地学前缘 ›› 2022, Vol. 29 ›› Issue (2): 327-342.DOI: 10.13745/j.esf.sf.2021.10.35
凌媛1,2(), 王永1, 王淑贤3,*(
), 孙青3, 李海兵1,2
收稿日期:
2021-09-06
修回日期:
2021-11-05
出版日期:
2022-03-25
发布日期:
2022-03-31
通信作者:
王淑贤
作者简介:
凌 媛(1988—),女,博士,助理研究员,研究方向为有机地球化学、古生态、古环境。E-mail: lingyuan0902@126.com
基金资助:
LING Yuan1,2(), WANG Yong1, WANG Shuxian3,*(
), SUN Qing3, LI Haibing1,2
Received:
2021-09-06
Revised:
2021-11-05
Online:
2022-03-25
Published:
2022-03-31
Contact:
WANG Shuxian
摘要:
海洋和湖泊具有重要的气候环境和生态调节功能。研究地质历史时期海洋和湖泊生态系统的生物群落的组成、结构和演变,将为解决当前面临的环境问题,评估可持续发展提供科学依据。生物标志物具有生物专属性,提供了使我们能够从分子水平上研究地质历史中各种生物演变的工具。本文初步总结了海洋和湖泊生态系统中的生物标志物(烷烃、酸类、醇类、酮类、酯类、甾类、藿类、萜类和甘油四醚类等)的特征和来源。陆生高等植物来源的生物标志物,以长链的烷烃、脂肪酸、脂肪醇和木质素、萜类等较为常见;水生微藻来源的生物标志物有长链烯酮、烷基二醇和高度支链类异戊二烯类化合物(HBIs)等;微生物来源的生物标志物有细菌藿烷多元醇(BHPs)、异形胞糖脂和支链烷烃类等。今后结合生物标志物单体同位素分析和基因、蛋白质组学等现代分子生物学研究,加强不同生物标志物对应的生物种属的生态学研究,古今生态研究相结合,可以为某些生物标志物的分子来源研究提供新的可行途径。本文还综述了生物标志物指标在重建海洋和湖泊生态系统的组成、结构、生产力和营养状况方面的应用。未来的研究将偏向于从定性向定量化重建转变,在海洋研究中应用较成熟的指标将越来越多的被用于湖泊环境中。此外,多指标结合使用将提高重建古生态系统的可靠度。
中图分类号:
凌媛, 王永, 王淑贤, 孙青, 李海兵. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘, 2022, 29(2): 327-342.
LING Yuan, WANG Yong, WANG Shuxian, SUN Qing, LI Haibing. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity: A review[J]. Earth Science Frontiers, 2022, 29(2): 327-342.
生物标志物类别 | 名称 | 生物指示 | 参考文献 |
---|---|---|---|
烷烃、脂肪酸和 脂肪醇 | 长链正构烷烃(nC27 ~ nC33)、脂肪酸(nC26 ~ nC32)和脂肪醇(nC26 ~ nC32) | 陆生高等植物、挺水植物 | [ |
中链正构烷烃(nC21 ~ nC25)、脂肪酸(nC20 ~ nC24)和脂肪醇(nC20 ~ nC24) | 沉水植物、浮水植物 | [ | |
短链正构烷烃(nC15 ~ nC19)、脂肪酸(nC14 ~ nC18)和脂肪醇(nC14 ~ nC18) | 菌类、藻类 | [ | |
梯烷(ladderane) | 厌氧氨氧化细菌 | [ | |
2,6,10,15,19-五甲基二十烷(pentamethyleicosane) | 甲烷古菌 | [ | |
长链ω羟基脂肪酸 | 陆生植物大分子(角质、木栓质) | [ | |
短链羟基脂肪酸 | 浮游植物、细菌、微藻 | [ | |
多不饱和脂肪酸(C20 ~ C22) | 甲藻、硅藻、无脊椎动物 | [ | |
单不饱和脂肪酸、脂肪醇(C20 ~ C22) | 桡足类、食草动物、浮游植物、细菌 | [ | |
萜类 | 三萜类(triterpenoids) | 被子植物 | [ |
二萜类(diterpenoids) | 裸子植物 | [ | |
酮类 | 长链烯酮(long chain alkenones) | 定鞭藻 | [ |
甾类 | 谷甾醇(sitosterol) | 维管植物、鸟粪 | [ |
豆甾醇(stigmasterol) | 维管植物 | [ | |
菜籽甾醇(brassicasterol) | 硅藻 | [ | |
甲藻甾醇(dinosterol) | 甲藻 | [ | |
岩藻甾醇(fucosterol) | 硅藻、鸟粪 | [ | |
海绵甾醇(chalinasterol) | 硅藻 | [ | |
硅藻甾醇(diatomsterol) | 硅藻 | [ | |
降甾烷(norsterane) | 海绵动物 | [ | |
胆甾醇(cholesterol) | 脊椎动物、硅藻、鸟粪 | [ | |
粪甾醇(coprostanol) | 人类(粪便) | [ | |
醇类 | 四膜虫醇(tetrahymanol) | 细菌纤毛虫、厌氧紫细菌、蕨类 | [ |
长链烷基二醇(long-chain alkyl diols, LCDs) | 黄绿藻、蓝细菌、硅藻、真眼点藻 | [ | |
色素 | 叶绿素a(chlorophyll a) | 浮游植物、光合藻类(原绿藻除外) | [ |
叶黄素(lutein) | 绿藻、裸藻、高等植物 | [ | |
β, α-胡萝卜素(β, α-carotene) | 隐生植物、金藻、甲藻、绿藻 | [10,69] | |
奥克酮(okenone) | 紫硫细菌 | [ | |
异海绵烯(isorenieratene) | 绿硫细菌 | [ | |
细菌藿烷多元 醇(BHPs) | 腺苷藿烷(adenosylhopane) | 固氮细菌、氨氧化细菌 | [ |
2-甲基(2-methylated)BHPs | 蓝细菌、甲基营养菌、固氮细菌、紫色非硫细菌 | [ | |
3-甲基(3-methylated)BHPs | 甲烷氧化菌 | [ | |
氨基藿戊醇(aminopentol)、氨基藿四醇(aminotetrol)、氨基藿三醇(aminotriol) | 甲烷氧化菌、硫还原菌 | [ | |
甘油四醚类脂 物(GDGTs) | 类异戊二烯GDGTs | 奇古菌、广古菌 | [ |
支链GDGTs | 酸杆菌 | [ | |
类异戊二烯类 | 短链(≤C20)无环类类异戊二烯:姥鲛烷(pristane)和植烷(phytane) | 叶绿素、生育酚、产甲烷菌、嗜盐菌 | [ |
