地学前缘 ›› 2020, Vol. 27 ›› Issue (5): 179-194.DOI: 10.13745/j.esf.sf.2020.5.35

• 表生成因矿物学:地表环境及其修复 • 上一篇    下一篇

天然矿物光电效应:矿物非经典光合作用

鲁安怀,李艳,丁竑瑞,王长秋,许晓明,刘菲菲,刘雨薇,朱莹,黎晏彰   

  1. 北京大学 地球与空间科学学院, 矿物环境功能北京市重点实验室, 北京 100871
  • 收稿日期:2020-04-15 修回日期:2020-05-28 出版日期:2020-09-25 发布日期:2020-09-25
  • 作者简介:鲁安怀(1962—),男,博士,教授,主要从事环境矿物学研究。E-mail:ahlu@pku.edu.cn
  • 基金资助:

    国家重点研发计划项目(2019YFC1805900);国家重点基础研究发展计划“973”项目(2007CB815600,2014CB846000);国家自然科学基金重点项目(41230103,91851208);国家自然科学基金国际合作重点项目(41820104003)

Natural mineral photoelectric effect: non-classical mineral photosynthesis

LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuwei, ZHU Ying, LI Yanzhang   

  1. Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • Received:2020-04-15 Revised:2020-05-28 Online:2020-09-25 Published:2020-09-25

摘要:

地球上生物因受到太阳光辐射作用而进化出结构精致的光合作用系统。太阳光辐射对地球表面广泛分布的无机矿物的影响与响应机制长期未被重视与理解。我们新发现的地表“矿物膜”转化太阳能系统,具有潜在的产氧固碳作用,体现出自然界中固有的矿物光电效应与非经典光合作用。本文在总结自然界中矿物光电子能量特征,特别是地表“矿物膜”特征及其光电效应性能的基础上,重点探讨铁锰氧化物矿物表现出的光电效应、产氧固碳作用与地质记录。提出矿物享有光电效应特性,地表“矿物膜”富含水钠锰矿、针铁矿、赤铁矿等天然半导体矿物,在日光辐射下具有稳定而灵敏的光电转换性能,产生矿物光电子能量;提出矿物拥有非经典光合作用的性能,自然界无机矿物转化太阳能系统类似生物光合作用吸收转化太阳能的产氧固碳系统,地表“矿物膜”光催化裂解水产氧作用及其转化大气和海洋二氧化碳为碳酸盐矿物作用,孕育出“矿物光合作用”;提出矿物具有促进生物光合作用的功能,生物光合作用中心Mn4CaO5在裂解水产氧过程中产生成分和结构类似水钠锰矿的锰簇化合物结构体,初步认为水钠锰矿可能促使蓝细菌光合作用系统的起源,矿物影响与削弱水分子氢键以改变水的性质,可提高水的分解程度与光合作用效率,为进一步探索矿物促进生物光合作用机理提供科学技术突破的机遇。

关键词: 矿物光电效应, 矿物非经典光合作用, 水钠锰矿, 矿物光电子能量, 产氧固碳作用

Abstract:

Under the ever-existing solar irradiation, the organisms on Earth have evolved with a structurally sophisticated photosynthesis system. However, the inherent impact and response mechanism of solar illumination on the inorganic minerals widespread on the Earth surface has drawn little attention. We discovered for the first time the solar energy conversion system of the “mineral membrane”, which exerts potential oxygen production and carbon sequestration functions on the Earth surface. Our finding shed light on the photoelectric effect and non-classical photosynthesis of the natural semiconducting minerals. We carried out this research on the semiconducting property and photoelectron energy of the typical minerals in the “mineral membrane”. We further discussed the photoelectric effect, oxygen production and carbon sequestration functions of the ferromanganese oxides, as well as the corresponding geological records. We proposed that the sensitive and stable photon-to-electron conversion are performed by birnessite, goethite and hematite, which are semiconducting minerals commonly present in the natural “mineral membrane”. In addition, we put forward the non-classical mineral photosynthesis function as follows: the solar energy conversion system developed by inorganic minerals resembles the biological photosynthesis process regarding to oxygen evolving and carbon fixing; also, the “mineral membrane” may take part in the photocatalytic water-oxidation reaction and in the transformation of atmospheric CO2 into marine carbonate. Last but not least, minerals might as well have promoted the biologic photosynthesis system as the core complex in the Mn4CaO5 photosynthesis system evolved during water-oxidation process to form the structural analog birnessite. Therefore, it is fair to postulate that birnessite could play a role in the initiation of the photosynthesis system of cyanobacteria. On the other hand, minerals could weaken hydrogen bond strength and alter water property, thus to facilitate water oxidation and photosynthesis efficiencies, which would hopefully give further insights into the molecular mechanism of mineral participation in the biologic photosynthesis process.

Key words: mineral photoelectric effect, mineral non-classical photosynthesis, birnessite, mineral photoelectron energy, oxygen production and carbon sequestration

中图分类号: