Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 60-77.DOI: 10.13745/j.esf.sf.2025.4.63
Previous Articles Next Articles
LI Nan1,2,3(), YIN Shitao1,4, LIU Bingli2, XIAO Keyan1, WANG Chenghui1, DAI Hongzhang1, SONG Xianglong1
Received:
2025-03-24
Revised:
2025-04-09
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
LI Nan, YIN Shitao, LIU Bingli, XIAO Keyan, WANG Chenghui, DAI Hongzhang, SONG Xianglong. A knowledge-data driven interpretable intelligent mineral prediction: A case study of the Keeryin Mineral Concentration Area, Sichuan Province[J]. Earth Science Frontiers, 2025, 32(4): 60-77.
类型 | 控矿要素 | 地质特征描述 | 预测要素 | 预测变量 |
---|---|---|---|---|
可尔因花 岗伟晶岩 型锂矿 | 构造 | 构造含矿特征 | 有利成矿构造 | 线形构造 |
环形构造 | ||||
岩体 | 岩体含矿特征 | 成矿有利岩体:二云母花岗岩 | 钠长石频谱异常 | |
二云母花岗岩 影响域 | ||||
Na2O/K2O(碱性花岗岩) | ||||
赋矿岩体:锂辉石钠长石型伟晶岩脉 | Na2O+K2O | |||
围岩蚀变 | 有利围岩蚀变 | 成矿有利蚀变 | 铁染异常 | |
羟基异常 | ||||
地球化学 | 土壤岩屑地球化学 | 单元素矿化信息 | B, Be, La, Li, Nb, P, Rb, Sr, Th | |
元素异常组合 | Li/La, Be-Li-Rb, Nb-Sr-Th |
Table 1 Prospecting model of the Keeryin Mineral Concentration Area
类型 | 控矿要素 | 地质特征描述 | 预测要素 | 预测变量 |
---|---|---|---|---|
可尔因花 岗伟晶岩 型锂矿 | 构造 | 构造含矿特征 | 有利成矿构造 | 线形构造 |
环形构造 | ||||
岩体 | 岩体含矿特征 | 成矿有利岩体:二云母花岗岩 | 钠长石频谱异常 | |
二云母花岗岩 影响域 | ||||
Na2O/K2O(碱性花岗岩) | ||||
赋矿岩体:锂辉石钠长石型伟晶岩脉 | Na2O+K2O | |||
围岩蚀变 | 有利围岩蚀变 | 成矿有利蚀变 | 铁染异常 | |
羟基异常 | ||||
地球化学 | 土壤岩屑地球化学 | 单元素矿化信息 | B, Be, La, Li, Nb, P, Rb, Sr, Th | |
元素异常组合 | Li/La, Be-Li-Rb, Nb-Sr-Th |
序号 | 模型 | F1 | 序号 | 模型 | F1 |
---|---|---|---|---|---|
1 | SVM | 0.83 | 14 | CalibratedClassifierCV | 0.62 |
2 | AdaBoost | 0.78 | 15 | LabelSpreading | 0.62 |
3 | ExtraTrees | 0.77 | 16 | GaussianNB | 0.61 |
4 | RandomForest | 0.71 | 17 | RidgeClassifierCV | 0.61 |
5 | DecisionTree | 0.70 | 18 | LinearDiscriminantAnalysis | 0.60 |
6 | BernoulliNB | 0.69 | 19 | ExtraTree | 0.60 |
7 | Bagging | 0.69 | 20 | Perceptron | 0.60 |
8 | Kneighbors | 0.68 | 21 | QuadraticDiscriminantAnalysis | 0.58 |
9 | Ridge | 0.67 | 22 | PassiveAggressive | 0.52 |
10 | LinearSVC | 0.65 | 23 | NearestCentroid | 0.49 |
11 | LabelPropagation | 0.65 | 24 | SGD | 0.47 |
12 | LogisticRegression | 0.65 | 25 | Dummy | 0.29 |
13 | LGBM | 0.63 |
Table 2 F1 scores of 25 common Machine Learning Models
