Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 150-169.DOI: 10.13745/j.esf.sf.2024.4.22
Previous Articles Next Articles
ZI Yanmei1,2(), TIAN Shihong1,2,3,4,*(
), CHEN Xinyang4,5, HOU Zengqian6, YANG Zhiming6, GONG Yingli7, TANG Qingyu1,2
Received:
2023-10-25
Revised:
2024-04-25
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet[J]. Earth Science Frontiers, 2024, 31(3): 150-169.
Fig.1 (a) Tectonic framework of the Lhasa terrane (modified after [42]); (b) A schematic map of the Qulong region in southern Tibet (modified after [27]); (c) Typical profile of the Qulong porphyry copper deposit in southern Tibet (modified after [43]). The green triangles, yellow circles and blue diamonds refer to the sample locations of dioritic enclaves, granodiorites, and granite porphyries, respectively. BNS=Bangong-Nujiang suture; IYZS=Indus-Yarlung Zangbo suture.
Fig.2 Microscopic photos of dioritic enclaves, granodiorites and granite porphyries in Qulong copper deposit, southern Tibet. (a) Dioritic enclaves; (b) Granodiorites; (c),(d) Granite porphyries.
样品编号 与平均值 | 岩性 | δ41Ksample/ ‰ | 2 SDsample/ ‰ | 95%c.i.std/ ‰ | N | w(K2Oa)/ % | w(Si % | Eu/Eu* | wB/10-6 | Nb/ Ta | (Rb/TiO2)/ 10-4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | Y | |||||||||||
QL10-4-5-1 | 闪长质包体 | -0.37 | 0.12 | 0.06 | 7 | 2.16 | 59.82 | 0.89 | 16.8 | 13.9 | 16.97 | 71 |
QL10-4-9-1 | 闪长质包体 | -0.24 | 0.12 | 0.05 | 7 | 1.5 | 57.27 | 0.67 | 21.8 | 16.4 | 21.11 | 120 |
QL10-4-9-1b | -0.21 | 0.1 | 0.14 | 3 | ||||||||
平均值c | -0.22 | 0.15 | 0.05 | 10 | ||||||||
QL10-4-9-2-1 | 闪长质包体 | -0.23 | 0.11 | 0.06 | 7 | 1.54 | 55.75 | 0.7 | 19.8 | 16 | 23 | 104 |
QL10-4-9-2-1b | -0.25 | 0.09 | 0.05 | 7 | ||||||||
平均值c | -0.24 | 0.14 | 0.04 | 14 | ||||||||
QL10-4-12-1-1 | 闪长质包体 | -0.26 | 0.1 | 0.05 | 7 | 1.94 | 56.76 | 0.69 | 20.7 | 12.3 | 19.5 | 118 |
QL10-4-12-1-1b | -0.27 | 0.05 | 0.14 | 3 | ||||||||
平均值c | -0.26 | 0.09 | 0.05 | 10 | ||||||||
QL10-4-17-1 | 闪长质包体 | -0.36 | 0.09 | 0.05 | 7 | 2.83 | 58.39 | 0.7 | 14.6 | 16 | 13.68 | 169 |
QL10-4-23-1 | 闪长质包体 | -0.34 | 0.14 | 0.06 | 6 | 2.56 | 59.45 | 0.95 | 13.4 | 10.2 | 16.05 | 151 |
QL10-4-25-1 | 闪长质包体 | -0.38 | 0.05 | 0.06 | 6 | 1.95 | 59.55 | 0.75 | 13.1 | 12.3 | 19.7 | 67 |
QL10-4-32-1 | 闪长质包体 | -0.29 | 0.12 | 0.06 | 7 | 1.91 | 57.73 | 0.8 | 19.4 | 14.4 | 20.27 | 115 |
QL10-4-32-1b | -0.27 | 0.07 | 0.05 | 7 | ||||||||
平均值c | -0.27 | 0.12 | 0.04 | 14 | ||||||||
QL10-4-7 | 花岗闪长岩 | -0.34 | 0.12 | 0.06 | 7 | 2.79 | 65.75 | 0.87 | 6.97 | 8.25 | 14.41 | 150 |
QL10-4-9-2-2 | 花岗闪长岩 | -0.34 | 0.12 | 0.06 | 7 | 2.79 | 65.93 | 0.93 | 6.49 | 5.7 | 23.64 | 140 |
QL10-4-9-2-2b | -0.39 | 0.09 | 0.05 | 7 | ||||||||
平均值c | -0.37 | 0.14 | 0.04 | 14 | ||||||||
QL10-4-12-1-2 | 花岗闪长岩 | -0.34 | 0.1 | 0.05 | 7 | 2.48 | 64.12 | 0.83 | 6.83 | 10.2 | 15.07 | 116 |
QL10-4-15 | 花岗闪长岩 | -0.41 | 0.11 | 0.05 | 7 | 2.89 | 64.71 | 0.87 | 7.08 | 8.29 | 14.62 | 135 |
QL10-4-17-2 | 花岗闪长岩 | -0.35 | 0.1 | 0.05 | 7 | 2.55 | 66.24 | 0.9 | 6.74 | 8.6 | 13.45 | 116 |
QL10-4-20 | 花岗闪长岩 | -0.4 | 0.09 | 0.06 | 6 | 2.48 | 64.69 | 0.85 | 7.58 | 9.26 | 14.86 | 123 |
QL10-4-23-2 | 花岗闪长岩 | -0.43 | 0.09 | 0.06 | 6 | 2.39 | 65.04 | 0.93 | 6.06 | 8.38 | 11.28 | 131 |
QL10-4-32-2 | 花岗闪长岩 | -0.36 | 0.11 | 0.05 | 7 | 2.44 | 64.75 | 0.84 | 6.99 | 10.2 | 12.61 | 126 |
QL10-4-32-2b | -0.32 | 0.11 | 0.05 | 7 | ||||||||
平均值c | -0.34 | 0.16 | 0.04 | 14 | ||||||||
QL10-4-52 | 花岗闪长岩 | -0.38 | 0.09 | 0.05 | 7 | 2.84 | 66.91 | 0.81 | 6.05 | 9.01 | 11.72 | 168 |
601-237 | 花岗斑岩 | -0.51 | 0.12 | 0.07 | 5 | 7.41 | 72.18 | 0.53 | 5.07 | 6.45 | 12.78 | 757 |
601-305 | 花岗斑岩 | -0.47 | 0.1 | 0.05 | 7 | 7.16 | 70.82 | 0.74 | 4.05 | 4.27 | 14.82 | 727 |
601-305b | -0.46 | 0.04 | 0.06 | 6 | ||||||||
平均值c | -0.47 | 0.08 | 0.04 | 13 | ||||||||
601-313 | 花岗斑岩 | -0.36 | 0.07 | 0.07 | 5 | 4.91 | 69.12 | 0.53 | 4.04 | 12 | 12.39 | 363 |
601-325 | 花岗斑岩 | -0.44 | 0.09 | 0.05 | 7 | 6.76 | 71.18 | 0.72 | 3.75 | 4.2 | 12.53 | 463 |
601-325b | -0.4 | 0.12 | 0.05 | 7 | ||||||||
平均值c | -0.43 | 0.15 | 0.04 | 14 | ||||||||
001-245.5 | 花岗斑岩 | -0.52 | 0.12 | 0.06 | 7 | 8.61 | 71.96 | 0.62 | 3.11 | 6.71 | 11.03 | 1 600 |
001-311 | 花岗斑岩 | -0.43 | 0.11 | 0.05 | 7 | 7.85 | 68.67 | 0.7 | 2.68 | 6.67 | 10.77 | 858 |
001-337 | 花岗斑岩 | -0.46 | 0.11 | 0.05 | 7 | 4.98 | 71.43 | 0.84 | 3.89 | 5.94 | 11.52 | 614 |
001-362 | 花岗斑岩 | -0.59 | 0.19 | 0.08 | 5 | 6.91 | 69.6 | 0.75 | 3.39 | 6.16 | 11.86 | 732 |
001-362b | -0.59 | 0.09 | 0.06 | 6 | ||||||||
平均值c | -0.59 | 0.17 | 0.05 | 11 | ||||||||
001-441.6 | 花岗斑岩 | -0.43 | 0.14 | 0.08 | 5 | 5.63 | 70.93 | 0.75 | 4.29 | 7.57 | 12.63 | 671 |
001-441.6b | -0.46 | 0.1 | 0.05 | 8 | ||||||||
平均值 c | -0.45 | 0.16 | 0.04 | 13 | ||||||||
001-470-2 | 花岗斑岩 | -0.48 | 0.14 | 0.06 | 7 | 7.25 | 72.59 | 0.75 | 2.97 | 7.69 | 12.3 | 1 006 |
001-470.2 | 花岗斑岩 | -0.54 | 0.14 | 0.06 | 7 | 7.32 | 72.25 | 0.52 | 3.36 | 8.61 | 13.32 | 928 |
Table 1 K isotope composition and related major and trace elemental contents of the dioritic enclaves, granodiorites and granite porphyries from Qulong porphyry copper deposit, southern Tibet
样品编号 与平均值 | 岩性 | δ41Ksample/ ‰ | 2 SDsample/ ‰ | 95%c.i.std/ ‰ | N | w(K2Oa)/ % | w(Si % | Eu/Eu* | wB/10-6 | Nb/ Ta | (Rb/TiO2)/ 10-4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | Y | |||||||||||
QL10-4-5-1 | 闪长质包体 | -0.37 | 0.12 | 0.06 | 7 | 2.16 | 59.82 | 0.89 | 16.8 | 13.9 | 16.97 | 71 |
QL10-4-9-1 | 闪长质包体 | -0.24 | 0.12 | 0.05 | 7 | 1.5 | 57.27 | 0.67 | 21.8 | 16.4 | 21.11 | 120 |
QL10-4-9-1b | -0.21 | 0.1 | 0.14 | 3 | ||||||||
平均值c | -0.22 | 0.15 | 0.05 | 10 | ||||||||
QL10-4-9-2-1 | 闪长质包体 | -0.23 | 0.11 | 0.06 | 7 | 1.54 | 55.75 | 0.7 | 19.8 | 16 | 23 | 104 |
QL10-4-9-2-1b | -0.25 | 0.09 | 0.05 | 7 | ||||||||
平均值c | -0.24 | 0.14 | 0.04 | 14 | ||||||||
QL10-4-12-1-1 | 闪长质包体 | -0.26 | 0.1 | 0.05 | 7 | 1.94 | 56.76 | 0.69 | 20.7 | 12.3 | 19.5 | 118 |
QL10-4-12-1-1b | -0.27 | 0.05 | 0.14 | 3 | ||||||||
平均值c | -0.26 | 0.09 | 0.05 | 10 | ||||||||
QL10-4-17-1 | 闪长质包体 | -0.36 | 0.09 | 0.05 | 7 | 2.83 | 58.39 | 0.7 | 14.6 | 16 | 13.68 | 169 |
QL10-4-23-1 | 闪长质包体 | -0.34 | 0.14 | 0.06 | 6 | 2.56 | 59.45 | 0.95 | 13.4 | 10.2 | 16.05 | 151 |
QL10-4-25-1 | 闪长质包体 | -0.38 | 0.05 | 0.06 | 6 | 1.95 | 59.55 | 0.75 | 13.1 | 12.3 | 19.7 | 67 |
QL10-4-32-1 | 闪长质包体 | -0.29 | 0.12 | 0.06 | 7 | 1.91 | 57.73 | 0.8 | 19.4 | 14.4 | 20.27 | 115 |
QL10-4-32-1b | -0.27 | 0.07 | 0.05 | 7 | ||||||||
平均值c | -0.27 | 0.12 | 0.04 | 14 | ||||||||
QL10-4-7 | 花岗闪长岩 | -0.34 | 0.12 | 0.06 | 7 | 2.79 | 65.75 | 0.87 | 6.97 | 8.25 | 14.41 | 150 |
QL10-4-9-2-2 | 花岗闪长岩 | -0.34 | 0.12 | 0.06 | 7 | 2.79 | 65.93 | 0.93 | 6.49 | 5.7 | 23.64 | 140 |
QL10-4-9-2-2b | -0.39 | 0.09 | 0.05 | 7 | ||||||||
平均值c | -0.37 | 0.14 | 0.04 | 14 | ||||||||
QL10-4-12-1-2 | 花岗闪长岩 | -0.34 | 0.1 | 0.05 | 7 | 2.48 | 64.12 | 0.83 | 6.83 | 10.2 | 15.07 | 116 |
QL10-4-15 | 花岗闪长岩 | -0.41 | 0.11 | 0.05 | 7 | 2.89 | 64.71 | 0.87 | 7.08 | 8.29 | 14.62 | 135 |
QL10-4-17-2 | 花岗闪长岩 | -0.35 | 0.1 | 0.05 | 7 | 2.55 | 66.24 | 0.9 | 6.74 | 8.6 | 13.45 | 116 |
