地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 113-130.DOI: 10.13745/j.esf.sf.2025.8.57
岳大力1,2,3(), 李伟1,2,*(
), 王武荣1,2, 吴胜和1,2,3, 李洪辉1,2, 刘警阳1,2, 刘磊1,2,3, 徐梓墨1,2, 林津1,2, 吴光圳1,2
收稿日期:
2025-08-15
修回日期:
2025-08-18
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
李伟
作者简介:
岳大力(1974—),男,教授,博士生导师,主要从事油气田开发地质相关教学与科研工作。E-mail: yuedali@cup.edu.cn
基金资助:
YUE Dali1,2,3(), LI Wei1,2,*(
), WANG Wurong1,2, WU Shenghe1,2,3, LI Honghui1,2, LIU Jingyang1,2, LIU Lei1,2,3, XU Zimo1,2, LIN Jin1,2, WU Guangzhen1,2
Received:
2025-08-15
Revised:
2025-08-18
Online:
2025-09-25
Published:
2025-10-14
Contact:
LI Wei
摘要:
河流相是世界范围内十分重要的储层类型之一,占我国已探明和投入开发的陆源碎屑岩储层储量的42.6%,曲流河是已开发的河流相储层的主体,多级次沉积构型表征是高含水油气田剩余油气挖潜和非常规油气藏规模效益开发的关键。近30多年来,在曲流河沉积构型模式、构型表征与建模方法、构型在油气田开发中的应用等方面取得了重要进展:(1)基于野外露头、现代沉积等原型模型研究,深化了河道及内部构型单元沉积演化机理,建立了河道带、点坝及侧积体分布样式及定量构型模式;(2)形成了多井模式拟合、智能化井震融合等构型表征方法,探索了多点地质统计学、基于单砂体构型界面和人工智能等构型建模方法;(3)分析了曲流河多级次构型对海上大井距油田开发选区、高含水油气田剩余油气挖潜、非常规油气藏水平井部署及轨迹优化等方面的重要指导意义。未来有必要对不同类型的曲流河构型模式与形成机理、地质知识与井震数据双驱动的曲流河沉积构型智能表征与建模技术等进行更为深入研究,为油气田高效开发提供理论指导与技术支撑。
中图分类号:
岳大力, 李伟, 王武荣, 吴胜和, 李洪辉, 刘警阳, 刘磊, 徐梓墨, 林津, 吴光圳. 曲流河沉积构型研究现状与展望[J]. 地学前缘, 2025, 32(5): 113-130.
YUE Dali, LI Wei, WANG Wurong, WU Shenghe, LI Honghui, LIU Jingyang, LIU Lei, XU Zimo, LIN Jin, WU Guangzhen. Advances and prospects of meandering river sedimentary architecture research[J]. Earth Science Frontiers, 2025, 32(5): 113-130.
图1 曲流河河道砂体叠合模式与不同类型的曲流带卫星照片 a—河道砂体剖面叠合模式;b—简单曲流带卫星照片;c—复杂曲流带卫星照片。
Fig.1 Channel sandbody stacking patterns and satellite images of different meander belt types in meandering rivers
图2 曲流河点坝四种迁移方式及典型卫星照片(据文献[62,66]修改)
Fig.2 Four types of point bar migration in meandering rivers and typical satellite images. Modified after [62,66].
图3 曲流河点坝组合样式卫星照片及模式图(据文献[69]修改)
Fig.3 Satellite images and schematic diagrams of point bar architectural styles in meandering rivers. Modified after [69].
图4 不同充填类型的废弃河道模式图(据文献[17]修改) a—泥质全充填型废弃河道剖面图;b—泥质半充填型废弃河道剖面图;c—泥质全充填型废弃河道所在曲流带砂体厚度平面图;d—泥质半充填型废弃河道所在曲流带砂体厚度平面图。
Fig.4 Schematic diagrams of abandoned channels with different fill types. Modified after [17].
图5 海拉尔盆地呼伦湖北岸海拉尔河支流点坝、废弃河道及侧积层(据文献[18]修改) a—点坝与废弃河道卫星照片;b—点坝及废弃河道探地雷达响应剖面。
Fig.5 Point bar, abandoned channel, and lateral accretion shale drapes along a tributary of the Hailar River, northern shore of Hulun Lake, Hailar Basin. Modified after [18].
图6 基于探地雷达的点坝内部三维构型原型模型(据文献[18]修改) a—鳞片状点坝卫星照片与雷达测网;b—鳞片状点坝的废弃河道与侧积层空间分布;c—鳞片状点坝及内部构型三维模型;d—牛角状复合点坝卫星照片与雷达测网;e—牛角状复合点坝的废弃河道与侧积层空间分布;f—牛角状复合点坝及内部构型三维模型。
Fig.6 Prototype model of the three-dimensional internal architecture of a point bar based on ground-penetrating radar. Modified after [18].