序号 | 模型 | F1 | 序号 | 模型 | F1 |
---|---|---|---|---|---|
1 | SVM | 0.83 | 14 | CalibratedClassifierCV | 0.62 |
2 | AdaBoost | 0.78 | 15 | LabelSpreading | 0.62 |
3 | ExtraTrees | 0.77 | 16 | GaussianNB | 0.61 |
4 | RandomForest | 0.71 | 17 | RidgeClassifierCV | 0.61 |
5 | DecisionTree | 0.70 | 18 | LinearDiscriminantAnalysis | 0.60 |
6 | BernoulliNB | 0.69 | 19 | ExtraTree | 0.60 |
7 | Bagging | 0.69 | 20 | Perceptron | 0.60 |
8 | Kneighbors | 0.68 | 21 | QuadraticDiscriminantAnalysis | 0.58 |
9 | Ridge | 0.67 | 22 | PassiveAggressive | 0.52 |
10 | LinearSVC | 0.65 | 23 | NearestCentroid | 0.49 |
11 | LabelPropagation | 0.65 | 24 | SGD | 0.47 |
12 | LogisticRegression | 0.65 | 25 | Dummy | 0.29 |
13 | LGBM | 0.63 |
模型 | 准确率 | 召回率 | F1分数 |
---|---|---|---|
Random Forest | 0.73 | 0.66 | 0.71 |
ExtraTree | 0.79 | 0.73 | 0.76 |
AdaBoost | 0.78 | 0.79 | 0.78 |
SVM | 0.85 | 0.78 | 0.83 |
Stacking | 0.93 | 0.86 | 0.91 |
KE-Stacking | 0.96 | 0.90 | 0.94 |
Table 3 Model evaluation results
模型 | 准确率 | 召回率 | F1分数 |
---|---|---|---|
Random Forest | 0.73 | 0.66 | 0.71 |
ExtraTree | 0.79 | 0.73 | 0.76 |
AdaBoost | 0.78 | 0.79 | 0.78 |
SVM | 0.85 | 0.78 | 0.83 |
Stacking | 0.93 | 0.86 | 0.91 |
KE-Stacking | 0.96 | 0.90 | 0.94 |
样品编号 | 取样 点位 | 样品岩性 | Li含量/ (μg·g-1) | Li2O 含量/% | Be含量/ (μg·g-1) | Be2O 含量/% | Rb含量/ (μg·g-1) | Rb2O 含量/% | Cs含量/ (μg·g-1) | W含量/ (μg·g-1) | Sn含量/ (μg·g-1) | Co含量/ (μg·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GYQ-1 | 观音桥 | 花岗伟晶岩 | 16 989.41 | 7.31 | 43.82 | 0.01 | 233.28 | 0.05 | 20.83 | 706.92 | 75.1 | 86.61 |
GYQ-2 | 观音桥 | 花岗伟晶岩 | 147.29 | 0.06 | 48.35 | 0.01 | 531.44 | 0.11 | 42.41 | 493.78 | 99.6 | 50.39 |
GYQ-3 | 观音桥 | 花岗伟晶岩 | 375.93 | 0.16 | 52.09 | 0.01 | 3 589.41 | 0.72 | 231.59 | 375.48 | 40.67 | 37.19 |
GYQ-4 | 观音桥 | 花岗伟晶岩 | 4 494.31 | 1.93 | 98.63 | 0.03 | 1 313.01 | 0.26 | 96.63 | 310.37 | 143.24 | 25.73 |
TYH-1 | 麦地沟 | 花岗伟晶岩 | 18.3 | 0.01 | 136.85 | 0.04 | 1 193.35 | 0.24 | 51.33 | 280.74 | 30.61 | 29.03 |
TYH-2 | 麦地沟 | 花岗伟晶岩 | 36.32 | 0.02 | 86.9 | 0.02 | 3 725.27 | 0.75 | 100.54 | 422.76 | 23.65 | 36.3 |
TYH-3 | 麦地沟 | 花岗伟晶岩 | 100.79 | 0.04 | 335.3 | 0.09 | 262.6 | 0.05 | 18.21 | 513.24 | 50.35 | 73.12 |