短链(C15)无环类类异戊二烯:法尼烷(farnesane) | 叶绿素、古菌、绿硫细菌 | [ | |
中链(C21~C25)无环类异戊二烯 | 嗜盐古菌、嗜碱菌 | [ | |
高度支链类异戊二烯类(highly-branched isoprenoids, HBIs) | 硅藻 | [ | |
酯类 | 黑麦草内酯(loliolide) | 硅藻 | [ |
异黑麦草内酯(isololiolide) | 硅藻 | [ | |
糖脂类 | 异形胞糖脂(heterocystous glycolipids) | 固氮蓝细菌 | [ |
表1 生物标志物的主要来源
Table 1 Main sources of biomarkers
生物标志物类别 | 名称 | 生物指示 | 参考文献 |
---|---|---|---|
烷烃、脂肪酸和 脂肪醇 | 长链正构烷烃(nC27 ~ nC33)、脂肪酸(nC26 ~ nC32)和脂肪醇(nC26 ~ nC32) | 陆生高等植物、挺水植物 | [ |
中链正构烷烃(nC21 ~ nC25)、脂肪酸(nC20 ~ nC24)和脂肪醇(nC20 ~ nC24) | 沉水植物、浮水植物 | [ | |
短链正构烷烃(nC15 ~ nC19)、脂肪酸(nC14 ~ nC18)和脂肪醇(nC14 ~ nC18) | 菌类、藻类 | [ | |
梯烷(ladderane) | 厌氧氨氧化细菌 | [ | |
2,6,10,15,19-五甲基二十烷(pentamethyleicosane) | 甲烷古菌 | [ | |
长链ω羟基脂肪酸 | 陆生植物大分子(角质、木栓质) | [ | |
短链羟基脂肪酸 | 浮游植物、细菌、微藻 | [ | |
多不饱和脂肪酸(C20 ~ C22) | 甲藻、硅藻、无脊椎动物 | [ | |
单不饱和脂肪酸、脂肪醇(C20 ~ C22) | 桡足类、食草动物、浮游植物、细菌 | [ | |
萜类 | 三萜类(triterpenoids) | 被子植物 | [ |
二萜类(diterpenoids) | 裸子植物 | [ | |
酮类 | 长链烯酮(long chain alkenones) | 定鞭藻 | [ |
甾类 | 谷甾醇(sitosterol) | 维管植物、鸟粪 | [ |
豆甾醇(stigmasterol) | 维管植物 | [ | |
菜籽甾醇(brassicasterol) | 硅藻 | [ | |
甲藻甾醇(dinosterol) | 甲藻 | [ | |
岩藻甾醇(fucosterol) | 硅藻、鸟粪 | [ | |
海绵甾醇(chalinasterol) | 硅藻 | [ | |
硅藻甾醇(diatomsterol) | 硅藻 | [ | |
降甾烷(norsterane) | 海绵动物 | [ | |
胆甾醇(cholesterol) | 脊椎动物、硅藻、鸟粪 | [ | |
粪甾醇(coprostanol) | 人类(粪便) | [ | |
醇类 | 四膜虫醇(tetrahymanol) | 细菌纤毛虫、厌氧紫细菌、蕨类 | [ |
长链烷基二醇(long-chain alkyl diols, LCDs) | 黄绿藻、蓝细菌、硅藻、真眼点藻 | [ | |
色素 | 叶绿素a(chlorophyll a) | 浮游植物、光合藻类(原绿藻除外) | [ |
叶黄素(lutein) | 绿藻、裸藻、高等植物 | [ | |
β, α-胡萝卜素(β, α-carotene) | 隐生植物、金藻、甲藻、绿藻 | [10,69] | |
奥克酮(okenone) | 紫硫细菌 | [ | |
异海绵烯(isorenieratene) | 绿硫细菌 | [ | |
细菌藿烷多元 醇(BHPs) | 腺苷藿烷(adenosylhopane) | 固氮细菌、氨氧化细菌 | [ |
2-甲基(2-methylated)BHPs | 蓝细菌、甲基营养菌、固氮细菌、紫色非硫细菌 | [ | |
3-甲基(3-methylated)BHPs | 甲烷氧化菌 | [ | |
氨基藿戊醇(aminopentol)、氨基藿四醇(aminotetrol)、氨基藿三醇(aminotriol) | 甲烷氧化菌、硫还原菌 | [ | |
甘油四醚类脂 物(GDGTs) | 类异戊二烯GDGTs | 奇古菌、广古菌 | [ |
支链GDGTs | 酸杆菌 | [ | |
类异戊二烯类 | 短链(≤C20)无环类类异戊二烯:姥鲛烷(pristane)和植烷(phytane) | 叶绿素、生育酚、产甲烷菌、嗜盐菌 | [ |
短链(C15)无环类类异戊二烯:法尼烷(farnesane) | 叶绿素、古菌、绿硫细菌 | [ | |
中链(C21~C25)无环类异戊二烯 | 嗜盐古菌、嗜碱菌 | [ | |
高度支链类异戊二烯类(highly-branched isoprenoids, HBIs) | 硅藻 | [ | |
酯类 | 黑麦草内酯(loliolide) | 硅藻 | [ |
异黑麦草内酯(isololiolide) | 硅藻 | [ | |
糖脂类 | 异形胞糖脂(heterocystous glycolipids) | 固氮蓝细菌 | [ |
[1] | 李世杰. 关于湖泊(水库)环境演变与地球化学研究的几点建议[J]. 矿物岩石地球化学通报, 2016, 35(4):前插1, 前插3. |
[2] | 甄志磊. 达里诺尔湖记录的全新世2100cal.aBP以来流域环境和气候变化[D]. 呼和浩特: 内蒙古农业大学, 2016. |
[3] | 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6):799-810. |
[4] | 董旭辉, 张清慧, 姚敏, 等. 基于湖泊沉积物多指标的水生植被长期演替过程的定量重建[J]. 第四纪研究, 2018, 38(4):996-1006. |
[5] | WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain:the primary kingdoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(11):5088-5090. |
[6] |
WILLIAMS T A, FOSTER P G, COX C J, et al. An archaeal origin of eukaryotes supports only two primary domains of life[J]. Nature, 2013, 504:231-236.
