[1] |
郝慧珍, 顾庆, 胡修棉. 基于机器学习的矿物智能识别方法研究进展与展望[J]. 地球科学, 2021, 46(9): 3091-3106.
|
[2] |
LOU W, ZHANG D X, BAYLESS R C. Review of mineral recognition and its future[J]. Applied Geochemistry, 2020, 122: 104727.
|
[3] |
徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252.
|
[4] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573.
|
[5] |
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
|
[6] |
BAYKEN N A, YIMAZ N, KANSUN G, et al. Case study in effects of color spaces for mineral identification[J]. Scientific Research and Essays, 2010, 5(11): 1243-1253.
|
[7] |
郭艳军, 周哲, 林贺洵, 等. 基于深度学习的智能矿物识别方法研究[J]. 地学前缘, 2020, 27(5): 39-47.
DOI
|
[8] |
AGRAWAL N, GOVIL H. A deep residual convolutional neural network for mineral classification[J]. Advances in Space Research, 2023, 71(8): 3186-3202.
|
[9] |
彭伟航, 白林, 商世为, 等. 基于改进InceptionV3模型的常见矿物智能识别[J]. 地质通报, 2019, 38(12): 2059-2066.
|
[10] |
杨彪, 马亦骥, 倪瑞璞, 等. 基于多尺度密集连接网络的矿物图像智能识别[J]. 云南大学学报(自然科学版), 2022, 44(6): 1118-1126.
|
[11] |
杨彪, 倪瑞璞, 高皓, 等. 基于多分辨率图像的矿物特征自动提取与矿物智能识别模型[J]. 有色金属工程, 2022, 12(5): 84-93.
|
[12] |
ZENG X, XIAO Y C, JI X H, et al. Mineral identification based on deep learning that combines image and mohs hardness[J]. Minerals, 2021, 11(5): 506.
|
[13] |
矿物数据库[EB/OL]. [2024-04-24]. https://www.mindat.org/.
|
[14] |
WEI X S, SONG Y Z, MAC AODHA O, et al. Fine-grained image analysis with deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8927-8948.
|
[15] |
马瑶, 智敏, 殷雁君, 等. CNN和Transformer在细粒度图像识别中的应用综述[J]. 计算机工程与应用, 2022, 58(19): 53-63.
DOI
|
[16] |
李祥霞, 吉晓慧, 李彬. 细粒度图像分类的深度学习方法[J]. 计算机科学与探索, 2021, 15(10): 1830-1842.
DOI
|
[17] |
LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of the 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile. New York: IEEE, 2015: 1449-1457.
|
[18] |
ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]// Proceedings of the AAAI conference on artificial intelligence, New York, USA. Washington: AAAI Press, 2020, 34(7): 13130-13137.
|
[19] |
ZHENG H L, FU J L, ZHA Z J, et al. Learning deep bilinear transformation for fine-grained image representation[C]// Proceedings of the 33rd international conference on neural information processing systems (NeurIPS). Vancouver: Curran Associates Inc., 2019: 4277-4286.
|
[20] |
DU R Y, CHANG D L, BHUNIA A K, et al. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[C]//VEDALDI A, BISCHOF H, BROX T, et al. Proceedings of European conference on computer vision. Cham: Springer, 2020: 153-168.
|
[21] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2021-01-03)[2023-08-15]. https://arxiv.org/abs/2010.11929.
|
[22] |
LI J S, XIA X, LI W, et al. Next-ViT: next generation vision transformer for efficient deployment in realistic industrial scenarios[EB/OL]. (2022-08-16)[2024-04-24]. http://arxiv.org/abs/2207.05501v4.
|
[23] |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of 2009 IEEE conference on computer vision and pattern recognition (CVPR), Miami, FL, USA. New York: IEEE, 2009: 248-255.
|