图7 曲流河点坝形成过程及其内部构型模式(据文献[18]修改) a—侧积层与侧积体形成演化过程;b—侧积层与侧积体三维构型模式。
Fig.7 Formation process of the point bar in the meandering belt and inner architectural model. Modified after [18].
经验公式 | 符号含义 | 相关系数(R) | 文献来源 |
---|---|---|---|
W=6.8h1.54 | W:满岸宽度;h:满岸厚度 | [ | |
W*=2/3W | W:满岸宽度;W*:单一侧积体宽度 | [ | |
D=D*×0.585/0.9 | D:河道满岸深度;D*:砂体平均厚度 | [ | |
λm=10.9W1.01 | W:满岸宽度;λm:曲流波长;rm:曲率半径;A:振幅 | [ | |
λm=4.7${r}_{m}^{0.98}$ | |||
A=2.7W1.1 | |||
Wm=7.44W1.01 | W:活动河道宽度;Wm单一曲流带宽度 | 0.93 | [ |
L=0.853 1×lnW+2.453 1 | W:满岸宽度;L:点坝长度 | 0.93 | [ |
Wd=3.631 9W+40.612 | Wd:点坝跨度;W:满岸宽度 | 0.98 | [ |
Wp=2.42L+622.41 | Wp:点坝宽度;L:点坝长度 | 0.94 | [ |
hm=2.9Sm | hm:沙丘高度;Sm:交错层组厚度;d:水深 | [ | |
d/hm=6~10 | |||
WPB=1.33${W}_{m}^{0.90}$ | Wm:曲流带宽度;WPB:点坝宽度 | 0.84 | [ |
表1 常见曲流河定量构型模式
Table 1 Common quantitative architecture models of meandering rivers
经验公式 | 符号含义 | 相关系数(R) | 文献来源 |
---|---|---|---|
W=6.8h1.54 | W:满岸宽度;h:满岸厚度 | [ | |
W*=2/3W | W:满岸宽度;W*:单一侧积体宽度 | [ | |
D=D*×0.585/0.9 | D:河道满岸深度;D*:砂体平均厚度 | [ | |
λm=10.9W1.01 | W:满岸宽度;λm:曲流波长;rm:曲率半径;A:振幅 | [ | |
λm=4.7${r}_{m}^{0.98}$ | |||
A=2.7W1.1 | |||
Wm=7.44W1.01 | W:活动河道宽度;Wm单一曲流带宽度 | 0.93 | [ |
L=0.853 1×lnW+2.453 1 | W:满岸宽度;L:点坝长度 | 0.93 | [ |
Wd=3.631 9W+40.612 | Wd:点坝跨度;W:满岸宽度 | 0.98 | [ |
Wp=2.42L+622.41 | Wp:点坝宽度;L:点坝长度 | 0.94 | [ |
hm=2.9Sm | hm:沙丘高度;Sm:交错层组厚度;d:水深 | [ | |
d/hm=6~10 | |||
WPB=1.33${W}_{m}^{0.90}$ | Wm:曲流带宽度;WPB:点坝宽度 | 0.84 | [ |
图9 地震属性分布与砂体预测(a据文献[32]修改;b引自文献[35]) a—某沉积盆地地震地层切片与地震剖面,图中A、B、C区域均指示河道砂体;b—秦皇岛32-6油田分频地震智能融合结果。
Fig.9 Seismic attribute distribution and sand body prediction. a modified after [32]; b adapted from [35].
图10 渤海湾盆地埕岛油田SDC2小层上、中、下部反演切片RGB融合图(a)与构型单元分布图(b)(据文献[7]修改)
Fig.10 RGB-blending map of the lower, middle, and upper inversion slices (a) and distribution of fluvial architecture elements of SDC2 in Chengdao Oilfield, Bohai Bay Basin (b). Modified after [7].
图11 河流储层智能化建模(a据文献[108]修改) a—无条件相实现:多点统计(MPS)(左)和生成对抗网络(GAN)(右); b—辫-曲转换河流相条件化建模。
Fig.11 Intelligent modeling of fluvial reservoirs. a modified after [108].
图12 曲流点坝侧积泥岩薄夹层建筑结构及其对注入剂驱油、剩余油形成与分布的影响(引自文献[120])
Fig.12 Architectural features of lateral accretion mudstone interlayers in meandering point bars and their influence on injected fluid displacement and remaining oil distribution. Adapted from [120].