DOI URL |
[7] | 谢树成, 梁斌, 郭建秋, 等. 生物标志化合物与相关的全球变化[J]. 第四纪研究, 2003, 23(5):521-528. |
[8] |
ORO J, NOONER D W, ZLATKIS A, et al. Hydrocarbons of biological origin in sediments about two billion years old[J]. Science, 1965, 148(3666):77-79.
DOI URL |
[9] | 蒲阳. 青藏高原东北部湖泊沉积物生物标志化合物分布特征及古环境意义[D]. 北京: 中国科学院研究生院, 2010. |
[10] |
CASTAÑEDA I S, SCHOUTEN S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30:2851-2891.
DOI URL |
[11] | 胡建芳, 彭平安. 有机地球化学研究新进展与展望[J]. 沉积学报, 2017, 35(5):968-980. |
[12] | 茅晟懿, 朱小畏, 贾国东, 等. 长链烷基二醇及其指标在南海北部粤东沿海上升流地区的环境指示[J]. 地学前缘, 2018, 25(4):285-298. |
[13] |
EGLINTON G, HAMILTON R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335.
DOI URL |
[14] |
LIU H, LIU W G. Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau[J]. Organic Geochemistry, 2017, 113:17-26.
DOI URL |
[15] |
LIU W G, YANG H, WANG H Y, et al. Influence of aquatic plants on the hydrogen isotope composition of sedimentary long-chain n-alkanes in the Lake Qinghai region, Qinghai-Tibet Plateau[J]. Science China Earth Sciences, 2016, 59(7):1368-1377.
DOI URL |
[16] |
MEYERS P A, ISHIWATARI R. Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7):867-900.
DOI URL |
[17] | 杨明生, 张虎才, 李斌, 等. 柴达木盆地察尔汗古湖相地层正构烷烃与河蚬化石记录的古生态环境[J]. 地球学报, 2011, 32(1):87-94. |
[18] |
LING Y, ZHENG M P, SUN Q, et al. Last deglacial climatic variability in Tibetan Plateau as inferred from n-alkanes in a sediment core from Lake Zabuye[J]. Quaternary International, 2017, 454:15-24.
DOI URL |
[19] |
LIU H, LIU W G. n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2016, 99:10-22.
DOI URL |
[20] |
AICHNER B, WILKES H, HERZSCHUH U, et al. Biomarker and compound-specific δ 13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau[J]. Journal of Paleolimnology, 2010, 43(4):873-899.
DOI URL |
[21] |
BERKE M A, SIERRA C A, BUSH R, et al. Controls on leaf wax fractionation and δ2H values in tundra vascular plants from western Greenland[J]. Geochimica et Cosmochimica Acta, 2019, 244:565-583.
DOI URL |
[22] |
YU X F, LÜ X X, MEYERS P A, et al. Comparison of molecular distributions and carbon and hydrogen isotope compositions of n-alkanes from aquatic plants in shallow freshwater lakes along the middle and lower reaches of the Yangtze River, China[J]. Organic Geochemistry, 2021, 158:104270.
DOI URL |
[23] | 饶志国, 吴翼, 朱照宇, 等. 长链正构烷烃主峰碳数作为判别草本和木本植物指标的讨论:来自表土和现代植物的证据[J]. 科学通报, 2011, 56(10):765-780. |
[24] |
CHÁVEZ-LARA C M, HOLTVOETH J, ROY P D, et al. A 27cal ka biomarker-based record of ecosystem changes from lacustrine sediments of the Chihuahua Desert of Mexico[J]. Quaternary Science Reviews, 2018, 191:132-143.
DOI URL |
[25] |
KÖSEO$\dot{G}$LU D, BELT S T, KNIES J. Abrupt shifts of productivity and sea ice regimes at the western Barents Sea slope from the Last Glacial Maximum to the Bølling- Allerød interstadial[J]. Quaternary Science Reviews, 2019, 222:105903.
DOI URL |
[26] | 汪建君. 生物标志物在全新世古生态恢复中的应用与南极气溶胶特征[D]. 合肥:中国科学技术大学, 2007. |
[27] | 付伟, 廖祥儒, 王俊峰, 等. 植物体内的木质素[J]. 生物学通报, 2004, 39(2):12-14. |
[28] | 李先国, 孙书文, 张婷, 等. 木质素作为生物标志物的研究进展[J]. 海洋湖沼通报, 2012(3):74-80. |
[29] | 杨丽阳, 吴莹, 黄俊华, 等. 大九湖泥炭柱样的木质素特征[J]. 地球化学, 2009, 38(2):133-139. |
[30] |
LANGENHEIM J H. Higher plant terpenoids:a phytocentric overview of their ecological roles[J]. Journal of Chemical Ecology, 1994, 20(6):1223-1280.
DOI URL |
[31] |
DIEFENDORF A F, FREEMAN K H, WING S L. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance[J]. Geochimica et Cosmochimica Acta, 2012, 85:342-356.
DOI URL |
[32] | 张道来, 王许玲, 姜学钧, 等. 超声提取/气相色谱-质谱法测定红树林沉积物中蒲公英萜醇[J]. 分析测试学报, 2015, 34(6):658-663. |
[33] |
COLCORD D E, SHILLING A M, FREEMAN K H, et al. Aquatic biomarkers record Pleistocene environmental changes at Paleolake Olduvai, Tanzania[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524:250-261.
DOI URL |
[34] | 黄咸雨, 张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1):20-33. |
[35] |
HUANG X Y, XUE J T, WANG X X, et al. Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu peatland, central China[J]. Geochimica et Cosmochimica Acta, 2013, 123:106-119.
DOI URL |
[36] |
CASTAÑEDA I S, WERNE J P, JOHNSON T C, et al. Organic geochemical records from Lake Malawi (East Africa) of the last 700 years, part II: biomarker evidence for recent changes in primary productivity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303:140-154.
DOI URL |
[37] |
BI X H, SHENG G Y, LIU X H, et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry, 2005, 36:1405-1417.
DOI URL |
[38] |
DIEFENDORF A F, FREIMUTH E J. Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review[J]. Organic Geochemistry, 2017, 103:1-21.
