Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 222-234.DOI: 10.13745/j.esf.sf.2025.4.75
Previous Articles Next Articles
CHEN Yonghua1(), HOU Weisheng2,3,*(
), GUO Qingfeng1, YANG Songhua2, YE Shuwan2, LI Xin2
Received:
2025-01-20
Revised:
2025-05-10
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
CHEN Yonghua, HOU Weisheng, GUO Qingfeng, YANG Songhua, YE Shuwan, LI Xin. Study on stochastic reconstruction methods for 3D geological structures along metro lines[J]. Earth Science Frontiers, 2025, 32(4): 222-234.
参数设置 | 搜索空间 | |
---|---|---|
超参数 | 隐藏层数 | [1, 10] |
隐藏层神经元数 | 50n (n∈[1, 10]) | |
学习率 | [10-5, 10-1] | |
批量训练样本数量 | 2n (n∈[5, 10]) | |
网络训练周期 | 100n (n∈[1, 10]) | |
评估指标 | 均方误差损失 | 最小化指标 |
搜索周期 | 30 |
Table 1 AFCDNN hyperparameters for constructing geological surfaces
参数设置 | 搜索空间 | |
---|---|---|
超参数 | 隐藏层数 | [1, 10] |
隐藏层神经元数 | 50n (n∈[1, 10]) | |
学习率 | [10-5, 10-1] | |
批量训练样本数量 | 2n (n∈[5, 10]) | |
网络训练周期 | 100n (n∈[1, 10]) | |
评估指标 | 均方误差损失 | 最小化指标 |
搜索周期 | 30 |
方法 | 准确率/% | 精确率/% | 召回率/% | F1分数/% |
---|---|---|---|---|
DL+MPS | 99.16 | 98.92 | 98.91 | 98.91 |
RF | 99.60 | 98.68 | 98.14 | 98.40 |
XGBoost | 98.64 | 95.67 | 95.31 | 95.49 |
Table 2 The values of evaluation indicators for 3D geological model by different methods
方法 | 准确率/% | 精确率/% | 召回率/% | F1分数/% |
---|---|---|---|---|
DL+MPS | 99.16 | 98.92 | 98.91 | 98.91 |
RF | 99.60 | 98.68 | 98.14 | 98.40 |
XGBoost | 98.64 | 95.67 | 95.31 | 95.49 |
钻孔编号 | 不同方法模拟结果钻孔验证准确率/% | ||
---|---|---|---|
DL+MPS | RF | XGBoost | |
B1 | 79.17 | 81.25 | 77.08 |
B2 | 83.33 | 80.21 | 80.24 |
B3 | 73.33 | 69.93 | 72.27 |
B4 | 74.14 | 71.42 | 72.21 |
B5 | 87.50 | 89.09 | 83.52 |
B6 | 81.67 | 79.73 | 80.77 |
平均值 | 79.86 | 78.61 | 77.68 |
Table 3 The borehole dispersion values of different method
钻孔编号 | 不同方法模拟结果钻孔验证准确率/% | ||
---|---|---|---|
DL+MPS | RF | XGBoost | |
B1 | 79.17 | 81.25 | 77.08 |
B2 | 83.33 | 80.21 | 80.24 |
B3 | 73.33 | 69.93 | 72.27 |
B4 | 74.14 | 71.42 | 72.21 |
B5 | 87.50 | 89.09 | 83.52 |
B6 | 81.67 | 79.73 | 80.77 |
平均值 | 79.86 | 78.61 | 77.68 |
方法 | 训练时间(相对值) | 调参复杂度 | 特征工程需求 |
---|---|---|---|
DL+MPS | 高(需多轮 迭代) | 极高(层数、激活 函数和优化器等) | 高(需标准化和 处理缺失值) |
RF | 低 | 低(主要调树 数量和深度) | 低(容忍缺失 值和噪声) |
XGBoost | 中 | 中(学习率、树 深度和正则化项) | 中(需处理类别 型特征) |
Table 4 Efficiency comparison of different methods
方法 | 训练时间(相对值) | 调参复杂度 | 特征工程需求 |
---|---|---|---|
DL+MPS | 高(需多轮 迭代) | 极高(层数、激活 函数和优化器等) | 高(需标准化和 处理缺失值) |
RF | 低 | 低(主要调树 数量和深度) | 低(容忍缺失 值和噪声) |
XGBoost | 中 | 中(学习率、树 深度和正则化项) | 中(需处理类别 型特征) |
[1] | CHEN Z L, CHEN J Y, LIU H, et al. Present status and development trends of underground space in Chinese cities: evaluation and analysis[J]. Tunnelling and Underground Space Technology, 2018, 71: 253-270. |
[2] | LIN D, BROERE W, CUI J Q. Metro systems and urban development: impacts and implications[J]. Tunnelling and Underground Space Technology, 2022, 125: 104509. |
[3] | XIE H P, ZHANG Y H, CHEN Y Y, et al. A case study of development and utilization of urban underground space in Shenzhen and the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Tunnelling and Underground Space Technology, 2021, 107: 103651. |
[4] | 黄超, 邱建, 谭晓红. 中心城区 “向地下要空间” 的城市遗产保护策略: 以徐州市为例[J]. 西南交通大学学报(社会科学版), 2023, 24(6): 99-117. |
[5] |
王成善, 周成虎, 彭建兵, 等. 论新时代我国城市地下空间高质量开发和可持续利用[J]. 地学前缘, 2019, 26(3): 1-8.