QL10-4-20 | 花岗闪长岩 | -0.4 | 0.09 | 0.06 | 6 | 2.48 | 64.69 | 0.85 | 7.58 | 9.26 | 14.86 | 123 |
QL10-4-23-2 | 花岗闪长岩 | -0.43 | 0.09 | 0.06 | 6 | 2.39 | 65.04 | 0.93 | 6.06 | 8.38 | 11.28 | 131 |
QL10-4-32-2 | 花岗闪长岩 | -0.36 | 0.11 | 0.05 | 7 | 2.44 | 64.75 | 0.84 | 6.99 | 10.2 | 12.61 | 126 |
QL10-4-32-2b | -0.32 | 0.11 | 0.05 | 7 | ||||||||
平均值c | -0.34 | 0.16 | 0.04 | 14 | ||||||||
QL10-4-52 | 花岗闪长岩 | -0.38 | 0.09 | 0.05 | 7 | 2.84 | 66.91 | 0.81 | 6.05 | 9.01 | 11.72 | 168 |
601-237 | 花岗斑岩 | -0.51 | 0.12 | 0.07 | 5 | 7.41 | 72.18 | 0.53 | 5.07 | 6.45 | 12.78 | 757 |
601-305 | 花岗斑岩 | -0.47 | 0.1 | 0.05 | 7 | 7.16 | 70.82 | 0.74 | 4.05 | 4.27 | 14.82 | 727 |
601-305b | -0.46 | 0.04 | 0.06 | 6 | ||||||||
平均值c | -0.47 | 0.08 | 0.04 | 13 | ||||||||
601-313 | 花岗斑岩 | -0.36 | 0.07 | 0.07 | 5 | 4.91 | 69.12 | 0.53 | 4.04 | 12 | 12.39 | 363 |
601-325 | 花岗斑岩 | -0.44 | 0.09 | 0.05 | 7 | 6.76 | 71.18 | 0.72 | 3.75 | 4.2 | 12.53 | 463 |
601-325b | -0.4 | 0.12 | 0.05 | 7 | ||||||||
平均值c | -0.43 | 0.15 | 0.04 | 14 | ||||||||
001-245.5 | 花岗斑岩 | -0.52 | 0.12 | 0.06 | 7 | 8.61 | 71.96 | 0.62 | 3.11 | 6.71 | 11.03 | 1 600 |
001-311 | 花岗斑岩 | -0.43 | 0.11 | 0.05 | 7 | 7.85 | 68.67 | 0.7 | 2.68 | 6.67 | 10.77 | 858 |
001-337 | 花岗斑岩 | -0.46 | 0.11 | 0.05 | 7 | 4.98 | 71.43 | 0.84 | 3.89 | 5.94 | 11.52 | 614 |
001-362 | 花岗斑岩 | -0.59 | 0.19 | 0.08 | 5 | 6.91 | 69.6 | 0.75 | 3.39 | 6.16 | 11.86 | 732 |
001-362b | -0.59 | 0.09 | 0.06 | 6 | ||||||||
平均值c | -0.59 | 0.17 | 0.05 | 11 | ||||||||
001-441.6 | 花岗斑岩 | -0.43 | 0.14 | 0.08 | 5 | 5.63 | 70.93 | 0.75 | 4.29 | 7.57 | 12.63 | 671 |
001-441.6b | -0.46 | 0.1 | 0.05 | 8 | ||||||||
平均值 c | -0.45 | 0.16 | 0.04 | 13 | ||||||||
001-470-2 | 花岗斑岩 | -0.48 | 0.14 | 0.06 | 7 | 7.25 | 72.59 | 0.75 | 2.97 | 7.69 | 12.3 | 1 006 |
001-470.2 | 花岗斑岩 | -0.54 | 0.14 | 0.06 | 7 | 7.32 | 72.25 | 0.52 | 3.36 | 8.61 | 13.32 | 928 |
样品编号 与平均值 | 岩性 | δ26Mg/ ‰ | 2 SD/ ‰ | δ25Mg/ ‰ | 2 SD/ ‰ | w(MgOa)/ % | w(Si % | CIAa | w(LOIa)/ % | w(Cua)/ 10-6 | w(Sra)/ 10-6 | (87Sr/ 86Sr | εNd(t)a |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QL10-4-5-1 | 闪长质包体 | -0.36 | 0.07 | -0.23 | 0.05 | 3.55 | 59.82 | 44.8 | 0.71 | 100 | 971 | 0.704 854 | 0.04 |
QL10-4-9-1 | 闪长质包体 | -0.28 | 0.07 | -0.16 | 0.05 | 4.31 | 57.27 | 44.2 | 0.78 | 228 | 979 | 0.704 843 | 0.37 |
QL10-4-9-1b | -0.23 | 0.07 | -0.11 | 0.04 | |||||||||
平均值c | -0.25 | 0.07 | -0.13 | 0.06 | |||||||||
QL10-4-9-2-1 | 闪长质包体 | -0.19 | 0.07 | -0.10 | 0.05 | 4.22 | 55.75 | 44.3 | 0.72 | 176 | 932 | 0.704 866 | -0.06 |
QL10-4-12-1-1 | 闪长质包体 | -0.27 | 0.07 | -0.15 | 0.05 | 5.41 | 56.76 | 44.0 | 0.77 | 58 | 739 | 0.704 887 | -0.03 |
QL10-4-12-1-1b | -0.22 | 0.07 | -0.11 | 0.04 | |||||||||
平均值c | -0.24 | 0.07 | -0.13 | 0.06 | |||||||||
QL10-4-17-1 | 闪长质包体 | -0.29 | 0.07 | -0.12 | 0.05 | 3.58 | 58.39 | 47.2 | 1.22 | 67 | 838 | 0.704 900 | 0.19 |
QL10-4-23-1 | 闪长质包体 | -0.30 | 0.07 | -0.16 | 0.05 | 3.76 | 59.45 | 45.2 | 0.49 | 34 | 917 | 0.704 887 | -0.06 |
QL10-4-23-1b | -0.22 | 0.05 | -0.09 | 0.03 | |||||||||
平均值c | -0.26 | 0.06 | -0.12 | 0.06 | |||||||||
QL10-4-25-1 | 闪长质包体 | -0.22 | 0.07 | -0.09 | 0.05 | 2.8 | 59.55 | 45.9 | 0.56 | 46 | 1 032 | 0.704 913 | -0.07 |
QL10-4-32-1 | 闪长质包体 | -0.27 | 0.07 | -0.12 | 0.05 | 4.49 | 57.73 | 44.9 | 0.83 | 69 | 849 | 0.704 908 | -0.62 |
QL10-4-7 | 花岗闪长岩 | -0.15 | 0.07 | -0.05 | 0.05 | 1.57 | 65.75 | 48.9 | 0.6 | 103 | 1 092 | 0.704 896 | -0.34 |
QL10-4-7b | -0.18 | 0.06 | -0.09 | 0.04 | |||||||||
平均值c | -0.17 | 0.05 | -0.07 | 0.05 | |||||||||
QL10-4-9-2-2 | 花岗闪长岩 | -0.18 | 0.07 | -0.08 | 0.05 | 1.52 | 65.93 | 48.3 | 0.39 | 131 | 1 168 | 0.704 970 | -0.48 |
QL10-4-12-1-2 | 花岗闪长岩 | -0.21 | 0.07 | -0.09 | 0.05 | 1.68 | 64.12 | 47.8 | 0.4 | 30 | 1 250 | 0.704 904 | 0.93 |
QL10-4-12-1-2b | -0.21 | 0.05 | -0.11 | 0.03 | |||||||||
平均值c | -0.21 | 0.06 | -0.10 | 0.03 | |||||||||
QL10-4-15 | 花岗闪长岩 | -0.20 | 0.07 | -0.08 | 0.05 | 1.45 | 64.71 | 47.5 | 0.38 | 24 | 1 672 | 0.704 901 | 0.79 |
QL10-4-15b | -0.19 | 0.05 | -0.09 | 0.03 | |||||||||
平均值c | -0.19 | 0.06 | -0.09 | 0.05 | |||||||||
QL10-4-17-2 | 花岗闪长岩 | -0.37 | 0.07 | -0.21 | 0.05 | 1.5 | 66.24 | 48.4 | 0.41 | 26 | 1 186 | 0.704 916 | -0.44 |
QL10-4-17-2b | -0.19 | 0.05 | -0.10 | 0.03 | |||||||||
平均值c | -0.28 | 0.06 | -0.15 | 0.06 | |||||||||
QL10-4-20 | 花岗闪长岩 | -0.11 | 0.07 | 0.01 | 0.05 | 1.67 | 64.69 | 47.8 | 0.4 | 12 | 1 177 | 0.704 909 | -0.11 |
QL10-4-20b | -0.18 | 0.05 | -0.09 | 0.03 | |||||||||
平均值c | -0.14 | 0.07 | -0.04 | 0.06 | |||||||||
QL10-4-23-2 | 花岗闪长岩 | -0.17 | 0.07 | -0.09 | 0.05 | 1.57 | 65.04 | 48.0 | 0.3 | 19 | 1 189 | 0.704 911 | -0.59 |
QL10-4-23-2b | -0.21 | 0.05 | -0.11 | 0.03 | |||||||||
平均值c | -0.19 | 0.05 | -0.10 | 0.04 | |||||||||
QL10-4-32-2 | 花岗闪长岩 | -0.13 | 0.07 | -0.06 | 0.05 | 1.62 | 64.75 | 48.2 | 0.41 | 37 | 1 248 | 0.704 978 | -0.18 |
QL10-4-52 | 花岗闪长岩 | -0.26 | 0.07 | -0.12 | 0.05 | 1.34 | 66.91 | 48.6 | 0.40 | 65 | 989 | 0.704 867 | -0.91 |
601-237 | 花岗斑岩 | -0.22 | 0.07 | -0.09 | 0.04 | 0.81 | 72.18 | 46.5 | 2.8 | 1 034 | 507 | 0.705 004 | -0.97 |
601-305 | 花岗斑岩 | -0.44 | 0.07 | -0.23 | 0.05 | 0.76 | 70.82 | 48.6 | 2.13 | 339 | 502 | 0.705 093 | -0.92 |
601-313 | 花岗斑岩 | -0.31 | 0.07 | -0.15 | 0.05 | 0.83 | 69.12 | 48.3 | 2.29 | 866 | 624 | 0.705 225 | -1.40 |
601-313b | -0.21 | 0.07 | -0.10 | 0.04 | |||||||||
平均值c | -0.26 | 0.07 | -0.12 | 0.06 | |||||||||
601-325 | 花岗斑岩 | -0.42 | 0.07 | -0.23 | 0.05 | 0.84 | 71.18 | 48.6 | 1.96 | 832 | 622 | 0.705 101 | -0.85 |
601-325b | -0.23 | 0.05 | -0.11 | 0.03 | |||||||||
平均值c | -0.33 | 0.07 | -0.17 | 0.06 | |||||||||
001-245.5 | 花岗斑岩 | -0.36 | 0.08 | -0.18 | 0.05 | 0.58 | 71.96 | 47.8 | 2.39 | 768 | 346 | 0.705 310 | -0.86 |
001-311 | 花岗斑岩 | -0.23 | 0.08 | -0.14 | 0.05 | 1.05 | 68.67 | 51.6 | 2.80 | 1 246 | 462 | 0.705 212 | -0.90 |
001-337 | 花岗斑岩 | -0.31 | 0.06 | -0.15 | 0.04 | 0.80 | 71.43 | 49.4 | 1.99 | 1 253 | 566 | 0.705 195 | -0.90 |
001-362 | 花岗斑岩 | -0.17 | 0.08 | -0.11 | 0.05 | 0.76 | 69.6 | 49.3 | 2.19 | 2 021 | 456 | 0.705 191 | -1.12 |
001-362b | -0.10 | 0.07 | -0.03 | 0.04 | |||||||||
平均值c | -0.13 | 0.08 | -0.07 | 0.05 | |||||||||
001-441.6 | 花岗斑岩 | -0.23 | 0.08 | -0.14 | 0.05 | 0.9 | 70.93 | 49.5 | 2.71 | 1 585 | 409 | 0.705 220 | -1.28 |
001-470-2 | 花岗斑岩 | -0.31 | 0.07 | -0.16 | 0.05 | 0.50 | 72.59 | 48.5 | 1.93 | 1 695 | 389 | 0.705 215 | -1.63 |
001-470-2b | -0.35 | 0.07 | -0.18 | 0.04 | |||||||||
平均值c | -0.33 | 0.06 | -0.17 | 0.04 | |||||||||
001-470.2 | 花岗斑岩 | -0.47 | 0.07 | -0.29 | 0.05 | 0.54 | 72.25 | 48.0 | 2.11 | 1 542 | 430 | 0.705 181 | 0.11 |
001-470.2b | -0.35 | 0.07 | -0.17 | 0.04 | |||||||||
平均值c | -0.41 | 0.07 | -0.23 | 0.05 |
Table 2 Mg isotope composition and related major and trace elemental contents of the dioritic enclaves, granodiorites and granite porphyries from Qulong porphyry copper deposit, southern Tibet
样品编号 与平均值 | 岩性 | δ26Mg/ ‰ | 2 SD/ ‰ | δ25Mg/ ‰ | 2 SD/ ‰ | w(MgOa)/ % | w(Si % | CIAa | w(LOIa)/ % | w(Cua)/ 10-6 | w(Sra)/ 10-6 | (87Sr/ 86Sr | εNd(t)a |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QL10-4-5-1 | 闪长质包体 | -0.36 | 0.07 | -0.23 | 0.05 | 3.55 | 59.82 | 44.8 | 0.71 | 100 | 971 | 0.704 854 | 0.04 |