DOI URL |
[39] |
BALLENTINE D C, MACKO S A, TUREKIAN V C. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning[J]. Chemical Geology, 1998, 152:151-161.
DOI URL |
[40] | 饶志国, 贾国东, 朱照宇, 等. 中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义[J]. 科学通报, 2008, 53(17):2077-2084. |
[41] | 段毅, 张辉, 郑朝阳, 等. 沼泽沉积环境中植物和沉积脂类单体碳同位素组成特征及其成因关系研究[J]. 中国科学:地球科学, 2004, 34(12):1151-1156. |
[42] |
HUANG Y S, FREEMAN K H, EGLINTON T I. δ13C analyses of individual lignin phenols in Quaternary lake sediments: a novel proxy for deciphering past terrestrial vegetation changes[J]. Geology, 1999, 27(5):471-474.
DOI URL |
[43] | 凌媛, 郑绵平, 张永生, 等. 西藏湖泊正构脂肪酸分布特征及对古气候重建的启示[J]. 科技导报, 2020, 38(8):77-86. |
[44] |
VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29:1163-1179.
DOI URL |
[45] |
FICKEN K J, LI B, SWAIN D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8):745-749.
DOI URL |
[46] |
CRANWELL P A, EGLINTON G, ROBINSON N. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II[J]. Organic Geochemistry, 1987, 11(6):513-527.
DOI URL |
[47] | 杨欢, 丁伟华, 谢树成. 海南尖峰岭不同海拔土壤中微生物脂肪酸和脂肪醇分布特征及对古海拔、古温度重建的启示[J]. 中国科学:地球科学, 2014, 44(6):1229-1243. |
[48] |
SINNINGHÉ DAMSTE J S, STROUS M, RIJPSTRA W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908):708-712.
DOI URL |
[49] |
RUSH D, JAESCHKE A, HOPMANS E C, et al. Short chain ladderanes: oxic biodegradation products of anammox lipids[J]. Geochimica et Cosmochimica Acta, 2011, 75:1662-1671.
DOI URL |
[50] |
SCHOUTEN S, RIJPSTRA W I C, KOK M, et al. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)[J]. Geochimica et Cosmochimica Acta, 2001, 65(10):1629-1640.
DOI URL |
[51] |
GORI A, TOLOSA I, OREJAS C, et al. Biochemical composition of the cold-water coral Dendrophyllia cornigera under contrasting productivity regimes: insights from lipid biomarkers and compound-specific isotopes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 141:106-117.
DOI URL |
[52] |
CHÁVEZ-LARA C M, HOLTVOETH J, ROY P D, et al. Lipid biomarkers in lacustrine sediments of subtropical northeastern Mexico and inferred ecosystem changes during the late Pleistocene and Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 535:109343.
DOI URL |
[53] | DALSGAARD J, JOHN M S, KATTNER G, et al. Fatty acid trophic markers in the pelagic marine environment[J]. Advances in Marine Biology, 2003, 46:225-340. |
[54] |
SUN Q, CHU G Q, LIU G X, et al. Calibration of alkenone unsaturation index with growth temperature for a lacustrine species,Chrysotila lamellosa (Haptophyceae)[J]. Organic Geochemistry, 2007, 38:1226-1234.
DOI URL |
[55] |
VERSTEEGH G J M, RIEGMAN R, De LEEUW J W, et al. UK’37 values for Isochrysis galbana as a function of culture temperature, light intensity and nutrient concentrations[J]. Organic Geochemistry, 2001, 32:785-794.
DOI URL |
[56] |
MARLOWE I T, GREEN J C, NEAL A C, et al. Long chain (n-C37-C39) alkenones in the Prymnesiophyceae: distribution of alkenones and other lipids and their taxonomic significance[J]. British Phycological Journal, 1984, 19(3):203-216.
DOI URL |
[57] | 董良, 李丽, 王慧, 等. 2008年冬季西太平洋表层海水浮游藻类分布特征:分子有机地球化学研究[J]. 海洋地质与第四纪地质, 2012, 32(1):51-59. |
[58] |
BECHTEL A, SCHUBERT C J. A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland[J]. Organic Geochemistry, 2009, 40(10):1100-1114.
DOI URL |
[59] |
SCHUBERT C J, VILLANUEVA J, CALVERT S E, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200000 years[J]. Nature, 1998, 394:563-566.
DOI URL |
[60] |
VENKATESAN M I, SANTIAGO C A. Sterols in ocean sediments: novel tracers to examine habitats of cetaceans, pinnipeds, penguins and humans[J]. Marine Biology, 1989, 102(4):431-437.
DOI URL |
[61] |
VACHULA R S, HUANG Y S, LONGO W M, et al. Evidence of Ice Age humans in eastern Beringia suggests early migration to North America[J]. Quaternary Science Reviews, 2019, 205:35-44.
DOI URL |
[62] |
KLEEMANN G, PORALLA K, ENGLERT G, et al. Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote[J]. Journal of General Microbiology, 1990, 136:2551-2553.
DOI URL |
[63] |
VOLKMAN J K, BARRETT S M, BLACKBURN S I. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments[J]. Organic Geochemistry, 1999, 30:307-318.
DOI URL |
[64] | 王倩, 周浩达, 胡建芳, 等. 湛江湖光岩玛珥湖中长链烷基二醇类化合物的检出及可能的环境意义[J]. 地球化学, 2013, 42(2):188-195. |
[65] |
VILLANUEVA L, BESSELING M, RODRIGO-GÁMIZ M, 等. Potential biological sources of long chain alkyl diols in a lacustrine system[J]. Organic Geochemistry, 2014, 68:27-30.
DOI URL |
[66] |
XU Y P, SIMONEIT B R T, JAFFÉ R. Occurrence of long-chain n-alkenols, diols, keto-ols and sec-alkanols in a sediment core from a hypereutrophic, freshwater lake[J]. Organic Geochemistry, 2007, 38:870-883.
DOI URL |
[67] | 梁洁, 侯居峙, 李栋, 等. 沉积色素定量重建湖泊系统变化研究进展[J]. 第四纪研究, 2016, 36(3):630-645. |
[68] |
CULLEN J J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5):791-803.