图13 苏里格气田苏A区块基于地质模型的水平井部署示意图 a—构型模型切片;b—含气饱和度模型切片。
Fig.13 Schematic diagram of horizontal well deployment based on the geological model in the Su-A block,Sulige Gas Field
[1] | MIALL A D. Architecture and sequence stratigraphy of pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis[J]. AAPG Bulletin, 2002, 86(7): 1201-1216. |
[2] | MCHARGUE T, PYRCZ M J, SULLIVAN M D, et al. Architecture of turbidite channel systems on the continental slope: patterns and predictions[J]. Marine and Petroleum Geology, 2011, 28(3): 728-743. |
[3] | SAMBROOK SMITH G H, BEST J L, BRISTOW C S, et al. Braided rivers:process, deposits, ecology and management[M]. 1st ed. Hoboken, New Jersey, USA: Wiley, 2006. |
[4] | 徐安娜, 穆龙新, 裘怿楠. 我国不同沉积类型储集层中的储量和可动剩余油分布规律[J]. 石油勘探与开发, 1998(5): 41-44. |
[5] | 岳大力, 李伟, 杜玉山, 等. 河流相储层地震属性优选与融合方法综述[J]. 地球科学, 2022, 47(11): 3929-3943. |
[6] | COLOMBERA L, MOUNTNEY N P, RUSSELL C E, et al. Geometry and compartmentalization of fluvial meander-belt reservoirs at the bar-form scale: quantitative insight from outcrop, modern and subsurface analogues[J]. Marine and Petroleum Geology, 2017, 82: 35-55. |
[7] | LI W, YUE D, WU S, et al. Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion[J]. Marine and Petroleum Geology, 2019, 105: 168-184. |
[8] | MIALL A D. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308. |
[9] | 李胜利, 马水平, 周练武, 等. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示[J]. 地球科学, 2022, 47(11): 3960-3976. |
[10] | 闫百泉, 张鑫磊, 于利民, 等. 基于岩心及密井网的点坝构型与剩余油分析[J]. 石油勘探与开发, 2014, 41(5): 597-604. |
[11] | 岳大力. 曲流河储层构型分析与剩余油分布模式研究: 以孤岛油田馆陶组为例[D]. 北京: 中国石油大学(北京), 2006. |
[12] | ATHY L F. Density, porosity, and compaction of sedimentary rocks1[J]. AAPG Bulletin, 1930, 14(1): 1-24. |
[13] | ALLEN J R L. Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. devonian), welsh borders[J]. Sedimentary Geology, 1983, 33(4): 237-293. |
[14] | MIALL A D. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado[J]. Sedimentary Geology, 1988, 55(3): 233-262. |
[15] | 薛培华. 河流点坝相储层模式概论[M]. 北京: 石油工业出版社, 1991. |
[16] | BRIDGE J S, ALEXANDER J, COLLIER R E Ll, et al. Ground-penetrating radar and coring used to study the large-scale structure of point-bar deposits in three dimensions[J]. Sedimentology, 1995, 42(6): 839-852. |
[17] | DONSELAAR M E, OVEREEM I. Connectivity of fluvial point-bar deposits: an example from the Miocene Huesca fluvial fan, Ebro Basin, Spain[J]. AAPG Bulletin, 2008, 92(9): 1109-1129. |
[18] | YUE D, LI W, WANG W, et al. Analyzing the architecture of point bar of meandering fluvial river using ground penetration radar: a case study from Hulun Lake Depression, China[J]. Interpretation, 2019, 7(2): T437-T454. |
[19] | 范峥, 吴胜和, 岳大力, 等. 曲流河点坝内部构型的嵌入式建模方法研究[J]. 中国石油大学学报(自然科学版), 2012, 36(3): 1-6. |
[20] | 胡光义, 王海峰, 范廷恩, 等. 海上油田河流相复合砂体构型级次解析[J]. 古地理学报, 2021, 23(4): 810-823. |
[21] | 岳大力, 吴胜和, 刘建民. 曲流河点坝地下储层构型精细解剖方法[J]. 石油学报, 2007, 28(4): 99-103. |
[22] | 岳大力, 陈德坡, 徐樟有, 等. 济阳坳陷孤东油田曲流河河道储集层构型三维建模[J]. 古地理学报, 2009, 11(2): 233-240. |
