flour from traditional and new-improved varieties grown in Sri Lanka[J]. Starch - Stärke, 2011, 63(8): 485-492.
DOI URL |
| [204] | SANJEEPAN S, WEERASINGHE T K, SATHEESWARAN S. Impact of seawater intrusion bund on soil and water conservation along the coastal line of Poonakary,Sri Lanka[J]. International Journal of Progressive Sciences and Technologies, 2021, 27(2): 242-255. |
| [205] |
WALTHER M, DELFS J O, GRUNDMANN J, et al. Saltwater intrusion modeling: verification and application to an agricultural coastal arid region in Oman[J]. Journal of Computational and Applied Mathematics, 2012, 236(18): 4798-4809.
DOI URL |
| [206] | CAO G, HAN D. Reversibility of seawater intrusion in a coastal aquifer: insights from long-term field observation and numerical modeling[J]. Journal of Hydrology, 2024,638: 131470. |
| [207] | LU C, WERNER A.D. Timescales of seawater intrusion and retreat[J]. Advances in Water Resources, 2013,59: 39-51. |
| [208] | MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010,2: 59-88. |
| [209] |
AMATO D W, BISHOP J M, GLENN C R, et al. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui[J]. PLOS One, 2016, 11(11): e0165825.
DOI URL |
| [210] | RENGARAJAN R, SARMA V V S S. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari estuary[J]. Marine Chemistry, 2015,172: 57-69. |
| [211] | TANIGUCHI M, BURNETT W C, SMITH C F, et al. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the northeastern Gulf of Mexico[J]. Biogeochemistry, 2003,66: 35-53. |
| [212] | FREEZE R A, CHERRY J A. Groundwater[M]. Englewood Cliffs,NJ: Prentice Hall,1979: 604. |
| [213] | OKI D. Geohydrology and numerical simulation of the groundwater flow system of Kona,Island of Hawaii[R]. Honolulu: United States Geological Survey Water Resources Investigations Report,1999:99-4073. |
| [214] | KALERIS V, LAGAS G, MARCZINEK S, et al. Modelling submarine groundwater discharge: an example from the Western Baltic Sea[J]. Journal of Hydrology, 2002,265: 76-99. |
| [215] |
LANGEVIN C D. Simulation of submarine groundwater discharge to a marine estuary: Biscayne Bay,Florida[J]. Ground Water, 2003, 41(5): 758-771.
DOI URL |
| [216] |
ROBINSON C, LI L, BARRY D A. Effect of tidal forcing on a subterranean estuary[J]. Advances in Water Resources, 2007, 30(4): 851-865.
DOI URL |
| [217] | JOHNSON A G, GLENN C R, BURNETT W C, et al. Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean[J]. Geophysical Research Letters, 2008,35: L15606. |
| [218] | TAMBORSKI J J, ROGERS A D, BOKUNIEWICZ H J, et al. Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing[J]. Remote Sensing of Environment, 2015,171: 202-217. |
| [219] |
JOU-CLAUS S, FOLCH A, GARCIA-ORELLANA J. Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin[J]. Hydrology and Earth System Sciences, 2021, 25(10): 4789-4805.