DOI |
[6] | HOU W S, CHEN Y H, LIU H G, et al. Reconstructing three-dimensional geological structures by the multiple-point statistics method coupled with a deep neural network: a case study of a metro station in Guangzhou, China[J]. Tunnelling and Underground Space Technology, 2023, 136: 105089. |
[7] | BIAN X, FAN Z Y, LIU J X, et al. Regional 3D geological modeling along metro lines based on stacking ensemble model[J]. Underground Space, 2024, 18: 65-82. |
[8] | HOULDING W S. 3D geoscience modeling: computer techniques for geological characterization[M]. Berlin: SpringerVerlag, 1994. |
[9] | JIA Q R, LI W W, CHE D F. A triangulated irregular network constrained ordinary kriging method for three-dimensional modeling of faulted geological surfaces[J]. IEEE Access, 2020, 8: 85179-85189. |
[10] | JESSELL M, AILLÈRES L, DE KEMP E, et al. Next generation three-dimensional geologic modeling and inversion[J]. Economic Geology, 2014, 18: 261-272. |
[11] | OUYANG J, ZHOU C, LIU Z, et al. Triangulated irregular network-based probabilistic 3D geological modelling using Markov Chain and Monte Carlo simulation[J]. Engineering Geology, 2023, 320: 107131. |
[12] | CAUMON G, GRAY G, ANTOINE C, et al. Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: theory and application to a regional model of La popa basin, NE Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1613-1621. |
[13] | 邹艳红, 黄望, 阳宽达, 等. 基于杨赤中推估法空间插值的三维地质隐式建模[J]. 地质学刊, 2017, 41(3): 384-393. |
[14] | SMIRNOFF A, BOISVER E, PARADIS S J. Support vector machine for 3D modelling from sparse geological information of various origins[J]. Computers & Geosciences, 2008, 34(2): 127-143. |
[15] | SHI C, WANG Y. Development of subsurface geological cross-section from limited site-specific boreholes and prior geological knowledge using iterative convolution XGBoost[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021082. |
[16] | CLAYTON C R. Managing geotechnical risk: improving productivity in UK building and construction[M]. London: Thomas Telford Ltd, 2001. |
[17] | MADSEN R B, HØYER A-S, ANDERSEN L T, et al. Geology-driven modeling: a new probabilistic approach for incorporating uncertain geological interpretations in 3D geological modeling[J]. Engineering Geology, 2022, 309: 106833. |
[18] | JIA R, LV Y K, WANG G W, et al. A stacking methodology of machine learning for 3D geological modeling with geological-geophysical datasets, Laochang Sn camp, Gejiu (China)[J]. Computers & Geosciences, 2021, 151: 104754. |
[19] | WU S C, ZHANG J M, WANG R. Machine learning method for CPTu based 3D stratification of New Zealand geotechnical database sites[J]. Advanced Engineering Informatics, 2021, 50: 101397. |
[20] | WANG X R. Uncertainty quantification and reduction in the characterization of subsurface stratigraphy using limited geotechnical investigation data[J]. Underground Space, 2020, 5(2): 125-143. |
[21] | WANG Y, SHI C, LI X. Machine learning of geological details from borehole logs for development of high-resolution subsurface geological cross-section and geotechnical analysis[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2022, 16(1): 2-20. |
[22] | WEI Y, XING Z, JIAN C et al. Use of tree-based machine learning methods for stratigraphic classification in 3D geological modelling[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072039. |
[23] | GUARDIANO F B, SRIVASTAVA R M. Multivariate geostatistics: beyond bivariate Moments[M]// Geostatistics Tróia’92.Dordrecht: Springer Netherlands, 1993: 133-144. |