DOI URL |
[69] | Smol J P, Birks H J B, Last W M. Tracking environmental change using lake sediments[J]. Dordrecht:Kluwer Academic Publishers, 2001: 295-325. |
[70] |
MAHEAUX H, LEAVITT P R, JACKSON L J. Asynchronous onset of eutrophication among shallow prairie lakes of the Northern Great Plains, Alberta, Canada[J]. Global Change Biology, 2016, 22(1):271-283.
DOI URL |
[71] |
LUO G M, YANG H, ALGEO T J, et al. Lipid biomarkers for the reconstruction of deep-time environmental conditions[J]. Earth-Science Reviews, 2019, 189:99-124.
DOI URL |
[72] |
DAMSTÉ J S S, SCHOUTEN S, VAN DUIN A C T. Is orenieratene derivatives in sediments: possible controls on their distribution[J]. Geochimica et Cosmochimica Acta, 2001, 65(10):1557-1571.
DOI URL |
[73] |
SUMMONS R E, POWELL T G. Identification of aryl isoprenoids in source rocks and crude oils:biological markers for the green sulphur bacteria[J]. Geochimica et Cosmochimica Acta, 1987, 51(3):557-566.
DOI URL |
[74] |
TALBOT H M, FARRIMOND P. Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J]. Organic Geochemistry, 2007, 38:1212-1225.
DOI URL |
[75] | WELANDER P V, COLEMAN M L, SESSIONS A, et al. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8537-8542. |
[76] | 张俊杰, 邢磊, 侯笛. 蓝细菌生物标志物: 2-甲基藿烷类化合物研究进展及其应用[J]. 地球环境学报, 2018, 9(5):434-443. |
[77] |
FARRIMOND P, TALBOT H M, WATSON D F, et al. Methylhopanoids: molecular indicators of ancient bacteria and a petroleum correlation tool[J]. Geochimica et Cosmochimica Acta, 2004, 68(19):3873-3882.
DOI URL |
[78] | 尹美玲, 段丽琴, 宋金明, 等. 细菌藿多醇的环境指示作用及其在海洋生态环境重建中的应用[J]. 地质论评, 2020, 66(6):1486-1498. |
[79] |
BLUMENBERG M, KRÜGER M, NAUHAUS K, et al. Biosynjournal of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio)[J]. Environmental Microbiology, 2006, 8(7):1220-1227.
DOI URL |
[80] |
HU J F, MEYERS P A, CHEN G K, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraethers in sediments from the Eastern Lau Spreading Center, South Pacific Ocean[J]. Organic Geochemistry, 2012, 43(1):162-167.
DOI URL |
[81] |
SCHOUTEN S, HOPMANS E C, DAMSTÉ J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54:19-61.
DOI URL |
[82] |
WEIJERS J W H, PANOTO E, VAN BLEIJSWIJK J, et al. Constraints on the biological sources of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26(6):402-414.
DOI URL |
[83] |
YANG H, LÜ X X, DING W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82:42-53.
DOI URL |
[84] |
GOOSSENS H, DE LEEUW J W, SCHENCK P A, et al. Tocopherols as likely precursors of pristane in ancient sediments and crude oils[J]. Nature, 1984, 312:440-442.
DOI URL |
[85] |
EVENICK J C. Evaluating source rock organofacies and paleodepositional environments using bulk rock compositional data and pristane/phytane ratios[J]. Marine and Petroleum Geology, 2016, 78:507-515.
DOI URL |
[86] |
MARTINS C C, DE ABREU-MOTA M A, DO NASCIMENTO M G, et al. Sources and depositional changes of aliphatic hydrocarbons recorded in sedimentary cores from Admiralty Bay, South Shetland Archipelago, Antarctica during last decades[J]. Science of the Total Environment, 2021, 795:148881.
DOI URL |
[87] |
SHIZUYA A, KAIHO K, TONG J. Marine biomass changes during and after the Neoproterozoic Marinoan global glaciation[J]. Global and Planetary Change, 2021, 205:103610.
DOI URL |
[88] |
TEIXIDOR P, GRIMAIT J O, PUEYO J J, et al. Isopranylglycerol diethers in non-alkaline evaporitic environments[J]. Geochimica et Cosmochimica Acta, 1993, 57:4479-4489.
DOI URL |
[89] |
DAWSON K S, FREEMAN K H, MACALADY J L. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions[J]. Organic Geochemistry, 2012, 48:1-8.
DOI URL |
[90] | 康曼玉, 贾国东. 固氮蓝细菌的一种生物标志物:异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9):901-911. |
[91] |
BAUERSACHS T, MUDIMU O, SCHULZ R, et al. Distribution of long chain heterocyst glycolipids in N2-fixing cyanobacteria of the order stigonematales[J]. Phytochemistry, 2014, 98:145-150.
DOI URL |
[92] |
BALE N J, HOPMANS E C, ZELL C, et al. Long chain glycolipids with pentose head groups as biomarkers for marine endosymbiotic heterocystous cyanobacteria[J]. Organic Geochemistry, 2015, 81:1-7.
DOI URL |
[93] |
VAN BREE L G J, PETERSE F, VAN DER MEER M T J, et al. Seasonal variability in the abundance and stable carbon-isotopic composition of lipid biomarkers in suspended particulate matter from a stratified equatorial lake (Lake Chala, Kenya/Tanzania): implications for the sedimentary record[J]. Quaternary Science Reviews, 2018, 192:208-224.
DOI URL |
[94] |
GAO S M, SMIK L, KULIKOVSKIY M, et al. A novel tri-unsaturated highly branched isoprenoid (HBI) alkene from the marine diatom Navicula salinicola[J]. Organic Geochemistry, 2020, 146:104050.
DOI URL |
[95] |
BELT S T, SMIK L, KÖSEO LU D, et al. A novel biomarker-based proxy for the spring phytoplankton bloom in arctic and sub-arctic settings - HBI T25[J]. Earth and Planetary Science Letters, 2019, 523:115703.
DOI URL |
[96] |
HE D, SIMONEIT B R T, XU Y P, et al. Occurrence of unsaturated C25 highly branched isoprenoids (HBIs) in a freshwater wetland[J]. Organic Geochemistry, 2016, 93:59-67.
DOI URL |
[97] |
BELT S T, CABEDO-SANZ P. Characterisation and isomerisation of mono- and di-unsaturated highly branched isoprenoid (HBI) alkenes: considerations for palaeoenvironment studies[J]. Organic Geochemistry, 2015, 87:55-67.