LB-1 | 李家沟 | 花岗伟晶岩 | 479.53 | 0.21 | 9.76 | 0 | 588.36 | 0.12 | 17.78 | 303.03 | 53.16 | 28.23 |
LB-1A | 李家沟 | 花岗伟晶岩 | 219 | 0.09 | 4.57 | 0 | 284.18 | 0.06 | 9.45 | 165.18 | 29.24 | 15.26 |
LB-2 | 李家沟 | 花岗伟晶岩 | 218.83 | 0.09 | 7.55 | 0 | 271.5 | 0.05 | 15.98 | 452.35 | 26.96 | 43.95 |
JD-1 | 加达 | 花岗伟晶岩 | 10 815.89 | 4.65 | 190.31 | 0.05 | 986.25 | 0.2 | 88.31 | 407.24 | 77.34 | 41.04 |
JD-2 | 加达 | 花岗伟晶岩 | 8 882.1 | 3.82 | 181.42 | 0.05 | 674.14 | 0.13 | 65.86 | 436.17 | 73.43 | 45.29 |
JD-3 | 加达 | 花岗伟晶岩 | 10 758.13 | 4.63 | 244.18 | 0.07 | 782.67 | 0.16 | 80.99 | 505.51 | 77.88 | 57.95 |
GR-1 | 高墟 | 花岗伟晶岩 | 6 974.02 | 3 | 247.01 | 0.07 | 1 359.61 | 0.27 | 79.56 | 681.6 | 107.06 | 82.68 |
GR-2 | 高墟 | 花岗伟晶岩 | 4 940.27 | 2.12 | 237.19 | 0.07 | 1 368.58 | 0.27 | 73.95 | 683.67 | 60.12 | 76.79 |
Table 4 Laboratory analysis results of field-collected samples
样品编号 | 取样 点位 | 样品岩性 | Li含量/ (μg·g-1) | Li2O 含量/% | Be含量/ (μg·g-1) | Be2O 含量/% | Rb含量/ (μg·g-1) | Rb2O 含量/% | Cs含量/ (μg·g-1) | W含量/ (μg·g-1) | Sn含量/ (μg·g-1) | Co含量/ (μg·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GYQ-1 | 观音桥 | 花岗伟晶岩 | 16 989.41 | 7.31 | 43.82 | 0.01 | 233.28 | 0.05 | 20.83 | 706.92 | 75.1 | 86.61 |
GYQ-2 | 观音桥 | 花岗伟晶岩 | 147.29 | 0.06 | 48.35 | 0.01 | 531.44 | 0.11 | 42.41 | 493.78 | 99.6 | 50.39 |
GYQ-3 | 观音桥 | 花岗伟晶岩 | 375.93 | 0.16 | 52.09 | 0.01 | 3 589.41 | 0.72 | 231.59 | 375.48 | 40.67 | 37.19 |
GYQ-4 | 观音桥 | 花岗伟晶岩 | 4 494.31 | 1.93 | 98.63 | 0.03 | 1 313.01 | 0.26 | 96.63 | 310.37 | 143.24 | 25.73 |
TYH-1 | 麦地沟 | 花岗伟晶岩 | 18.3 | 0.01 | 136.85 | 0.04 | 1 193.35 | 0.24 | 51.33 | 280.74 | 30.61 | 29.03 |
TYH-2 | 麦地沟 | 花岗伟晶岩 | 36.32 | 0.02 | 86.9 | 0.02 | 3 725.27 | 0.75 | 100.54 | 422.76 | 23.65 | 36.3 |
TYH-3 | 麦地沟 | 花岗伟晶岩 | 100.79 | 0.04 | 335.3 | 0.09 | 262.6 | 0.05 | 18.21 | 513.24 | 50.35 | 73.12 |
LB-1 | 李家沟 | 花岗伟晶岩 | 479.53 | 0.21 | 9.76 | 0 | 588.36 | 0.12 | 17.78 | 303.03 | 53.16 | 28.23 |
LB-1A | 李家沟 | 花岗伟晶岩 | 219 | 0.09 | 4.57 | 0 | 284.18 | 0.06 | 9.45 | 165.18 | 29.24 | 15.26 |
LB-2 | 李家沟 | 花岗伟晶岩 | 218.83 | 0.09 | 7.55 | 0 | 271.5 | 0.05 | 15.98 | 452.35 | 26.96 | 43.95 |
JD-1 | 加达 | 花岗伟晶岩 | 10 815.89 | 4.65 | 190.31 | 0.05 | 986.25 | 0.2 | 88.31 | 407.24 | 77.34 | 41.04 |