QL10-4-9-1 | 闪长质包体 | -0.28 | 0.07 | -0.16 | 0.05 | 4.31 | 57.27 | 44.2 | 0.78 | 228 | 979 | 0.704 843 | 0.37 |
QL10-4-9-1b | -0.23 | 0.07 | -0.11 | 0.04 | |||||||||
平均值c | -0.25 | 0.07 | -0.13 | 0.06 | |||||||||
QL10-4-9-2-1 | 闪长质包体 | -0.19 | 0.07 | -0.10 | 0.05 | 4.22 | 55.75 | 44.3 | 0.72 | 176 | 932 | 0.704 866 | -0.06 |
QL10-4-12-1-1 | 闪长质包体 | -0.27 | 0.07 | -0.15 | 0.05 | 5.41 | 56.76 | 44.0 | 0.77 | 58 | 739 | 0.704 887 | -0.03 |
QL10-4-12-1-1b | -0.22 | 0.07 | -0.11 | 0.04 | |||||||||
平均值c | -0.24 | 0.07 | -0.13 | 0.06 | |||||||||
QL10-4-17-1 | 闪长质包体 | -0.29 | 0.07 | -0.12 | 0.05 | 3.58 | 58.39 | 47.2 | 1.22 | 67 | 838 | 0.704 900 | 0.19 |
QL10-4-23-1 | 闪长质包体 | -0.30 | 0.07 | -0.16 | 0.05 | 3.76 | 59.45 | 45.2 | 0.49 | 34 | 917 | 0.704 887 | -0.06 |
QL10-4-23-1b | -0.22 | 0.05 | -0.09 | 0.03 | |||||||||
平均值c | -0.26 | 0.06 | -0.12 | 0.06 | |||||||||
QL10-4-25-1 | 闪长质包体 | -0.22 | 0.07 | -0.09 | 0.05 | 2.8 | 59.55 | 45.9 | 0.56 | 46 | 1 032 | 0.704 913 | -0.07 |
QL10-4-32-1 | 闪长质包体 | -0.27 | 0.07 | -0.12 | 0.05 | 4.49 | 57.73 | 44.9 | 0.83 | 69 | 849 | 0.704 908 | -0.62 |
QL10-4-7 | 花岗闪长岩 | -0.15 | 0.07 | -0.05 | 0.05 | 1.57 | 65.75 | 48.9 | 0.6 | 103 | 1 092 | 0.704 896 | -0.34 |
QL10-4-7b | -0.18 | 0.06 | -0.09 | 0.04 | |||||||||
平均值c | -0.17 | 0.05 | -0.07 | 0.05 | |||||||||
QL10-4-9-2-2 | 花岗闪长岩 | -0.18 | 0.07 | -0.08 | 0.05 | 1.52 | 65.93 | 48.3 | 0.39 | 131 | 1 168 | 0.704 970 | -0.48 |
QL10-4-12-1-2 | 花岗闪长岩 | -0.21 | 0.07 | -0.09 | 0.05 | 1.68 | 64.12 | 47.8 | 0.4 | 30 | 1 250 | 0.704 904 | 0.93 |
QL10-4-12-1-2b | -0.21 | 0.05 | -0.11 | 0.03 | |||||||||
平均值c | -0.21 | 0.06 | -0.10 | 0.03 | |||||||||
QL10-4-15 | 花岗闪长岩 | -0.20 | 0.07 | -0.08 | 0.05 | 1.45 | 64.71 | 47.5 | 0.38 | 24 | 1 672 | 0.704 901 | 0.79 |
QL10-4-15b | -0.19 | 0.05 | -0.09 | 0.03 | |||||||||
平均值c | -0.19 | 0.06 | -0.09 | 0.05 | |||||||||
QL10-4-17-2 | 花岗闪长岩 | -0.37 | 0.07 | -0.21 | 0.05 | 1.5 | 66.24 | 48.4 | 0.41 | 26 | 1 186 | 0.704 916 | -0.44 |
QL10-4-17-2b | -0.19 | 0.05 | -0.10 | 0.03 | |||||||||
平均值c | -0.28 | 0.06 | -0.15 | 0.06 | |||||||||
QL10-4-20 | 花岗闪长岩 | -0.11 | 0.07 | 0.01 | 0.05 | 1.67 | 64.69 | 47.8 | 0.4 | 12 | 1 177 | 0.704 909 | -0.11 |
QL10-4-20b | -0.18 | 0.05 | -0.09 | 0.03 | |||||||||
平均值c | -0.14 | 0.07 | -0.04 | 0.06 | |||||||||
QL10-4-23-2 | 花岗闪长岩 | -0.17 | 0.07 | -0.09 | 0.05 | 1.57 | 65.04 | 48.0 | 0.3 | 19 | 1 189 | 0.704 911 | -0.59 |
QL10-4-23-2b | -0.21 | 0.05 | -0.11 | 0.03 | |||||||||
平均值c | -0.19 | 0.05 | -0.10 | 0.04 | |||||||||
QL10-4-32-2 | 花岗闪长岩 | -0.13 | 0.07 | -0.06 | 0.05 | 1.62 | 64.75 | 48.2 | 0.41 | 37 | 1 248 | 0.704 978 | -0.18 |
QL10-4-52 | 花岗闪长岩 | -0.26 | 0.07 | -0.12 | 0.05 | 1.34 | 66.91 | 48.6 | 0.40 | 65 | 989 | 0.704 867 | -0.91 |
601-237 | 花岗斑岩 | -0.22 | 0.07 | -0.09 | 0.04 | 0.81 | 72.18 | 46.5 | 2.8 | 1 034 | 507 | 0.705 004 | -0.97 |
601-305 | 花岗斑岩 | -0.44 | 0.07 | -0.23 | 0.05 | 0.76 | 70.82 | 48.6 | 2.13 | 339 | 502 | 0.705 093 | -0.92 |
601-313 | 花岗斑岩 | -0.31 | 0.07 | -0.15 | 0.05 | 0.83 | 69.12 | 48.3 | 2.29 | 866 | 624 | 0.705 225 | -1.40 |
601-313b | -0.21 | 0.07 | -0.10 | 0.04 | |||||||||
平均值c | -0.26 | 0.07 | -0.12 | 0.06 | |||||||||
601-325 | 花岗斑岩 | -0.42 | 0.07 | -0.23 | 0.05 | 0.84 | 71.18 | 48.6 | 1.96 | 832 | 622 | 0.705 101 | -0.85 |
601-325b | -0.23 | 0.05 | -0.11 | 0.03 | |||||||||
平均值c | -0.33 | 0.07 | -0.17 | 0.06 | |||||||||