DOI URL |
[98] |
CORCORAN M C, DIEFENDORF A F, LOWELL T V, et al. Hydrogen isotopic composition (δ2H) of diatom-derived C20 highly branched isoprenoids from lake sediments tracks lake water δ2H[J]. Organic Geochemistry, 2020, 150:104122.
DOI URL |
[99] |
YAO Y, ZHAO J J, BAUERSACHS T, et al. Effect of water depth on the TEX86 proxy in volcanic lakes of northeastern China[J]. Organic Geochemistry, 2019, 129:88-98.
DOI URL |
[100] |
CHU G Q, SUN Q, LI S Q, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China[J]. Geochimica et Cosmochimica Acta, 2005, 69(21):4985-5003.
DOI URL |
[101] | 孙青, 储国强, 刘国祥, 等. 湖泊体系中长链烯酮研究进展[J]. 地球学报, 2010, 31(4):485-494. |
[102] | 邢磊, 杨欣欣, 肖睿. 长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(10):79-87. |
[103] |
VOLKMAN J K, EGLINTON G, CORNER E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi[J]. Phytochemistry, 1980, 19:2619-2622.
DOI URL |
[104] |
VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate[J]. Geochimica et Cosmochimica Acta, 1995, 59(3):513-520.
DOI URL |
[105] | 孙青, 储国强. 长链烯酮不饱和度温标研究进展[J]. 地质地球化学, 2002, 30(4):63-67. |
[106] | 侯笛, 张俊杰, 邢磊, 等. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2):140-147. |
[107] |
ZHANG Z H, METZGER P, SACHS J P. Co-occurrence of long chain diols, keto-ols, hydroxy acids and keto acids in recent sediments of Lake El Junco, Galapagos Islands[J]. Organic Geochemistry, 2011, 42:823-837.
DOI URL |
[108] |
RAMPEN S W, WILLMOTT V, KIM J H, et al. Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction[J]. Geochimica et Cosmochimica Acta, 2012, 84:204-216.
DOI URL |
[109] |
HE L H, KANG M Y, ZHANG D R, et al. Evaluation of environmental proxies based on long chain alkyl diols in the East China Sea[J]. Organic Geochemistry, 2020, 139:103948.
DOI URL |
[110] |
BALZANO S, LATTAUD J, VILLANUEVA L, et al. A quest for the biological sources of long chain alkyl diols in the western tropical North Atlantic Ocean[J]. Biogeosciences, 2018, 15:5951-5968.
DOI URL |
[111] |
RAMPEN S W, SCHOUTEN S, WAKEHAM S G, et al. Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea[J]. Organic Geochemistry, 2007, 38(2):165-179.
DOI URL |
[112] |
RAMPEN S W, SCHOUTEN S, SINNINGHE DAMSTÉ J S. Occurrence of long chain 1,14-diols in Apedinella radians[J]. Organic Geochemistry, 2011, 42(5):572-574.
DOI URL |
[113] |
CHEN L L, LI F, LIU J, et al. Long-chain alkyl diols as indicators of local riverine input, temperature, and upwelling in a shelf south of the Yangtze River Estuary in the East China Sea[J]. Marine Geology, 2021, 440:106573.
DOI URL |
[114] | 赵军, 姚鹏, 于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9):950-959. |
[115] |
KUSCH S, WAKEHAM S G, SEPÚLVEDA J. Diverse origins of “soil marker” bacteriohopanepolyols in marine oxygen deficient zones[J]. Organic Geochemistry, 2021, 151:104150.
DOI URL |
[116] |
YIN M L, DUAN L Q, SONG J M, et al. Bacteriohopanepolyols signature in sediments of the East China Sea and its indications for hypoxia and organic matter sources[J]. Organic Geochemistry, 2021, 158:104268.
DOI URL |
[117] |
TALBOT H M, WATSON D F, PEARSON E J, et al. Diverse biohopanoid compositions of non-marine sediments[J]. Organic Geochemistry, 2003, 34(10):1353-1371.
DOI URL |
[118] |
OWENS J D, REINHARD C T, ROHRSSEN M, et al. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth’s carbon cycle.[J]. Earth and Planetary Science Letters, 2016, 449:407-417.
DOI URL |
[119] | 李志阳, 张杰, 翦知湣, 等. 蓝细菌和浮游古菌在南海第四纪氮循环中的作用初探[J]. 第四纪研究, 2013, 33(1):34-38. |
[120] |
ZHU C, TALBOT H M, WAGNER T, et al. Intense aerobic methane oxidation in the Yangtze Estuary: a record from 35-aminobacteriohopanepolyols in surface sediments[J]. Organic Geochemistry, 2010, 41(9):1056-1059.
DOI URL |
[121] |
ZHAO Z S, CAO Y L, FAN Y, et al. Ladderane records over the last century in the East China sea: proxies for anammox and eutrophication changes[J]. Water Research, 2019, 156:297-304.
DOI URL |
[122] | HUMBERT S, TARNAWSKI S, FROMIN N, et al. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity[J]. The International Society for Microbial Ecology Journal, 2010, 4(3):450-454. |
[123] | JAESCHKE A, ZIEGLER M, HOPMANS E C, et al. Molecular fossil evidence for an aerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24:A2202. |
[124] | 谢树成, 黄咸雨, 黄俊华, 等. 重大地质突变期生物与环境事件的分子化石记录[J]. 地学前缘, 2006, 13(6):208-217. |
[125] |
ARAÚJO B Q, PEREIRA V B, AQUINO NETO F R, et al. Biomarkers of photosynthetic sulfur bacteria in Lower Cretaceous crude oils, East Brazilian marginal basin[J]. Organic Geochemistry, 2020, 148:104083.
DOI URL |
[126] | 黄咸雨, 焦丹, 鲁立强, 等. 二叠纪—三叠纪之交环境的不稳定性和生物危机的多阶段性:浙江长兴微生物分子化石记录[J]. 中国科学(D辑):地球科学, 2007, 37(5):629-635. |
[127] |
BROCKS J J, SCHAEFFER P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1 640 Ma Barney Creek Formation[J]. Geochimica et Cosmochimica Acta, 2008, 72:1396-1414.
DOI URL |
[128] |
DANG X Y, XUE J T, YANG H, et al. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH:implications for lacustrine paleoenvironmental reconstructions[J]. Science China: Earth Sciences, 2016, 59(5):939-950.