DOI URL |
| [220] | CAINETA J, THOMAS B F, BAIN D J. Submarine groundwater discharge detection through remote sensing: an application of Landsat 7 and 8 in Hawai’i and Ireland[J]. Remote Sensing of Environment, 2022,279: 113109. |
| [221] | ADYASARI D, DIMOVA N T, DULAI H, et al. Radon-222 as a groundwater discharge tracer to surface waters[J]. Earth-Science Reviews,2023: 104321. |
| [222] | KNEE K L, DIMOVA N T, LECHER A L, et al. Submarine groundwater discharge: a source of nutrients,metals,and pollutants to the coastal ocean[M]. Oxford: Elsevier, Academic Press,2011: 205-233. |
| [223] | YOUNG K S R, PRADHANANG S M. Small unmanned aircraft (sUAS)-deployed thermal infrared imaging for environmental surveys with implications in submarine groundwater discharge: methods,challenges,and novel opportunities[J]. Remote Sensing, 2021,13: 1331. |
| [224] | ZHANG Y, SANTOS I R, Li H, et al. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales[J]. Geochimica et Cosmochimica Acta, 2020,290: 201-215. |
| [225] | WANG X, LI H, JIAO J J, et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports, 2015, 5(8814): 1-7. |
| [226] | 汪迁迁. 镭氡同位素评估渤海湾海底地下水排泄及其陆源物质输送通量[D]. 北京: 中国地质大学(北京), 2020. |
| [227] | WANG X, LI H, YANG J, et al. Nutrient inputs through submarine groundwater discharge in an embayment: a radon investigation in Daya Bay,China[J]. Journal of Hydrology, 2017,551: 784-792. |
| [228] | WANG G, HAN A, CHEN L, et al. Fluxes of dissolved organic carbon and nutrients via submarine groundwater discharge into subtropical Sansha Bay,China[J]. Estuarine,Coastal and Shelf Science, 2018,207: 269-282. |
| [229] | ADOLF J, BURNS J, WALKER J, et al. Near shore distributions of phytoplankton and bacteria in relation to submarine groundwater discharge-fed fishponds,Kona coast,Hawai’i,USA[J]. Estuarine,Coastal and Shelf Science, 2019,219: 341-353. |
| [230] | POLAND J F. Guidebook to studies of land subsidence due to ground-water withdrawal[M]. Paris/Chelsea: UNESCO and American Geophysical Union, 1984. |
| [231] | SMITH R. Aquifer stress history contributes to historic shift in subsidence in the San Joaquin Valley,California[J]. Water Resources Research, 2023,59: e2023WR035804. |
| [232] |
AO Z, HU X, TAO S, et al. A national-scale assessment of land subsidence in China’s major cities[J]. Science, 2024, 384(6693): 301-306.
DOI URL |
| [233] | TOKYO Metropolitan Government. Tokyo subsidence survey report[R]. Tokyo: Tokyo Metropolitan Government, 2018. |
| [234] | ERBAN L E, GORELICK S M, ZEBKER H A. Groundwater extraction,land subsidence,and sea-level rise in the Mekong Delta,Vietnam[J]. Environmental Research Letters, 2014,9: 084010. |
| [235] | BAGHERI-GAVKOSH M, HOSSEINI S M, ATAIE-ASHTIANI B, et al. Land subsidence: a global challenge[J]. Science of the Total Environment, 2021,778: 146193. |
| [236] | HUNING L S, LOVE C A, ANJILELI H, et al. Global land subsidence: impact of climate extremes and human activities[J]. Reviews of Geophysics, 2024, 62(4): e2023RG000817. |
| [237] |
ZHANG S, XU N. Global assessment of land subsidence in 48 large coastal cities from a land cover perspective[J]. Remote Sensing Letters, 2025, 16(8): 820-832.
DOI URL |
| [238] |
HASAN M F, SMITH R, VAJEDIAN S, et al. Global land subsidence mapping reveals widespread loss of aquifer storage capacity[J]. Nature Communications, 2023, 14(1): 6180.
DOI PMID |
| [239] |
KULP S A, STRAUSS B H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding[J]. Nature Communications, 2019, 10(1): 4844.
DOI PMID |
| [240] | NICHOLLS R J, LINCKE D, HINKEL J, et al. A global analysis of subsidence,relative sea-level change and coastal flood exposure[J]. Nature Climate Change, 2021,11: 338-342. |
| [241] |
INGEBRITSEN S E, GALLOWAY D L. Coastal subsidence and relative sea level rise[J]. Environmental Research Letters, 2014, 9(9): 091002.
DOI URL |
| [242] | OJHA C, SHIRZAEI M, WERTH S, et al. Sustained groundwater loss in California’s Central Valley exacerbated by intense drought periods[J]. Water Resources Research, 2018,54: 4449-4460. |
| [243] | SMITH R, KNIGHT R, CHEN J, et al. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley,California[J]. Water Resources Research, 2017,53: 2133-2148. |
| [244] | ERBAN L E, GORELICK S M, ZEBKER H A, et al. Release of arsenic to deep groundwater in the Mekong Delta,Vietnam,linked to pumping-induced land subsidence[J]. Proceedings of the National Academy of Sciences of the USA, 2013, 110(34): 13751-13756. |
| [245] | SU C, CHEN Z, WEI W, et al. Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data[J]. Hydrogeology Journal, 2018,26: 1401-1415. |
| [246] | 罗跃, 严学新, 杨天亮, 等. 上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学), 2019, 55(3): 449-457. |
| [247] |
TURCO M J, GREUTER A, WANG G. A century (1906-2024) of groundwater and land subsidence studies in Greater Houston region: a review[J]. Groundwater,2025, 63(4): 459-483.