[23] | HICKIN A S, KERR B, BARCHYN T E, et al. Using ground-penetrating radar and capacitively coupled resistivity to investigate 3-D fluvial architecture and grain-size distribution of a gravel floodplain in Northeast British Columbia, Canada[J]. Journal of Sedimentary Research, 2009, 79(6): 457-477. |
[24] | WOOLDRIDGE C L, HICKIN E J. Radar architecture and evolution of channel bars in wandering gravel-bed rivers: fraser and squamish rivers, British Columbia, Canada[J]. Journal of Sedimentary Research, 2005, 75(5): 844-860. |
[25] | 李胜利, 于兴河, 姜涛, 等. 河流辫-曲转换特点与废弃河道模式[J]. 沉积学报, 2017, 35(1): 1-9. |
[26] | 吴胜和, 岳大力, 刘建民, 等. 地下古河道储层构型的层次建模研究[J]. 中国科学(D辑: 地球科学), 2008, 38(增刊1): 111-121. |
[27] | 张宪国, 王涵巍, 张涛, 等. 曲流串沟型江心洲形成机制与演化探讨: 以现代松花江为例[J]. 沉积学报, 2022, 40(5): 1215-1227. |
[28] | 吴胜和, 翟瑞, 李宇鹏. 地下储层构型表征: 现状与展望[J]. 地学前缘, 2012, 19(2): 15-23. |
[29] | 岳大力, 吴胜和, 谭河清, 等. 曲流河古河道储层构型精细解剖: 以孤东油田七区西馆陶组为例[J]. 地学前缘, 2008, 15(1): 101-109. |
[30] | 林承焰, 张宪国, 董春梅. 地震沉积学及其初步应用[J]. 石油学报, 2007, 28(2): 69-72. |
[31] | ZENG H. Thickness imaging for high-resolution stratigraphic interpretation by linear combination and color blending of multiple-frequency panels[J]. Interpretation, 2017, 5(3): T411-T422. |
[32] | ZENG H. What is seismic sedimentology? A tutorial[J]. Interpretation, 2018, 6(2): SD1-SD12. |
[33] | ZENG H, RUPPEL S, KERANS C, et al. Full-spectrum seismic inversion as a hard constraint in reservoir modeling and simulation[M]. SEG Technical program expanded abstracts 2005. Houston, USA: Society of Exploration Geophysicists, 2005: 1629-1632. |
[34] | 岳大力, 李伟, 王军, 等. 基于分频融合地震属性的曲流带预测与点坝识别: 以渤海湾盆地埕岛油田馆陶组为例[J]. 古地理学报, 2018, 20(6): 941-950. |
[35] | 岳大力, 胡光义, 李伟, 等. 井震结合的曲流河储层构型表征方法及其应用: 以秦皇岛32-6油田为例[J]. 中国海上油气, 2018, 30(1): 99-109. |
[36] | 岳大力, 李伟, 王武荣, 等. 碎屑岩储层智能表征与建模方法研究现状及展望[J]. 古地理学报, 2025, 27(4): 903-923. |
[37] | 张宪国, 吴啸啸, 黄德榕, 等. 极限学习机驱动的地震多属性融合识别曲流带单一点坝[J]. 石油地球物理勘探, 2021, 56(6): 1340-1350, 1200-1201. |
[38] | YUE D, LI W, WANG W, et al. Fused spectral-decomposition seismic attributes and forward seismic modelling to predict sand bodies in meandering fluvial reservoirs[J]. Marine and Petroleum Geology, 2019, 99: 27-44. |
[39] | STREBELLE S. Conditional simulation of complex geological structures using multiple-point statistics[J]. Mathematical Geology, 2002, 34(1): 1-21. |
[40] | WANG Y C, PYRCZ M J, CATUNEANU O, et al. Conditioning 3D object-based models to dense well data[J]. Computers & Geosciences, 2018, 115: 1-11. |
[41] | 尹艳树, 吴胜和. 储层随机建模研究进展[J]. 天然气地球科学, 2006, 17(2): 210-216. |
[42] | 尹艳树, 张昌民, 李玖勇, 等. 多点地质统计学研究进展与展望[J]. 古地理学报, 2011, 13(2): 245-252. |
[43] | 王立鑫, 尹艳树, 王晖, 等. 基于自适应空间抽样由二维剖面重构三维地质模型的方法: 以加拿大某区块McMurray组储集层为例[J]. 石油勘探与开发, 2021, 48(2): 347-359. |
[44] | 李少华, 刘显太, 王军, 等. 基于沉积过程建模算法Alluvsim的改进[J]. 石油学报, 2013, 34(1): 140-144. |
[45] | 宋随宏, 史燕青, 侯加根. 基于生成对抗网络的储层地质建模方法研究进展[J]. 石油科学通报, 2022, 7(1): 34-49. |
[46] | PYRCZ M J, BOISVERT J B, DEUTSCH C V. ALLUVSIM: a program for event-based stochastic modeling of fluvial depositional systems[J]. Computers & Geosciences, 2009, 35(8): 1671-1685. |
[47] | 胡勇, 高小洋, 何文祥, 等. 利用条件生成对抗网络建立曲流河地质模型[J]. 沉积学报, 2024, 42(1): 201-218. |
[48] | LIU X, CHEN X, CHENG J, et al. Simulation of complex geological architectures based on multistage generative adversarial networks integrating with attention mechanism and spectral normalization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15. |