DOI URL |
[129] |
WEIJERS J W H, SCHOUTEN S, SPAARGAREN O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37:1680-1693.
DOI URL |
[130] |
PANCOST R D, GEEL B V, BAAS M, et al. δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits[J]. Geology, 2000, 28(7):663-666.
DOI URL |
[131] | 张永东, 苏雅玲, 刘正文, 等. 抚仙湖近现代沉积物中长链支链烷烃和环烷烃的检出及可能的环境意义[J]. 科学通报, 2014, 59(8):656-667. |
[132] | 白艳, 方小敏, 王永莉, 等. 现代土壤中含季碳支链烷烃的分布特征及环境意义[J]. 科学通报, 2006, 51(4):448-454. |
[133] | 张虎才, 常凤琴, 李斌, 等. 柴达木察尔汗湖贝壳堤剖面长链支链烷烃及其古环境意义[J]. 科学通报, 2007, 52(6):707-714. |
[134] |
LI Y, ZHOU Q Z, XU X P, et al. Porewater geochemical and lipid biomarker signatures for anaerobic methane oxidation in the hydrate-bearing systemfrom the Taixinan Basin, the South China Sea[J]. Journal of Asian Earth Sciences, 2020, 203:104559.
DOI URL |
[135] |
PROUTY N G, CAMPBELL P L, CLOSE H G, et al. Molecular indicators of methane metabolisms at cold seeps along the United States Atlantic Margin[J]. Chemical Geology, 2020, 543:119603.
DOI URL |
[136] |
WANG C P, JIA W L, WANG D, et al. Organic matter in surface sediments from the Gulf of Mexico and South China Sea: compositions, distributions and sources[J]. Marine Pollution Bulletin, 2017, 120(1/2):174-183.
DOI URL |
[137] |
ZWICKER J, BIRGEL D, BACH W, et al. Evidence for archaeal methanogenesis within veins at the onshore serpentinite-hosted Chimaera seeps, Turkey[J]. Chemical Geology, 2018, 483:567-580.
DOI URL |
[138] |
MIYAJIMA Y, WATANABE Y, GOTO A S, et al. Archaeal lipid biomarker as a tool to constrain the origin of methane at ancient methane seeps: insight into subsurface fluid flow in the geological past[J]. Journal of Asian Earth Sciences, 2020, 189:104134.
DOI URL |
[139] |
ZHU C, PAN J, PANCOST R D. Anthropogenic pollution and oxygen depletion in the lower Yangtze River as revealed by sedimentary biomarkers[J]. Organic Geochemistry, 2012, 53:95-98.
DOI URL |
[140] |
THIEL V, JENISCH A, LANDMANN G, et al. Unusual distributions of long-chain alkenones and tetrahymanol from the highly alkaline Lake Van, Turkey[J]. Geochimica et Cosmochimica Acta, 1997, 61(10):2053-2064.
DOI URL |
[141] |
CORDOVA-GONZALEZ A, BIRGEL D, KAPPLER A, et al. Carbon stable isotope patterns of cyclic terpenoids: a comparison of cultured alkaliphilic aerobic methanotrophic bacteria and methane-seep environments[J]. Organic Geochemistry, 2020, 139:103940.
DOI URL |
[142] |
ZANDER J M, CASPI E, PANDEY G N, et al. The presence of tetrahymanol in Oleandra wallichii[J]. Phytochemistry, 1969, 8:2265-2267.
DOI URL |
[143] |
NEELAVANNAN K, HUSSAIN S M, NISHATH N M, et al. Paleoproductivity shifts since the last 130 ka off Lakshadweep, Southeastern Arabian Sea[J]. Regional Studies in Marine Science, 2021, 44:101776.
DOI URL |
[144] |
LIU S F, ZHANG H, CAO P, et al. Paleoproductivity evolution in the northeastern Indian Ocean since the last glacial maximum: evidence from biogenic silica variations[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 175:103591.
DOI URL |
[145] |
EBERWEIN A, MACKENSEN A. Last Glacial Maximum paleoproductivity and water masses off NW-Africa: evidence from benthic foraminifera and stable isotopes[J]. Marine Micropaleontology, 2008, 67:87-103.
DOI URL |
[146] | 沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2):69-77. |
[147] |
LOURENÇO R A, De MAHIQUES M M, WAINER I E K C, et al. Organic biomarker records spanning the last 34800 years from the southeastern Brazilian upper slope: links between sea surface temperature, displacement of the Brazil Current, and marine productivity[J]. Geo-Marine Letters, 2016, 36(5):361-369.
DOI URL |
[148] |
LOPES DOS SANTOS R A, WILKINS D, De DECKKER P, et al. Late Quaternary productivity changes from offshore Southeastern Australia: a biomarker approach[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 363-364:48-56.
DOI URL |
[149] | SEKI O, IKEHARA M, KAWAMURA K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19:A1016. |
[150] |
XING L, ZHANG R P, LIU Y G, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 2011, 30:2666-2675.
DOI URL |
[151] |
HU L M, LIU Y G, XIAO X T, et al. Sedimentary records of bulk organic matter and lipid biomarkers in the Bering Sea: a centennial perspective of sea-ice variability and phytoplankton community[J]. Marine Geology, 2020, 429:106308.
DOI URL |
[152] | 周斌, 郑洪波, 杨文光, 等. 末次冰期以来南海北部物源及古环境变化的有机地球化学记录[J]. 第四纪研究, 2008, 28(3):407-413. |
[153] |
HE J, ZHAO M X, LI L, et al. Biomarker evidence of relatively stable community structure in the Northern South China Sea during the Last Glacial and Holocene[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19:377-387.
DOI URL |
[154] |
HE J, ZHAO M X, WANG P X, et al. Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392:312-323.
DOI URL |
[155] |
HU J F, PENG P A, JIA G D, et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, South China Sea, during the last 30 ka[J]. Organic Geochemistry, 2002, 33:1197-1204.
DOI URL |
[156] |
ZHAO M X, HUANG C, WANG C, et al. A millennial-scale U37 K’ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236:39-55.
DOI URL |
[157] | LI L, LI Q Y, HE J, et al. Biomarker-derived phytoplankton community for summer monsoon reconstruction in the western South China Sea over the past 450 ka[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122:118-130. |
[158] |
HU J F, ZHANG G, LI K C, et al. Increased eutrophication offshore HongKong, China during the past 75 years: evidence from high-resolution sedimentary records[J]. Marine Chemistry, 2008, 110:7-17.