DOI URL |
| [248] | SALAMA R B, OTTO C J, FITZPATRICK R W. Contributions of groundwater conditions to soil and water salinization[J]. Hydrogeology Journal, 1999,7: 46-64. |
| [249] | GUO B, YANG F, FAN Y, et al. Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI-SI feature space models with Landsat images[J]. Environmental Earth Sciences, 2019,78: 308. |
| [250] | CHANG C, YANG G, Li S, et al. Spatial characteristics and critical groundwater depth of soil salinization in an arid artesian irrigation area of northwest China[J]. Agricultural Water Management, 2025,307: 109196. |
| [251] | CUI G, LIU Y, Li X, et al. Impacts of groundwater storage variability on soil salinization in a semi-arid agricultural plain[J]. Geoderma, 2025,454: 117162. |
| [252] | MAINUDDIN M, BELL R W, GAYDON D S, et al. An overview of the Ganges coastal zone: climate,hydrology,land use and vulnerability[J]. Journal of the Indian Society of Coastal Agricultural Research, 2019, 37(2): 1-11. |
| [253] | SULTAN M T, MAHMUD U, KHAN M Z. Addressing soil salinity for sustainable agriculture and food security: innovations and challenges in coastal regions of Bangladesh[J]. Future Foods,2023: 100260. |
| [254] |
BHUYAN M I, SUPIT I, MIA S, et al. Effect of soil and water salinity on dry season boro rice production in the south-central coastal area of Bangladesh[J]. Heliyon, 2023, 9(8): e19180.
DOI URL |
| [255] | ISLAM M F, GARCIA A. DE M, VAN SCHELTINGA C T, et al. Impact of salinity on agriculture of Ganges-Brahmaputra-Meghna Delta and Mekong Delta[R]. Los Banos, Laguna: International Rice Research Institute, 2024. |
| [256] | ABDULLAH M, AL-ANSARI N, ADAMO N, et al. Soil salinity of Mesopotamia and the main drains[J]. Journal of Earth Sciences and Geotechnical Engineering, 2020, 10(4): 221-230. |
| [257] | CARTWRIGHT I, WEAVER T R, FULTON S, et al. Hydrogeochemical and isotopic constraints on the origins of dryland salinity,Murray Basin,Victoria,Australia[J]. Applied Geochemistry, 2004,19: 1233-1254. |
| [258] |
THACH K S R, LEE J Y, HA M T, et al. Effect of saline intrusion on rice production in the Mekong River Delta[J]. Heliyon, 2023, 9(10): e20367.
DOI URL |
| [259] | RAATS P A C. Salinity management in the coastal region of the Netherlands: a historical perspective[J]. Agricultural Water Management, 2015,157: 12-30. |
| [260] | 李文鹏, 王龙凤, 杨会峰, 等. 华北平原地下水超采状况与治理对策建议[J]. 中国水利, 2020,13: 26-30. |