[49] | LIU L, YUE D, LI W, et al. A novel stochastic simulation method for sedimentary facies based on the generative adversarial network with a spatially-adaptive conditioning module and comprehensive attention mechanisms[J]. Geoenergy Science and Engineering, 2025, 249: 213758. |
[50] | ZHANG T F, TILKE P, DUPONT E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16(3): 541-549. |
[51] | 吴胜和, 纪友亮, 岳大力, 等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报, 2013, 19(1): 12-22. |
[52] | GHAZI S, MOUNTNEY N P. Facies and architectural element analysis of a meandering fluvial succession: the Permian warchha sandstone, salt range, pakistan[J]. Sedimentary Geology, 2009, 221(1/2/3/4): 99-126. |
[53] | 李伟, 岳大力, 李健, 等. 基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例[J]. 地球科学, 2022, 47(11): 3977-3988. |
[54] | 谭程鹏, 于兴河, 刘蓓蓓, 等. 季节性河流体系高流态沉积构造特征: 以内蒙古岱海湖半滩子河为例[J]. 古地理学报, 2018, 20(6): 929-940. |
[55] | CROSS TA. Stratigraphic controls on reservoir attributes in continental strata[J]. 地学前缘, 2000, 7(4): 322-350. |
[56] | HOLBROOK J, AUTIN W J, RITTENOUR T M, et al. Stratigraphic evidence for millennial-scale temporal clustering of earthquakes on a continental-interior fault: Holocene Mississippi River floodplain deposits, New Madrid seismic zone, USA[J]. Tectonophysics, 2006, 420(3/4): 431-454. |
[57] | KJEMPERUD A V, SCHOMACKER E R, CROSS T A. Architecture and stratigraphy of alluvial deposits, Morrison Formation (Upper Jurassic), Utah[J]. AAPG Bulletin, 2008, 92(8): 1055-1076. |
[58] | YAO Z, YU X, SHAN X, et al. Braided-meandering system evolution in the rock record: implications for climate control on the Middle-Upper Jurassic in the southern Junggar Basin, North-West China[J]. Geological Journal, 2018, 53(6): 2710-2731. |
[59] | JORGENSEN HARBOR D, SCHUMM S A, HARVEY M D. Tectonic control of the Indus River in Sindh, Pakistan[C]// SCHUMM S A. The variability of large Alluvial rivers. New York, USA, 1994: 161-175. |
[60] | HANSFORD M R, PLINK-BJÖRKLUND P. River discharge variability as the link between climate and fluvial fan formation[J]. Geology, 2020, 48(10): 952-956. |
[61] | FIELDING C R, ALEXANDER J, ALLEN J P. The role of discharge variability in the formation and preservation of alluvial sediment bodies[J]. Sedimentary Geology, 2018, 365: 1-20. |
[62] | GHINASSI M, IELPI A, ALDINUCCI M, et al. Downstream-migrating fluvial point bars in the rock record[J]. Sedimentary Geology, 2016, 334: 66-96. |
[63] | CHADWICK A J, GREENBERG E, GANTI V. Single- and multithread rivers originate from (im)balance between lateral erosion and accretion[J]. Science, 2025, 389(6756): 146-150. |
[64] | CHARLTON R. Fundamentals of fluvial geomorphology[M]. London: Routledge, 2007. |
[65] | 赵晓明, 冯圣伦, 谭程鹏, 等. 平移型点坝形成机理与沉积特征[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 22-36. |
[66] | YAN N, MOUNTNEY N P, COLOMBERA L, et al. A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture[J]. Computers & Geosciences, 2017, 105: 65-80. |