001-245.5 | 花岗斑岩 | -0.36 | 0.08 | -0.18 | 0.05 | 0.58 | 71.96 | 47.8 | 2.39 | 768 | 346 | 0.705 310 | -0.86 |
001-311 | 花岗斑岩 | -0.23 | 0.08 | -0.14 | 0.05 | 1.05 | 68.67 | 51.6 | 2.80 | 1 246 | 462 | 0.705 212 | -0.90 |
001-337 | 花岗斑岩 | -0.31 | 0.06 | -0.15 | 0.04 | 0.80 | 71.43 | 49.4 | 1.99 | 1 253 | 566 | 0.705 195 | -0.90 |
001-362 | 花岗斑岩 | -0.17 | 0.08 | -0.11 | 0.05 | 0.76 | 69.6 | 49.3 | 2.19 | 2 021 | 456 | 0.705 191 | -1.12 |
001-362b | -0.10 | 0.07 | -0.03 | 0.04 | |||||||||
平均值c | -0.13 | 0.08 | -0.07 | 0.05 | |||||||||
001-441.6 | 花岗斑岩 | -0.23 | 0.08 | -0.14 | 0.05 | 0.9 | 70.93 | 49.5 | 2.71 | 1 585 | 409 | 0.705 220 | -1.28 |
001-470-2 | 花岗斑岩 | -0.31 | 0.07 | -0.16 | 0.05 | 0.50 | 72.59 | 48.5 | 1.93 | 1 695 | 389 | 0.705 215 | -1.63 |
001-470-2b | -0.35 | 0.07 | -0.18 | 0.04 | |||||||||
平均值c | -0.33 | 0.06 | -0.17 | 0.04 | |||||||||
001-470.2 | 花岗斑岩 | -0.47 | 0.07 | -0.29 | 0.05 | 0.54 | 72.25 | 48.0 | 2.11 | 1 542 | 430 | 0.705 181 | 0.11 |
001-470.2b | -0.35 | 0.07 | -0.17 | 0.04 | |||||||||
平均值c | -0.41 | 0.07 | -0.23 | 0.05 |
Fig.3 (a) δ41K versus SiO2, (b) δ41K versus K2O, (c) δ26Mg versus SiO2 and (d) δ26Mg versus MgO diagrams for dioritic enclaves, porphyries and granite porphyries in Qulong copper deposit, southern Tibet. The gray bar represents the average δ41K and δ26Mg values of the mantle (δ41K=-0.42‰±0.08‰[9]; δ26Mg=-0.25‰±0.07‰[56]), respectively. Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.4 (a) δ41K versus CIA and (b) δ26Mg versus CIA diagrams for dioritic enclaves, granodiorites and granite porphyries in Qulong copper deposit, southern Tibet. Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.5 (a) δ41K versus Sc, (b) δ41K versus Y, (c) δ41K versus Eu/Eu* and (d) δ41K versus Sr diagrams for dioritic enclaves, granodiorites and granite porphyries in Qulong copper deposit, southern Tibet. Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.6 Rayleigh distillation model of δ41K during the fractional crystallization of minerals for dioritic enclaves, granodiorites and granite porphyries in Qulong porphyry copper deposit, southern Tibet. Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.7 (a) δ41K versus Rb/TiO2, (b) δ26Mg versus Rb/TiO2, (c) δ41K versus Nb/Ta and (d) δ26Mg versus Rb/TiO2 diagrams for dioritic enclaves, granodiorites and granite porphyries in Qulong copper deposit, southern Tibet. Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.8 (a)The primitive mantle-normalized trace element patterns, (b)chondrite-normalized rare earth element (REE) patterns, (c) δ7Li versus87Sr/86Sr and (d) δ7Li versus εNd(t) diagrams for dioritic enclaves, granodiorites and granite porphyries in Qulong copper deposit, southern Tibet. The basemaps from [27].
Fig.9 (a) δ41K versus87Sr/86Sr, (b) δ26Mg versus87Sr/86Sr, (c)δ41K versus εNd(t) and (d) δ26Mg versus εNd(t) diagrams for dioritic enclaves in Qulong copper deposit, southern Tibet. Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.10 (a) δ41K versus Cu, (b) δ26Mg versus Cu, (c) Rb/TiO2 versus Cu and (d) Nb/Ta versus Cu diagrams for dioritic enclaves, granodiorites and granite porphyries in the Qulong copper deposit, southern Tibet. The gray bar represents the average δ41K and δ26Mg values of the mantle (δ41K=-0.42‰±0.08‰[9]; δ26Mg=-0.25‰±0.07‰[56]). Error bars represent 2 SD uncertainties. Symbols are as in Fig.1.
Fig.11 (a)Cu versus SiO2 diagram; (b)δ7Li versus Cu diagram. The basemaps adapted from [27]. Error bars represent 2 SD uncertainties. Symbols are as in Fig.9.
