[1] |
XIAO J L, SI B, ZHAI D Y, et al. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability[J]. Journal of Paleolimnology, 2008, 40(1):519-528.
DOI
URL
|
[2] |
FAN J W, XIAO J L, WEN R L, et al. Droughts in the East Asian summer monsoon margin during the last 6 kyrs: link to the North Atlantic cooling events[J]. Quaternary Science Reviews, 2016, 151:88-99.
DOI
URL
|
[3] |
TIAN F, WANG Y, ZHAO Z L, et al. Holocene vegetation and climate changes in the Huangqihai lake region, inner Mongolia[J]. Acta Geologica Sinica (English Edition), 2020, 94(4):1178-1186.
|
[4] |
MING G D, ZHOU W J, WANG H, et al. Moisture variations in Lacustrine-eolian sequence from the Hunshandake sandy land associated with the East Asian summer monsoon changes since the Late Pleistocene[J]. Quaternary Science Reviews, 2020, 233:106210.
DOI
URL
|
[5] |
TIAN F, WANG Y, LIU J, et al. Late Holocene climate change inferred from a lacustrine sedimentary sequence in southern Inner Mongolia, China[J]. Quaternary International, 2017, 452:22-32.
DOI
URL
|
[6] |
牛志梅. 浑善达克沙地查干淖尔湖相沉积记录的全新世植被和气候变化[D]. 呼和浩特: 内蒙古大学, 2018.
|
[7] |
SUN D H, BLOEMENDAL J, REA D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4):263-277.
DOI
URL
|
[8] |
殷志强, 秦小光, 吴金水, 等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究, 2008, 28(2):345-353.
|
[9] |
XIAO J L, FAN J W, ZHAI D Y, et al. Testing the model for linking grain-size component to lake level status of modern clastic lakes[J]. Quaternary International, 2015, 355:34-43.
DOI
URL
|
[10] |
范佳伟, 肖举乐, 温锐林, 等. 达里湖沉积粒度组分-湖面状况定量模型[J]. 第四纪研究, 2016, 36(3):612-622.
|
[11] |
XIAO J L, CHANG Z G, FAN J W, et al. The link between grain-size components and depositional processes in a modern clastic lake[J]. Sedimentology, 2012, 59(3):1050-1062.
DOI
URL
|
[12] |
XIAO J L, FAN J W, ZHOU L, et al. A model for linking grain-size component to lake level status of a modern clastic lake[J]. Journal of Asian Earth Sciences, 2013, 69:149-158.
DOI
URL
|
[13] |
郭晓阳, 王维, 王国良, 等. 季风边缘区湖泊表层沉积物粒度组分分布特征与影响因素[J]. 地理研究, 2016, 35(4):677-691.
DOI
|
[14] |
MEYERS P A, LALLIER-VERGÉS E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3):345-372.
DOI
URL
|
[15] |
XIE Z L, HE J, LÜ C, et al. Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China[J]. Environmental Earth Sciences, 2015, 73(5):2169-2178.
DOI
URL
|
[16] |
XIAO J L, WU J T, SI B, et al. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia[J]. The Holocene, 2006, 16(4):551-560.
DOI
URL
|
[17] |
LIU J, WANG Y, WANG Y, et al. A multi-proxy record of environmental changes during the Holocene from the Haolaihure paleolake sediments, Inner Mongolia[J]. Quaternary International, 2018, 479:148-159.
DOI
URL
|
[18] |
刘晶晶, 张生, 李文宝, 等. 近2400 a以来达里诺尔湖区域环境演变及其气候响应[J]. 干旱区研究, 2019, 36(5):1092-1101.
|
[19] |
王慧. 内蒙古高原等地湖泊表层沉积物有机质来源及古环境意义[D]. 呼和浩特: 内蒙古大学, 2019.
|
[20] |
FAN J W, XIAO J L, WEN R L, et al. Carbon and nitrogen signatures of sedimentary organic matter from Dali Lake in Inner Mongolia: implications for Holocene hydrological and ecological variations in the East Asian summer monsoon margin[J]. Quaternary International, 2017, 452:65-78.
DOI
URL
|
[21] |
白雪梅, 春喜, 斯琴毕力格, 等. 近45a内蒙古浑善达克沙地湖泊群的变化[J]. 湖泊科学, 2016, 28(5):1086-1094.
|
[22] |
陈婕, 黄伟, 靳立亚, 等. 东亚夏季风的气候北界指标及其年际变化研究[J]. 中国科学:地球科学, 2018, 48(1):93-101.
|
[23] |
郭少峰, 贾德彬, 王蓉, 等. 内蒙古正蓝旗大气降水氢氧稳定同位素特征分析[J]. 中国科技论文, 2015, 10(21):2580-2584.
|
[24] |
胡日娜, 哈斯额尔敦, 浩毕斯哈拉图, 等. 浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J]. 中国沙漠, 2019, 39(1):34-43.
|
[25] |
侯学煜. 中国植被图(1: 100万)[M]. 北京: 科学出版社, 2001.
|
[26] |
沈亚萍, 张春来, 李庆, 等. 中国东部沙区表层沉积物粒度特征[J]. 中国沙漠, 2016, 36(1):150-157.
|
[27] |
强明瑞, 陈发虎, 周爱锋, 等. 苏干湖沉积物粒度组成记录尘暴事件的初步研究[J]. 第四纪研究, 2006, 26(6):915-922.
|
[28] |
YIN Y, LIU H Y, HE S Y, et al. Patterns of local and regional grain size distribution and their application to Holocene climate reconstruction in semi-arid Inner Mongolia, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/2/3/4):168-176.