[67] | GRENFELL M, AALTO R, NICHOLAS A. Chute channel dynamics in large, sand-bed meandering rivers[J]. Earth Surface Processes and Landforms, 2012, 37(3): 315-331. |
[68] | 梁宏伟, 何彬, 范子菲, 等. 基准面旋回控制下的复合点坝分布模式[J]. 中南大学学报(自然科学版), 2015, 46(12): 4602-4609. |
[69] | 吴胜和, 岳大力, 冯文杰, 等. 碎屑岩沉积构型研究若干进展[J]. 古地理学报, 2021, 23(2): 245-262. |
[70] | 李志威, 王兆印, 徐梦珍, 等. 弯曲河流颈口裁弯模式与机理[J]. 清华大学学报(自然科学版), 2013, 53(5): 618-624. |
[71] | HICKIN E J, NANSON G C. The character of channel migration on the beatton river, Northeast British Columbia, Canada[J]. GSA Bulletin, 1975, 86(4): 487-494. |
[72] | LEOPOLD L B, WOLMAN M G. River meanders[J]. GSA Bulletin, 1960, 71(6): 769-793. |
[73] | 石书缘, 胡素云, 冯文杰, 等. 基于Google Earth软件建立曲流河地质知识库[J]. 沉积学报, 2012, 30(5): 869-878. |
[74] | LEEDER M R. Fluviatile fining-upwards cycles and the magnitude of palaeochannels[J]. Geological Magazine, 1973, 110(3): 265-276. |
[75] | LORENZ J C, HEINZE D M, CLARK J A, et al. Determination of widths of meander-belt sandstone reservoirs from vertical downhole data, Mesaverde Group, Piceance Creek Basin, Colorado1[J]. AAPG Bulletin, 1985, 69(5): 710-721. |
[76] | 乔辉, 王志章, 李莉, 等. 基于卫星影像建立曲流河地质知识库及应用[J]. 现代地质, 2015, 29(6): 1444-1453. |
[77] | BRADLEY R W, VENDITTI J G. Reevaluating dune scaling relations[J]. Earth-Science Reviews, 2017, 165: 356-376. |
[78] | LECLAIR S F, BRIDGE J S. Quantitative interpretation of sedimentary structures formed by river dunes[J]. Journal of Sedimentary Research, 2001, 71(5): 713-716. |
[79] | 王海峰, 范廷恩, 宋来明, 等. 高弯度曲流河砂体规模定量表征研究[J]. 沉积学报, 2017, 35(2): 279-289. |
[80] | PRANTER M J, ELLISON A I, COLE R D, et al. Analysis and modeling of intermediate-scale reservoir heterogeneity based on a fluvial point-bar outcrop analog, Williams Fork Formation, Piceance Basin, Colorado[J]. AAPG Bulletin, 2007, 91(7): 1025-1051. |
[81] | 李阳, 吴胜和, 侯加根, 等. 油气藏开发地质研究进展与展望[J]. 石油勘探与开发, 2017, 44(4): 569-579. |
[82] | LI W, YUE D, WU S, et al. Thickness prediction for high-resolution stratigraphic interpretation by fusing seismic attributes of target and neighboring zones with an svr algorithm[J]. Marine and Petroleum Geology, 2020, 113: 104153. |
[83] | LI W, YUE D, COLOMBERA L, et al. Quantitative prediction of fluvial sandbodies by combining seismic attributes of neighboring zones[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107749. |
[84] | 朱筱敏, 董艳蕾, 曾洪流, 等. 沉积地质学发展新航程: 地震沉积学[J]. 古地理学报, 2019, 21(2): 189-201. |
[85] | 王彦仓, 秦凤启, 杜维良, 等. 地震属性优选、融合探讨[J]. 中国石油勘探, 2013, 18(6): 69-73. |
[86] | CHOPRA S, MARFURT K J. Seismic attributes: a historical perspective[J]. Geophysics, 2005, 70(5): 3SO-28SO. |
[87] | CHEN Q, SIDNEY S. Seismic attribute technology for reservoir forecasting and monitoring[J]. The Leading Edge, 1997, 16(5): 445-450. |
[88] | HART B S. Channel detection in 3-D seismic data using sweetness[J]. AAPG Bulletin, 2008, 92(6): 733-742. |
[89] | BITRUS P R, IACOPINI D, BOND C E. Defining the 3D geometry of thin shale units in the Sleipner reservoir using seismic attributes[J]. Marine and Petroleum Geology, 2016, 78: 405-425. |