DOI URL |
[159] |
WANG Z C, XIAO X T, YUAN Z N, et al. Air-sea interactive forcing on phytoplankton productivity and community structure changes in the East China Sea during the Holocene[J]. Global and Planetary Change, 2019, 179:80-91.
DOI URL |
[160] | 邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报(自然科学版), 2009, 39(2):317-322. |
[161] | MEI X, LI R H, ZHANG X H, et al. Reconstruction of phytoplankton productivity and community structure in the South Yellow Sea[J]. China Geology, 2019(3):313-322. |
[162] |
WANG Y Q, SONG J M, DUAN L Q, et al. Paleoproductivity and climate evolution in the Kuroshio mainstream area over the past millennium[J]. Ecological Indicators, 2021, 121:107035.
DOI URL |
[163] |
ISHIWATARI R, NEGISHI K, YOSHIKAWA H, et al. Glacial-interglacial productivity and environmental changes in Lake Biwa, Japan: a sediment core study of organic carbon, chlorins and biomarkers[J]. Organic Geochemistry, 2009, 40:520-530.
DOI URL |
[164] |
ISHIWATARI R, YAMAMOTO S, UEMURA H. Lipid and lignin/cutin compounds in Lake Baikal sediments over the last 37 kyr: implications for glacial-interglacial palaeoenvironmental change[J]. Organic Geochemistry, 2005, 36:327-347.
DOI URL |
[165] |
TARANU Z E, GREGORY-EAVES I, LEAVITT P R, et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene[J]. Ecology Letters, 2015, 18(4):375-384.
DOI URL |
[166] |
ZHANG H L, WU J L, LI Q Y, et al. A 300-year record of environmental changes in Lake Issyk-Kul, Central Asia, inferred from lipid biomarkers in sediments[J]. Limnologica, 2021, 90:125909.
DOI URL |
[167] |
ZHANG Y D, SU Y L, LIU Z W, et al. Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang, Lake Taihu Basin, Eastern China[J]. Science of the Total Environment, 2018, 613-614:907-918.
DOI URL |
[168] | 胡玮, 卢宗盛, 喻鹏. 陆相盆地古生产力研究现状[J]. 地质科技情报, 2010, 29(6):15-20. |
[169] |
REGNERY J, PÜTTMANN W, KOUTSODENDRIS A, et al. Comparison of the paleoclimatic significance of higher land plant biomarker concentrations and pollen data: a case study of lake sediments from the Holsteinian interglacial[J]. Organic Geochemistry, 2013, 61:73-84.
DOI URL |
[170] | 梅西, 李日辉, 张训华. 南黄海北部晚更新世以来浮游植物生产力和群落结构变化的生物标志物记录[J]. 矿物岩石地球化学通报, 2015, 34(5):947-954. |
[171] | 郑艳红, 周卫健, 谢树成, 等. 正构烷烃分子化石与孢粉记录的指示意义对比:以华南地区为例[J]. 科学通报, 2009, 54(12):1749-1755. |
[172] |
VERSTEEGH G J M, ZONNEVELD K A F. Use of selective degradation to separate preservation from productivity[J]. Geology, 2002, 30(7):615-618.
DOI URL |
[173] | 丁玲, 邢磊, 赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9):981-989. |
[1] | 张梦薇, 高亮, 赵越, 裴军令, 杨振宇, 郭晓倩, 胡新炜. 德雷克海峡打开与构造—古海洋—古气候演变[J]. 地学前缘, 2024, 31(6): 415-435. |
[2] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[3] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[4] | 吴立新, 荆钊, 陈显尧, 李才文, 张国良, 王师, 董波, 庄光超. 我国海洋科学发展现状与未来展望[J]. 地学前缘, 2022, 29(5): 1-12. |
[5] | 陈天, 贾永刚, 刘涛, 刘晓磊, 单红仙, 孙中强. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J]. 地学前缘, 2022, 29(5): 229-245. |
[6] | 朱东栋, Jill N.SUTTON, Aude LEYNAERT, Paul J.TREGUER, 刘素美. 全球海洋硅循环及研究中面临的主要挑战[J]. 地学前缘, 2022, 29(5): 47-58. |
[7] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[8] | 胡栟铫, 龙飞江, 韩喜彬, 张泳聪, 胡良明, 向波, 葛倩, 边叶萍. 中全新世以来南极宇航员海的古生产力演变[J]. 地学前缘, 2022, 29(4): 113-122. |
[9] | 张兰兰, 邱卓雅, 向荣, 杨艺萍, 陈木宏. 基于生物硅记录的孟加拉湾东南部末次冰期以来的古生产力变化[J]. 地学前缘, 2022, 29(4): 136-143. |
[10] | 窦衍光, 李清, 吴永华, 赵京涛, 孙呈慧, 蔡峰, 陈晓辉, 张勇, 范佳慧, 石学法. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义[J]. 地学前缘, 2022, 29(4): 84-92. |
[11] | 杨梓阳, 任登龙, 贺志鹏, 李学刚, 宋金明, 袁华茂, 段丽琴, 李宁, 张倩. 基于磷脂脂肪酸的热带西太平洋沉积物生源要素矿化过程探析[J]. 地学前缘, 2022, 29(4): 93-102. |
[12] | 田飞, 王永, 袁路朋, 汤文坤. 浑善达克沙地碱湖表层沉积物的粒度、沉积有机质变化特征与指示意义[J]. 地学前缘, 2022, 29(2): 317-326. |
[13] | 李德文, 李林林, 马保起, 张健. 湖泊沉积对地震动的响应特征与古地震序列重建[J]. 地学前缘, 2021, 28(2): 232-245. |
[14] | 王彤, 朱筱敏, 董艳蕾, 杨道庆, 苏彬, 谈明轩, 刘宇, 伍炜, 张亚雄. 陆相坳陷湖盆沉积对深时古气候的响应信号: 以准噶尔盆地西北缘安集海河组为例[J]. 地学前缘, 2021, 28(1): 60-76. |
[15] | 李莎, 王启飞, 张海春, 万晓樵. 轮藻居群的种内变异与生物地层对比[J]. 地学前缘, 2020, 27(6): 234-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||