JD-2 | 加达 | 花岗伟晶岩 | 8 882.1 | 3.82 | 181.42 | 0.05 | 674.14 | 0.13 | 65.86 | 436.17 | 73.43 | 45.29 |
JD-3 | 加达 | 花岗伟晶岩 | 10 758.13 | 4.63 | 244.18 | 0.07 | 782.67 | 0.16 | 80.99 | 505.51 | 77.88 | 57.95 |
GR-1 | 高墟 | 花岗伟晶岩 | 6 974.02 | 3 | 247.01 | 0.07 | 1 359.61 | 0.27 | 79.56 | 681.6 | 107.06 | 82.68 |
GR-2 | 高墟 | 花岗伟晶岩 | 4 940.27 | 2.12 | 237.19 | 0.07 | 1 368.58 | 0.27 | 73.95 | 683.67 | 60.12 | 76.79 |
[1] | 赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5): 1-10. |
[2] | AGTERBERG F P, BONHAM-CARTER G F. Deriving weights of evidence from geoscience contour maps for the prediction of discrete events[C]// Proceedings of the 22nd APCOM symposium, Berlin, Germany. 1990, 2: 381-395. |
[3] | CHENG Q M, AGTERBERG F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1): 27-35. |
[4] | YOUSEFI M, NYKÄNEN V. Introduction to the special issue: GIS-based mineral potential targeting[J]. Journal of African Earth Sciences, 2017, 128: 1-4. |
[5] | PORWAL A, CARRANZA E J M. Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration[J]. Ore Geology Reviews, 2015, 71: 477-483. |
[6] |
左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘, 2021, 28(3): 49-55.
DOI |
[7] | 陈建平, 李靖, 谢帅, 等. 中国地质大数据研究现状[J]. 地质学刊, 2017, 41(3): 353-366. |
[8] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展:大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
[9] | 翟明国, 杨树锋, 陈宁华, 等. 大数据时代:地质学的挑战与机遇[J]. 中国科学院院刊, 2018, 33(8): 825-831. |
[10] | AGTERBERG F P, BONHAM-CARTER G F, CHENG Q, et al. Weights of evidence modeling and weighted logistic regression for mineral potential mapping[C]//DAVIS J C, HERZFELD U C. Computers in geology:25 years of progress. Oxford: Oxford University Press, 1993:13-32. |
[11] | CARRANZA E J M, LABORTE A G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm[J]. Ore Geology Reviews, 2015, 71: 777-787. |
[12] | 向杰, 陈建平, 肖克炎, 等. 基于机器学习的三维矿产定量预测:以四川拉拉铜矿为例[J]. 地质通报, 2019, 38(12): 2010-2021. |
[13] | 欧阳渊. 西藏冈底斯成矿带西段斑岩型铜矿成矿规律与成矿预测研究[D]. 成都: 成都理工大学, 2020. |
[14] | 秦耀祖, 吴伟成, 谢丽凤, 等. 基于机器学习的找矿预测模型在湖南岳溪锑矿田的应用[J]. 东华理工大学学报(自然科学版), 2021, 44(1): 28-40. |
[15] |
张振杰, 成秋明, 杨玠, 等. 机器学习与成矿预测:以闽西南铁多金属矿预测为例[J]. 地学前缘, 2021, 28(3): 221-235.