Fig.12 (a)δ41K versus δ26Mg diagram of altered rocks in the Dexing porphyry copper deposit (basemaps adapted from [16]);(b)δ41K versus δ26Mg diagram of Qulong porphyry copper deposit
[1] | BERGLUND M, WIESER M E. Isotopic compositions of the elements 2009 (IUPAC technical report)[J]. Pure and Applied Chemistry, 2011, 83(2): 397-410. |
[2] | TENG F Z, DAUPHAS N, WATKINS J M, et al. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26. |
[3] | TENG F Z, HU Y, MA J L, et al. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance[J]. Geochimica et Cosmochimica Acta, 2020, 278: 261-271. |
[4] | WANG K, LI W, LI S, et al. Geochemistry and cosmochemistry of potassium stable isotopes[J]. Geochemistry, 2021, 81(3): 125786. |
[5] | LIU H, WANG K, SUN W D, et al. Extremely light K in subducted low-T altered oceanic crust: implications for K recycling in subduction zone[J]. Geochimica et Cosmochimica Acta, 2020, 277: 206-223. |
[6] | LIU H, XUE Y Y, ZhANG G, et al. Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle[J]. Geochimica et Cosmochimica Acta, 2021, 311: 59-73. |
[7] | HU Y, CHEN X Y, XU Y K, et al. High-precision analysis of potassium isotopes by HR-MC-ICPMS[J]. Chemical Geology, 2018, 493: 100-108. |
[8] | TÉLOUK P, ALBALAT E, TACAIL T, et al. Steady analyses of potassium stable isotopes using a Thermo Scientific Neoma MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(6): 1259-1264. |
[9] | HU Y, TENG F Z, HELZ R T, et al. Potassium isotope fractionation during magmatic differentiation and the composition of the mantle[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021543. |
[10] | HUANG T Y, TENG F Z, RUDNICK R L, et al. Heterogeneous potassium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2020, 278: 122-136. |
[11] | HUANG T Y, TENG F Z, WANG Z Z, et al. Potassium isotope fractionation during granitic magmatic differentiation: mineral-pair perspectives[J]. Geochimica et Cosmochimica Acta, 2023, 343: 196-211. |
[12] | HU Y, TENG F Z, CHAUVEL C. Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas[J]. Geochimica et Cosmochimica Acta, 2021, 295: 98-111. |
[13] | WANG Z Z, TENG F Z, WU F Y, et al. Extensive crystal fractionation of high-silica magmas revealed by K isotopes[J]. Science Advances, 2022, 8(47): eabo4492. |
[14] |
GUO B J, ZHU X K, DONG A G, et al. Mg isotopic systematics and geochemical applications: a critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
DOI |
[15] | BERGLUND M, WIESER M E. Isotopic compositions of the elements 2009 (IUPAC technical report)[J]. Pure and Applied Chemistry, 2011, 83(2): 397-410. |
[16] | LIU S A, TENG F Z, HE Y S, et al. Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 646-654. |
[17] | LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140. |
[18] | TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 63-71. |
[19] | HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System, 2004(1/2): 220. |
[20] | 杨志明, 侯增谦. 西藏驱龙超大型斑岩铜矿的成因: 流体包裹体及 H-O 同位素证据[J]. 地质学报, 2009, 83(12): 1838-1859. |
[21] | GAO Y, HOU Z, KAMBER B S, et al. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism[J]. Contributions to Mineralogy & Petrology, 2007, 153(1): 105-120. |
[22] | GAO Y F, HOU Z Q, WANG R H, et al. Post-collisional adakitic porphyries in Tibet: geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction[J]. Acta Geologica Sinica (English Edition), 2003, 77(2): 194-203. |
[23] | CHUNG S L, LIU D, JI J, et al. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. |
[24] | 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征, 岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817. |
[25] | 杨志明. 西藏驱龙超大型斑岩铜矿床: 岩浆作用与矿床成因[D]. 北京: 中国地质科学院, 2008. |
[26] | GUO Z, WILSON M, LIU J. Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust[J]. Lithos, 2007, 96(1/2): 205-224. |
[27] | TIAN H C, TIAN S H, HOU Z Q, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks[J]. Geochimica et Cosmochimica Acta, 2022, 332: 19-32. |
[28] | 侯增谦, 曲晓明, 杨竹森. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 2006(6): 629-651. |
[29] | HOU Z, COOK N J, ZAW K. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36(1/2/3): 2-24. |
[30] | WANG R, ZHU D, WANG Q, et al. Porphyries mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 63: 2042-2067. |
[31] | ZHOU A, DAI J G, LI Y L, et al. Differential exhumation histories between Qulong and Xiongcun porphyries copper deposits in the Gangdese Copper Metallogenic Belt: insights from low temperature thermochronology[J]. Ore Geology Reviews, 2019, 107: 801-819. |
[32] | CHUNG S L, CHU M F, ZHANG Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196. |
[33] | HOU Z Q, YANG Z, QU X, et al. The Miocene Gangdese porphyries copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3): 25-51. |
[34] | 侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4): 337-358. |
[35] | HOU Z Q, WANG R, ZHANG H J, et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate[J]. Earth-Science Reviews, 2023, 243(1): 104482. |
[36] | WANG R, WEINBERG R F, ZHU D C, et al. The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen[J]. Geological Society of America Bulletin, 2022, 134(3/4): 681-690. |
[37] | COLEMAN M, HODGES K. Evidence for Tibetan Plateau uplift below 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517): 49-52. |
[38] | BLINSIUK P M. Normal faulting in central Tibet since at least 13. 5 Myr ago[J]. Nature, 2001, 412(6847): 628. |
[39] | WANG R, WEINBERG R F, COLLOINS W J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143. |
[40] | COULON C, MALUSKI H, BOLLINGER C, et al. Mesozoic and cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3/4): 281-302. |
[41] | CHUNG S L, LIU D, JI J, et al. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11). |
[42] | ZHENG Y C, HOU Z Q, LI Q Y, et al. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry[J]. Lithos, 2012, 148: 296-311. |
[43] | YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyries copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36(1/2/3): 133-159. |
[44] | XIAO B, QIN K, LI G, et al. Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyries Cu-Mo deposit, southern Tibet, China[J]. Resource Geology, 2012, 62(1): 4-18. |
[45] | JUNXING, ZHAO, KEZHANG, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36(1): 390-409. |
[46] | TIAN H C, TENG F Z, CHEN X Y, et al. Multi-mode chemical exchange in seafloor alteration revealed by lithium and potassium isotopes[J]. Chemical Geology, 2022, 606: 121004. |
[47] | TENG F Z, WADHWA M, HELZR T. Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 84-92. |
[48] | TIAN S H, HOU Z Q, CHEN X Y, et al. Magnesium isotopic behaviors between metamorphic rocks and their associated leucogranites, and implications for Himalayan orogenesis[J]. Gondwana Research, 2020, 87: 23-40. |
[49] | TIAN H C, TENG F Z, HOU Z Q, et al. Magnesium and lithium isotopic evidence for a remnant oceanic slab beneath central Tibet[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018197. |
[50] | HU Y, TENG F Z, PLANK T, et al. Potassium isotopic heterogeneity in subducting oceanic plates[J]. Science Advances, 2020, 6(49): eabb2472. |
[51] | WANG Z Z, TENG F Z, PRELEVIĆ D, et al. Potassium isotope evidence for sediment recycling into the orogenic lithospheric mantle[J]. Geochemical Perspectives Letters, 2021, 18: 43-47. |
[52] | CHEN H, TIAN Z, TULLER-ROSS B, et al. High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(1): 160-171. |
[53] |
HU Y, HARRINGTON M D, SUN Y, et al. Magnesium isotopic homogeneity of San Carlos olivine: a potential standard for Mg isotopic analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2123-2132.