[90] | MCARDLE N J, IACOPINI D, KUNLEDARE M A, et al. The use of geologic expression workflows for basin scale reconnaissance: a case study from the Exmouth Subbasin, North Carnarvon Basin, northwestern Australia[J]. Interpretation, 2014, 2(1): SA163-SA177. |
[91] | WANG X, ZHANG B, ZHAO T, et al. Facies analysis by integrating 3D seismic attributes and well logs for prospect identification and evaluation: a case study from Northwest China[J]. Interpretation, 2017, 5(2): 61-74 |
[92] | 刘磊, 李伟, 杜玉山, 等. 基于Stacking集成学习的分频地震属性融合储层预测方法[J]. 石油地球物理勘探, 2024, 59(1): 12-22. |
[93] | MALEKI M, DAVOLIO A, SCHIOZER D J. Quantitative integration of 3D and 4D seismic impedance into reservoir simulation model updating in the Norne Field[J]. Geophysical Prospecting, 2019, 67(1): 167-187. |
[94] | 李洪辉, 岳大力, 李伟, 等. 基于分频智能反演的曲流河点坝与废弃河道识别[J]. 石油地球物理勘探, 2023, 58(2): 358-368. |
[95] | 白振强, 王清华, 杜庆龙, 等. 曲流河砂体三维构型地质建模及数值模拟研究[J]. 石油学报, 2009, 30(6): 898-902, 907. |
[96] | 胡向阳, 熊琦华, 吴胜和. 储层建模方法研究进展[J]. 石油大学学报(自然科学版), 2001(1): 107-112. |
[97] | 叶小明, 刘小鸿, 张岚, 等. 曲流河储层构型建模方法研究进展[J]. 中国海上油气, 2022, 34(1): 84-93. |
[98] | 尹艳树, 冯舒, 尹太举. 曲流河储层建模方法的比较研究[J]. 断块油气田, 2012, 19(1): 44-46, 64. |
[99] | COMUNIAN A, JHA S K, GIAMBASTIANI B M S, et al. Training images from process-imitating methods[J]. Mathematical Geosciences, 2014, 46(2): 241-260. |
[100] | MULLINS J, VAN DER VEGT H, HOWELL J. Combining process-based models and multiple-point geostatistics for improved reservoir modelling[J]. Petroleum Geoscience, 2021, 27(3): petgeo2020-012. |
[101] | JOURNEL A, ZHANG T. The necessity of a multiple-point prior model[J]. Mathematical Geology, 2006, 38(5): 591-610. |
[102] | LOPEZ S, COJAN I, RIVOIRARD J, et al. Process-based stochastic modelling: meandering channelized reservoirs[C]// DE BOER P, POSTMA G, VAN DER ZWAN K, et al. Analogue and numerical modelling of sedimentary systems:from understanding to prediction. 1st ed. Hoboken, New Jersey, USA: Wiley, New York, 2008: 139-144. |
[103] | 尹艳树, 吴胜和, 张昌民, 等. 基于储层骨架的多点地质统计学方法[J]. 中国科学(D辑: 地球科学), 2008, 38(增刊2): 157-164. |
[104] | 陈仕臻, 林承焰, 任丽华. 构型模式控制下的曲流河多尺度地质建模研究: 以胜利油田史南区块为例[J]. 中国矿业大学学报, 2020, 49(3): 552-562. |
[105] | LI J, LIN C, ZHANG X, et al. Multiscale modeling of meandering fluvial reservoir architecture based on multiple-point geostatistics: a case study of the minghuazhen formation, Yangerzhuang Oilfield, Bohai Bay Basin, China[J]. Geofluids, 2021(1): 1717195. |
[106] | 高兴军, 宋新民, 孟立新, 等. 特高含水期构型控制隐蔽剩余油定量表征技术[J]. 石油学报, 2016, 37(S2): 99-111. |
[107] | 孙红霞, 赵玉杰, 姚军. 一种新的曲流河点坝砂体侧积层建模方法: 以孤东油田七区西Ng52+3层系为例[J]. 新疆石油地质, 2017, 38(4): 477-481. |
[108] | HU X, SONG S, HOU J, et al. Stochastic modeling of thin mud drapes inside point bar reservoirs with Alluvsim-Gansim[J]. Water Resources Research, 2024, 60(6): 1-24. |
[109] | ZHANG T, JI X, ZHANG A. Reconstruction of fluvial reservoirs using multiple-stage concurrent generative adversarial networks[J]. Computational Geosciences, 2021, 25(6): 1983-2004. |
[110] | 陈麒玉, 张如甜, 崔哲思, 等. 基于Lap-SAGAN的多尺度三维地质模型重构方法[J]. 地学前缘, 2025[2025-08-10]. https://doi.org/10.13745/j.esf.sf.2025.4.1. |
[111] | LIU X, CHENG J, CAI Y, et al. Stochastic simulation of facies using deep convolutional generative adversarial network and image quilting[J]. Marine and Petroleum Geology, 2022, 146: 105932. |