DOI |
[16] | HE Z N, QUAN C, WANG S Y, et al. A comparative study of unsupervised deep learning methods for MRI reconstruction[J]. Investigative Magnetic Resonance Imaging, 2020, 24(4):179-195. |
[17] | ZUO R, LUO Z, XIONG Y, et al. A geologically constrained variational autoencoder for mineral prospectivity mapping[J]. Natural Resources Research, 2022, 31(3): 1121-1133. |
[18] | PARSA M, CARRANZA E J M, AHMADI B. Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits[J]. Natural Resources Research, 2022, 31(1): 37-50. |
[19] | XIONG Y, ZUO R, CARRANZA E J M. Mapping mineral prospectivity through big data analytics and a deep learning algorithm[J]. Ore Geology Reviews, 2018, 102: 811-817. |
[20] | ZHANG S, CARRANZA E J M, WEI H, et al. Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network[J]. Natural Resources Research, 2021, 30(2): 1011-1031. |
[21] | 郑忠超, 王旭东, 王健, 等. 基于多源地学数据的深部找矿预测应用探微[J]. 中国矿业, 2024, 33(增刊1): 605-609. |
[22] | 杨娜. 多尺度特征融合算法及其在智能成矿预测中的应用[J/OL]. 矿物岩石地球化学通报, 1-14[2025-04-21]. http://kns.cnki.net/kcms/detail/52.1102.P.20250319.1435.001.html. |
[23] | WANG Z, ZUO R. Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network[J]. Computers & Geosciences, 2022, 158: 104974. |
[24] | ZUO R, XU Y. Graph deep learning model for mapping mineral prospectivity[J]. Mathematical Geosciences, 2023, 55(1): 1-21. |
[25] | IBRAHIM M, LOUIE M, MODARRES C, et al. Global explanations of neural networks: mapping the landscape of predictions[C]// Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society. New York: Association for Computing Machinery (ACM), 2019: 279-287. |
[26] | LIU Y, ZHOU K, XIA Q. A MaxEnt model for mineral prospectivity mapping[J]. Natural Resources Research, 2018, 27(3): 299-313. |
[27] | PRADHANB, JENA R, TALUKDAR D, et al. A new method to evaluate gold mineralisation-potential mapping using deep learning and an explainable artificial intelligence (XAI) model[J]. Remote Sensing, 2022, 14(18): 4486. |
[28] | MOUN, CARRANZA E J M, WANG G, et al. A framework for data-driven mineral prospectivity mapping with interpretable machine learning and modulated predictive modeling[J]. Natural Resources Research, 2023, 32(6): 2439-2462. |
[29] | KONG W, CHEN J, ZHU P. Machine learning-based uranium prospectivity mapping and model explainability research[J]. Minerals, 2024, 14(2): 128. |
[30] | BAHRAMIY, HASSANI H, MAGHSOUDI A. Spatial modeling for mineral prospectivity using BWM and COPRAS as a new HMCDM method[J]. Arabian Journal of Geosciences, 2022, 15(5): 394. |
[31] | 左仁广, 成秋明, 许莹, 等. 可解释性矿产预测人工智能模型[J]. 中国科学: 地球科学, 2024, 54(9): 2917-2928. |
[32] |
张前龙, 周永章, 郭兰萱, 等. 找矿知识图谱的智能化应用: 以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15.
DOI |
[33] |
王成彬, 王明果, 王博, 等. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36.
DOI |
[34] | 董宇浩, 王永志, 田江涛, 等. 基于知识图谱的斑岩型铜矿预测研究进展[J]. 地学前缘, 2025, 32(4): 280-290. |
[35] |
DONGX B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258.
DOI |
[36] | FRIEDMANJ H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. |
[37] | RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?”Explaining the predictions of any classifier[C]// Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. New York: Association for Computing Machinery (ACM), 2016: 1135-1144. |
[38] | 李鑫, 代鸿章, 王登红, 等. 四川阿坝可尔因锂矿田成矿规律与成矿预测[J]. 岩石学报, 2024, 40(9): 2819-2840. |
[39] |
付小方, 黄韬, 郝雪峰, 等. 川西花岗细晶岩-伟晶岩型锂矿含矿性评价与示矿标志[J]. 地学前缘, 2023, 30(5): 227-243.