| [261] | 刘庆生, 刘高焕, 薛凯, 等. 近代及现代黄河三角洲不同尺度地貌单元土壤盐渍化特征浅析[J]. 中国农学通报, 2006, 22(11): 353-359. |
| [262] | 王兵, 窦文骏, 陈杰, 等. 黄河三角洲地区土壤盐碱特性的时空动态变化特征、盐碱地分区及高效利用[J]. 现代地质, 2025, 39(2): 456-466. |
| [263] | 程义吉, 刘广生. 黄河三角洲风暴潮灾害与防御措施[J]. 中国水利, 2008,(17): 40-42. |
| [264] | 岳海涛. 黄河三角洲海岸蚀退和海水入侵现状与防治对策分析[J]. 海河水利, 2015,4: 33-35. |
| [265] | 徐兴永, 付腾飞, 熊贵耀, 等. 海水入侵-土壤盐渍化灾害链研究初探[J]. 海洋科学进展, 2020, 38(1): 1-10. |
| [266] | 马海丽. 黄河三角洲典型区地下水动态及其与土壤盐渍化的关系[D]. 济南: 济南大学, 2015. |
| [267] | 王新功, 王瑞玲, 刘波, 等. 黄河三角洲刁口河生态调水效果评估研究[J]. 水利水电技术, 2011, 42(11): 17-21. |
| [268] | LIU Q, LI F, ZHANG Q, et al. Impact of water diversion on the hydrogeochemical characterization of surface water and groundwater in the Yellow River Delta[J]. Applied Geochemistry, 2014,48: 83-92. |
| [269] | 高茂生, 叶思源, 袁红明, 等. 滨海湿地咸水冲淡驱动机理[J]. 海洋地质前沿, 2011, 27(9): 40-43. |
| [270] | 高茂生, 叶思源, 史贵军, 等. 潮汐作用下的滨海湿地浅层地下水动态变化[J]. 水文地质工程地质, 2010, 37(4): 24-27,37. |
| [271] | 谭晋钰, 黄海军, 刘艳霞. 黄河三角洲沉积物压实固结及其对地面沉降贡献估算[J]. 海洋地质与第四纪地质, 2014, 34(5): 33-38. |
| [272] | 成国栋. 黄河三角洲现代沉积作用及模式[M]. 北京: 地质出版社, 1991. |
| [273] | 刘勇, 李培英, 丰爱平, 等. 黄河三角洲地下水动态变化及其与地面沉降的关系[J]. 地球科学:中国地质大学学报, 2014, 39(11): 1655-1665. |
| [274] | 王奎峰, 姬广胜. 黄河三角洲北部河口区地面沉降现状特征[J]. 人民黄河, 2020, 42(5): 121-125. |
| [275] | 陈瑞瑞, 孙颢月, 朱紫若, 等. 黄河三角洲地面沉降研究进展与未来展望[J]. 海岸工程, 2024, 43(1): 1-23. |
| [276] | 任美锷. 海平面上升与地面沉降对黄河三角洲影响初步研究[J]. 地理科学, 1990(1): 48-57. |
| [277] |
宁荣荣, 王德, 田信鹏, 等. 黄河三角洲的地面沉降分析以及海水淹没预估[J]. 地球科学进展, 2023, 38(3): 296-308.
DOI |
| [278] | 邹祖光, 张东生, 谭志容. 山东省地下卤水资源及开发利用现状分析[J]. 地质调查与研究, 2008, 31(3): 214-221. |
| [1] | 毛绪美, 李翠明. 地热系统中地下水循环深度的重新评估[J]. 地学前缘, 2025, 32(5): 220-229. |
| [2] | 吴礼彬, 白景淇, 赵青茈, 傅平青. 大气中氨基酸的研究进展与展望[J]. 地学前缘, 2025, 32(3): 196-206. |
| [3] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
| [4] | 马力, 谢逸豪, 吴耿, 蒋宏忱. 地热生境中硫循环微生物研究进展——对早期地球生命过程的启示[J]. 地学前缘, 2023, 30(2): 479-494. |
| [5] | 郭巧娜, 赵岳, 周志芳, 林锦, 戴云峰, 李孟军. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479. |
| [6] | 孙青, 郑水林, 李慧, 侯会丽. 中国硼资源及硼泥资源化综合利用前景[J]. 地学前缘, 2014, 21(5): 325-330. |
| [7] | 刘玉芹, 丁浩, 谢迪. 中国钛资源与海绵钛加工环境效应[J]. 地学前缘, 2014, 21(5): 281-293. |
| [8] | 鲁安怀, 李艳, 王鑫, 丁竑瑞, 刘熠, 王长秋. 关键带中天然半导体矿物光电子的产生与作用[J]. 地学前缘, 2014, 21(3): 256-264. |
| [9] | G.F. Ufimtsev. 全球构造地貌中的大悬崖[J]. 地学前缘, 2009, 16(1): 226-233. |
| [10] | 刘凡 冯雄汉 陈秀华 邱国红 谭文峰 贺纪正. 氧化锰矿物的生物成因及其性质的研究进展[J]. 地学前缘, 2008, 15(6): 66-73. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||