[112] | ZHANG K, YU H Q, MA X P, et al. Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies[J]. Petroleum Science, 2022, 19(2): 707-719. |
[113] | SONG S, ZHANG D, MUKERJI T, et al. Gansim-surrogate: an integrated framework for stochastic conditional geomodelling[J]. Journal of Hydrology, 2023, 620: 129493. |
[114] | CUI Z, CHEN Q, LIU G. Characterization of subsurface hydrogeological structures with convolutional conditional neural processes on limited training data[J]. Water Resources Research, 2022, 58(12): e2022WR033161. |
[115] | CHEN M, WU S, BEDLE H, et al. Modeling of subsurface sedimentary facies using self-attention generative adversarial networks (SAGANs)[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110470. |
[116] | CUI Z, CHEN Q, JIANG S, et al. Interpretable deep learning-based characterization of hydrogeological structures with self-representation learning[J]. Journal of Hydrology, 2025, 662: 133943. |
[117] | 杨民鑫, 赵晓明, 梁岳立, 等. 基于分频RGB融合技术的储层构型精细解剖: 以东海盆地西湖凹陷渐新统花港组为例[J]. 天然气地球科学, 2024, 35(7): 1323-1338. |
[118] | 岳大力, 赵俊威, 温立峰. 辫状河心滩内部夹层控制的剩余油分布物理模拟实验[J]. 地学前缘, 2012, 19(2): 157-161. |
[119] | 王凤兰, 白振强, 朱伟. 曲流河砂体内部构型及不同开发阶段剩余油分布研究[J]. 沉积学报, 2011, 29(3): 512-519. |
[120] | 闫百泉, 马世忠, 王龙, 等. 曲流点坝内部剩余油形成与分布规律物理模拟[J]. 地学前缘, 2008, 15(1): 65-70. |
[121] | 朱丽红. 特高含水期厚油层剩余油综合描述及分布特征[J]. 大庆石油地质与开发, 2013, 32(6): 58-62. |
[122] | 谢庆宾, 孙建, 陈菁萍, 等. 苏里格大气田多成因河道砂体的分布模式研究[J]. 地学前缘, 2013, 20(2): 40-51. |
[123] | 张小菊, 邓虎成, 伏美燕, 等. 多级界面约束下构型对储层非均质性控制作用: 以川西沙溪庙组曲流河为例[J]. 沉积学报, 2024, 42(4): 1384-1400. |
[124] | 费世祥, 余浩杰, 陈存良, 等. 致密砂岩气藏水平井开发关键技术: 以苏里格气田上古生界为例[J]. 西安石油大学学报(自然科学版), 2022, 37(4): 26-35. |
[1] | 成秋明, 杨一琳, 周远志, 张渊智. 基础模型时代的地球科学:AlphaEarth如何重塑定量地学[J]. 地学前缘, 2025, 32(5): 1-11. |
[2] | 万晓龙, 吴胜和, 周新平, 徐振华, 付金华, 王梓沣, 麻书玮, 邬德刚, 李桢, 刘明成. 夹层型页岩油三维甜点分布预测方法研究:以鄂尔多斯盆地庆城油田B15区块延长组为例[J]. 地学前缘, 2025, 32(5): 417-431. |
[3] | 成秋明. 面向人类智能与人工智能融合的矿产资源预测新范式[J]. 地学前缘, 2025, 32(4): 1-19. |
[4] | 叶舒婉, 侯卫生, 杨玠, 汪海城, 白芸, 王永志. 三维地质智能建模研究进展[J]. 地学前缘, 2025, 32(4): 182-198. |
[5] | 陈国雄, 张越鹏, 罗磊, 夏庆霖, 成秋明. 数据驱动斑岩型矿床时空预测模型[J]. 地学前缘, 2025, 32(4): 46-59. |
[6] | 周圣荃, 李以科, 王永志, 刘海明, 李楠, 柯昌辉, 李瑞萍, 赵永岗, 张丽. 生成式AI技术在地学研究中的应用现状及发展趋势[J]. 地学前缘, 2025, 32(4): 303-316. |
[7] | 周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6. |
[8] | 朱彪彪, 曹伟, 虞鹏鹏, 张前龙, 郭兰萱, 原桂强, 韩枫, 王汉雨, 周永章. 基于CiteSpace的地质大数据与人工智能研究热点及前沿分析[J]. 地学前缘, 2024, 31(4): 73-86. |
[9] | 廖舟, 李梅. 基于开源GemPy的城市地下空间三维隐式势场建模方法研究[J]. 地学前缘, 2024, 31(3): 482-497. |
[10] | 谷浩, 杨泽强, 高猛, 唐相伟, 王东晓, 刘奎松, 杨树人, 郭跃闪, 王云, 王功文. 河南围山城金银矿集区三维地质建模与成矿预测[J]. 地学前缘, 2024, 31(3): 245-259. |
[11] | 薛涛, 包训栓, 朱小弟, 黄骁. 多源数据三维地质结构模型约束的属性建模方法:以北京市通州城市副中心为例[J]. 地学前缘, 2023, 30(3): 529-536. |
[12] | 慎国强, 王玉梅, 张繁昌, 张洪, 王希萍, 陈松莉. 基于人工智能的川东北三叠系杂卤石地震识别[J]. 地学前缘, 2021, 28(6): 155-161. |
[13] | 薛涛, 史玉金, 朱小弟, 王军, 刘婷. 城市地下空间资源评价三维建模方法研究与实践:以上海市为例[J]. 地学前缘, 2021, 28(4): 373-382. |
[14] | 贾然, 王浩然, 王功文, 王皓, 许荣达, 冯占奎, 宋要武, 王肖凌, 庞宗. 河南栾川西沟铅锌银金矿床三维地质建模与深部找矿预测评价[J]. 地学前缘, 2021, 28(3): 156-169. |
[15] | 王敏,穆龙新,赵国良,客伟利,邹荃,康楚娟. 多信息关联的辫状河储层夹层预测方法研究:以南苏丹P油田Fal块为例[J]. 地学前缘, 2018, 25(2): 92-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||