DOI |
[40] | YIN B, ZUO R, SUN S. Mineral prospectivity mapping using deep self-attention model[J]. Natural Resources Research, 2023, 32(1): 37-56. |
[1] | XIAO Fan, YANG Huaqing, TANG Ao, HUANG Xuancai, WANG Cuicui. Lithological mapping of intermediate-acid intrusive rocks in the Eastern Tianshan Gobi-desert covered area using machine learning for multisource data fusion [J]. Earth Science Frontiers, 2025, 32(4): 199-212. |
[2] | CHENG Qiuming. A new paradigm for mineral resource prediction based on human intelligence-artificial intelligence Integration [J]. Earth Science Frontiers, 2025, 32(4): 1-19. |
[3] | XIE Miao, LIU Bingli, LI Yunhe, WANG Zhengyao, CAO Changjie, WU Yixiao. Quantitative prediction method of gold deposits in Gannan area under unbalanced sample conditions [J]. Earth Science Frontiers, 2025, 32(4): 108-121. |
[4] | KONG Chunfang, TIAN Qian, LIU Jian, CAI Guorong, ZHAO Jie, XU Kai. Metallogenic prediction based on ensemble learning models and Bayesian Optimization Algorithm [J]. Earth Science Frontiers, 2025, 32(4): 122-139. |
[5] | LI Bowen, WANG Yongzhi, DING Zhengjiang, WANG Bin, WEN Shibo, DONG Yuhao, JI Zheng. Intelligent search technology for Jiaodong gold deposits based on large models and GraphRAG [J]. Earth Science Frontiers, 2025, 32(4): 155-164. |
[6] | YE Shuwan, HOU Weisheng, YANG Jie, WANG Haicheng, BAI Yun, WANG Yongzhi. Advance of 3D smart geological modeling [J]. Earth Science Frontiers, 2025, 32(4): 182-198. |
[7] | CHEN Yonghua, HOU Weisheng, GUO Qingfeng, YANG Songhua, YE Shuwan, LI Xin. Study on stochastic reconstruction methods for 3D geological structures along metro lines [J]. Earth Science Frontiers, 2025, 32(4): 222-234. |
[8] | FENG Tingting, CAI Shirou, ZHANG Zhenjie. Mining elements of carbonatite-type rare earth deposits based on knowledge map [J]. Earth Science Frontiers, 2025, 32(4): 262-279. |
[9] | DONG Yuhao, WANG Yongzhi, TIAN Jiangtao, WANG Cheng, WEN Shibo, LI Bowen. Research progress on porphyry copper deposit prediction based on knowledge graphs [J]. Earth Science Frontiers, 2025, 32(4): 280-290. |
[10] | WANG Yongzhi, WEN Shibo, LI Bowen, CHEN Xingyu, DONG Yuhao, TIAN Jiangtao, WANG Bin, Muhammed Atif BILAL, JI Zheng, SUN Fengyue. Construction technology of super-agents for intelligent mineral resources prediction driven by large model [J]. Earth Science Frontiers, 2025, 32(4): 38-45. |
[11] | CHEN Guoxiong, ZHANG Yuepeng, LUO Lei, XIA Qinglin, CHENG Qiuming. Data-driven spatio-temporal prediction model of porphyry deposits [J]. Earth Science Frontiers, 2025, 32(4): 46-59. |
[12] | JIAN Fuyuan, ZHANG Ziming, DONG Yuelin, ZHANG Wenjing, HAO Fengyun, WANG Yiming, WANG Yu, ZHANG Zhenjie. Multifractal analysis and random forest algorithm for mineral prospecting in the Habahe gold deposit, Xinjiang [J]. Earth Science Frontiers, 2025, 32(4): 78-94. |
[13] | LI Jinming, ZHENG Yang, CHENG Qiuming. Spatial distribution prediction of geothermal gradient in North China Craton driven by the combination of machine learning and stratification modeling [J]. Earth Science Frontiers, 2025, 32(4): 291-302. |
[14] | ZHOU Shengquan, LI Yike, WANG Yongzhi, LIU Haiming, LI Nan, KE Changhui, LI Ruiping, ZHAO Yonggang, ZHANG Li. Current status and development trends of generative AI technology in Earth science research [J]. Earth Science Frontiers, 2025, 32(4): 303-316. |
[15] | HUANG Jixian, LI Weiqi, DENG Hao, WAN Shijun, LI Xiao, MAO Xiancheng. Quantitative study on spatial non-stationarity of ore-controlling processes based on exploration big data: A case study of Sanshandao gold deposit [J]. Earth Science Frontiers, 2025, 32(4): 317-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||