[24] | CHEN Q Y, MARIETHOZ G, LIU G et al. Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections[J]. Hydrology and Earth System Sciences, 2018, 22(12): 6547-6566. |
[25] | GUO J T, WANG Z X, LI C L, et al. Multiple-point geostatistics-based three-dimensional automatic geological modeling and uncertainty analysis for borehole data[J]. Natural Resources Research, 2022, 31(5): 2347-2367. |
[26] | MARIETHOZ G, CAERS J. Multiple-point geostatistics[M]. Hoboken: Wiley, 2014, |
[27] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
DOI PMID |
[28] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[29] |
郭甲腾, 刘寅贺, 韩英夫, 等. 基于机器学习的钻孔数据隐式三维地质建模方法[J]. 东北大学学报(自然科学版), 2019, 40(9): 1337-1342.
DOI |
[30] | ZHAO Z, ZHOU X P. An integrated method for 3D reconstruction model of porous geomaterials through 2D CT images[J]. Computers & Geosciences, 2019, 123: 83-94. |
[31] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014: 2672-2680. |
[32] | LI Y, JIAN P P, HAN G H. Cascaded progressive generative adversarial networks for reconstructing three-dimensional grayscale core images from a single two-dimensional image[J]. Frontiers in Physics, 2022, 10: 716708. |
[33] | YANG Z X, CHEN Q Y, CUI Z S, et al. Automatic reconstruction method of 3D geological models based on deep convolutional generative adversarial networks[J]. Computational Geosciences, 2022, 26(5): 1135-1150. |
[34] | FAN W Y, LIU G, CHEN Q Y, et al. Geological model automatic reconstruction based on conditioning Wasserstein generative adversarial network with gradient penalty[J]. Earth Science Informatics, 2023, 16(3): 2825-2843. |
[35] | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
[36] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[37] | BELGIU M, DRĂGUŢ L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. |
[38] | CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, 2016: 785-794. |
[39] | SHI C, WANG Y. Data-driven construction of three-dimensional subsurface geological models from limited Site-specific boreholes and prior geological knowledge for underground digital twin[J]. Tunnelling and Underground Space Technology, 2022, 126: 104493. |
[1] | YE Shuwan, HOU Weisheng, YANG Jie, WANG Haicheng, BAI Yun, WANG Yongzhi. Advance of 3D smart geological modeling [J]. Earth Science Frontiers, 2025, 32(4): 182-198. |
[2] | LI Fenglei, LIN Chengyan, WANG Jiao, REN Lihua, ZHANG Guoyin, ZHU Yongfeng, LI Shiyin, ZHANG Yintao, GUAN Baozhu. Structure analysis and intelligent prediction of carbonate fractured-vuggy reservoirs in ultra-deep fracture zone [J]. Earth Science Frontiers, 2025, 32(2): 311-331. |
[3] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[4] | WAN Chengzhou, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral image recognition based on progressive deep learning across different granularity levels [J]. Earth Science Frontiers, 2024, 31(4): 112-118. |
[5] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[6] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[7] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[8] | JIANG Guo, ZHOU Kefa, WANG Jinlin, BAI Yong, SUN Guoqing, WANG Wei. Identification of lithium-beryllium granitic pegmatites based on deep learning [J]. Earth Science Frontiers, 2023, 30(5): 185-196. |
[9] | GUO Yanjun, ZHOU Zhe, LIN Hexun, LIU Xiaohui, CHEN Danqiu, ZHU Jiaqi, WU Junqi. The mineral intelligence identification method based on deep learning algorithms [J]. Earth Science Frontiers, 2020, 27(5): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||