DOI
URL
|
[29] |
LU Y B, AN C B, WANG Z L, et al. Mid-Holocene climate change in the eastern Xinjiang region indicated by the grain size and stable isotope record from Lake Barkol, Northwest China[J]. Environmental Earth Sciences, 2013, 68(8):2163-2169.
DOI
URL
|
[30] |
闫德仁, 黄海广, 薛博. 浑善达克沙地大气降尘颗粒物特征研究[J]. 生态环境学报, 2018, 27(1):87-92.
|
[31] |
NORTH C P, DAVIDSON S K. Unconfined alluvial flow processes: recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction[J]. Earth-Science Reviews, 2012, 111(1/2):199-223.
DOI
URL
|
[32] |
TIAN F, HERZSCHUH U, DALLMEYER A, et al. Environmental variability in the monsoon-westerlies transition zone during the last 1200 years: lake sediment analyses from Central Mongolia and supra-regional synjournal[J]. Quaternary Science Reviews, 2013, 73:31-47.
DOI
URL
|
[33] |
刘树林, 王涛, 屈建军. 浑善达克沙地土地沙漠化过程中土壤粒度与养分变化研究[J]. 中国沙漠, 2008, 28(4):611-616.
|
[34] |
韩旭娇, 张国明, 雷洁, 等. 干涸湖床不同类型盐土地表净风吹蚀实验研究[J]. 干旱区研究, 2019, 36(1):262-268.
|
[35] |
YANG L R, YUE L P, LI Z P. The influence of dry lakebeds, degraded sandy grasslands and abandoned farmland in the arid inlands of northern China on the grain size distribution of East Asian aeolian dust[J]. Environmental Geology, 2008, 53(8):1767-1775.
DOI
URL
|
[36] |
ABUDUWAILI J, LIU D W, WU G Y. Saline dust storms and their ecological impacts in arid regions[J]. Journal of Arid Land, 2010, 2(2):144-150.
DOI
URL
|
[37] |
HE Y L, LI X Z, CRAFT C, et al. Relationships between vegetation zonation and environmental factors in newly formed tidal marshes of the Yangtze River estuary[J]. Wetlands Ecology and Management, 2011, 19(4):341-349.
DOI
URL
|
[38] |
ZHAO F J, LIU H Y, YIN Y, et al. Vegetation succession prevents dry lake beds from becoming dust sources in the semi-arid steppe region of China[J]. Earth Surface Processes and Landforms, 2011, 36(7):864-871.
DOI
URL
|
[39] |
LIU H Y, YIN Y, PIAO S L, et al. Disappearing lakes in semiarid northern China: drivers and environmental impact[J]. Environmental Science & Technology, 2013, 47(21):12107-12114.
DOI
URL
|
[40] |
XU Z J, LI Z C, LIU H Y, et al. Soil organic carbon in particle-size fractions under three grassland types in Inner Mongolia, China[J]. Journal of Soils and Sediments, 2018, 18(5):1896-1905.
DOI
URL
|
[41] |
赵媛媛, 武海岩, 丁国栋, 等. 浑善达克沙地土地沙漠化研究进展[J]. 中国沙漠, 2020, 40(5):101-111.
|
[42] |
FAN X M, PEDROLI B, LIU G H, et al. Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity[J]. Ecohydrology, 2011, 4(6):744-756.
DOI
URL
|
[43] |
ZHANG X L, GUAN T, ZHOU J H, et al. Groundwater depth and soil properties are associated with variation in vegetation of a desert riparian ecosystem in an arid area of China[J]. Forests, 2018, 9(1):34.
DOI
URL
|
[44] |
程国帅, 刘东伟, 温璐, 等. 干涸盐湖地下水和土壤化学属性对自然植被分布的控制作用[J]. 干旱区研究, 2019, 36(1):85-94.
|
[45] |
唐海萍, 刘书润, 张新时. 内蒙古地区的C4植物及其生态地理特性的研究[J]. 植物学报, 1999, 41(4):420-424.
|
[46] |
FENNER N, FREEMAN C. Drought-induced carbon loss in peatlands[J]. Nature Geoscience, 2011, 4(12):895-900.
DOI
URL
|
[47] |
NAN L L, GUO Q. Soil properties under major halophytic vegetation communities in arid regions[J]. Wuhan University Journal of Natural Sciences, 2018, 23(5):376-386.
DOI
URL
|
[48] |
NIU S, JIANG G, GAO L, et al. Comparison of gas exchange traits of different plant species in Hunshandak sand area[J]. Chinese Journal of Plant Ecology, 2003, 27(3):318-324.
DOI
URL
|
[49] |
WANG R Z. Photosynthetic pathways, life forms, and reproductive types for forage species along the desertification gradient on Hunshandake Desert, North China[J]. Photosynthetica, 2002, 40(3):321-329.
DOI
URL
|
[50] |
AICHNER B, HERZSCHUH U, WILKES H. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau[J]. Organic Geochemistry, 2010, 41(7):706-718.
DOI
URL
|