DOI PMID |
[54] | TENG F Z, Li W Y, Ke S, et al. Magnesium isotopic compositions of international geological reference materials[J]. Geostandards and Geoanalytical Research, 2015, 39: 329-339. |
[55] | WANG K, JACOBSEN S B. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts[J]. Geochimica et Cosmochimica Acta, 2016, 178: 223-232. |
[56] | TENG F Z, LI W Y, KE S, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166. |
[57] | TENG F Z, YANG W, RUDNICK R L, et al. Heterogeneous magnesium isotopic composition of the lower continental crust: a xenolith perspective: Mg isotopes in the lower crust[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(9): 3844-3856. |
[58] | TIAN H C, YANG W, LI S G, et al. Approach to Trace Hidden Paleo-Weathering of Basaltic Crust through Decoupled Mg Sr and Nd Isotopes Recorded in Volcanic Rocks[J]. Chemical Geology, 2019, 509: 234-248. |
[59] | CHEN H, LIU X M, WANG K. Potassium isotope fractionation during chemical weathering of basalts[J]. Earth and Planetary Science Letters, 2020, 539: 116192. |
[60] | SUN Y, TENG F Z, HU Y, et al. Tracing subducted oceanic slabs in the mantle by using potassium isotopes[J]. Geochimica et Cosmochimica Acta, 2020, 278: 353-360. |
[61] |
LI S, LI W, BEARD B L, et al. K isotopes as a tracer for continental weathering and geological K cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8740-8745.
DOI PMID |
[62] | 吴洪杰, 何永胜, 侯振辉, 等. 大别山早白垩世花岗岩类斜长石成分: 分离结晶对全岩Sr-CaO关系的影响[J]. 科学通报, 2015(2): 8. |
[63] | LIU X M, RUDNICK R L, HIER-MAJUMDER S, et al. Processes controlling lithium isotopic distribution in contact aureoles: A case study of the Florence County pegmatites, Wisconsin[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8):14. |
[64] | TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 701-710. |
[65] | CHACKO T, COLE D R, HORITA J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 1-81. |
[66] | TULLER-ROSS B, MARTY B, CHEN H, et al. Potassium isotope systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2019, 259: 144-154. |
[67] | PAPIKE J J, CAMERON M. Crystal chemistry of silicate minerals of geophysical interest[J]. Reviews of Geophysics, 1976, 14(1): 37-80. |
[68] | DOWNS R, DOWNS R T, HAZEB R M, et al. The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering[J]. American Mineralogist, 1994, 79(11/12): 1042-1052. |
[69] | HU X, GARZANTI E, WANG J, et al. The timing of India-Asia collision onset-Facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299. |
[70] | WANG S J, TENG F Z, SCOTT J M. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics[J]. Geochimica et Cosmochimica Acta, 2016, 185: 78-87. |
[71] | KE S, TENG F Z, LI S G, et al. Mg, Sr, and O isotope geochemistry of syenites from Northwest Xinjiang, China: tracing carbonate recycling during tethyan oceanic subduction[J]. Chemical Geology, 2016, 437: 109-119. |
[72] | REED M H. Hydrothermal alteration and its relationship to ore fluid composition[J]. Geochemistry of Hydrothermal Ore Deposit, 1997: 303-366. |
[73] | SCHAUBLE E A. Applying stable isotope fractionation theory to new systems[J]. Geochemistry of Non-Traditional Stable Isotopes, 2004, 55(1): 65-111. |
[74] | 李伟强, 赵书高, 王小敏. 斑岩铜矿热液流体的K-Mg同位素示踪[J]. 中国科学: 地球科学, 2020, 50(2): 245-257. |
[75] | BALLOUARD C, POUJOL M, BOULVAIS P, et al. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3): 231-234. |
[76] | WANG L L, MO X X, LI B, et al. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet[J]. Acta Petrologica Sinica, 2006, 22: 1001-1008. |
[77] | HOU Z, ZHENG Y, YANG Z M, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48: 173-192. |
[78] | HOU Z, YANG Z, LU Y, et al. A genetic linkage between subduction- and collision-related porphyries Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 643-50. |
[79] | HU Y, LIU J, LING M, et al. The formation of Qulong adakites and their relationship with porphyry copper deposit: geochemical constraints[J]. Lithos, 2015, 220: 60-80. |
[80] | ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyries deposits in a collisional setting[J]. Geology, 2019, 47(2): 135-138. |
[81] | LIU H, WANG K, SUN W D, et al. Extremely light K in subducted low-T altered oceanic crust: implications for K recycling in subduction zone[J]. Geochimica et Cosmochimica Acta, 2020, 277: 206-223. |
[82] | PARENDO C A, JACOBSEN S B, KIMURA J I, et al. Across-arc variations in K-isotope ratios in lavas of the Izu arc: evidence for progressive depletion of the slab in K and similarly mobile elements[J]. Earth and Planetary Science Letters, 2022, 578: 117291. |
[83] | WILLIAMS H, TURNER S, KELLEY S, et al. Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4): 339-342. |
[84] | HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyries deposits at cratonic edges[J]. Geology, 2017, 45(6): 563-566. |
[85] | NIE L, LI Z, FANG X, et al. Cu isotope fractionation during magma evolution process of Qulong porphyries copperdeposit, Tibet[J]. Mineralium Deposita, 2012, 31: 718-726. |
[86] | HOU Z, WANG R. Fingerprinting metal transfer from mantle[J]. Nature Communications, 2019, 10(1): 3510. |
[87] |
GUO H, XIA Y, BAI R, et al. Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits[J]. National Science Review, 2020, 7(8): 1319-1330.
DOI PMID |
[88] | CANDE P A, HOLLAND H D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids[J]. Geochimica et Cosmochimica Acta, 1984, 48(2): 373-380. |
[89] | CANDELA P A. A review of shallow, ore-related granites: textures, volatiles, and ore metals[J]. Journal of Petrology, 1997, 38(12): 1619-1633. |
[90] | CLINE J S, BODNAR R J. Can economic porphyries copper mineralization be generated by a typical calc-alkaline melt[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B5): 8113-8126. |
[91] | RICHARDS J P. Cumulative factors in the generation of giant calc-alkaline porphyries Cu deposits[J]. Superporphyries Copper and Golddeposits: Aglobal Perspective, 2005, 1: 7-25. |
[92] | DAMONPE. Batholith-volcano coupling in the metallogeny of porphyry copper deposits[C]//FRIEDRICHG H, GENKINA D, NALDRETT A J. Special publication No.4 of the society for geology applied to mineral deposits. Berlin, Heidelberg: Springer, 1986: 216-234. |
[93] | CLINE J S. Genesis of porphyry copper deposits: the behavior of water, chloride, and copper in crystallizing melts[J]. Arizona Geological Society Digest, 1995, 20: 69-82. |
[94] | PITZER K S, PABALAN R T. Thermodynamics of NaCl in steam[J]. Geochimica et Cosmochimica Acta, 1986, 50 (7): 1445-1454. |
[95] | 杨志明, 谢玉玲, 李光明, 等. 西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J]. 地质与勘探, 2005, 41(2): 21-26. |
[96] | SEEDORFF E, DILLES J H, PROFFETT J M, et al. Por-phyry deposits: characteristics and origin of hypogene fea-ture SL[J]. Economic Geology, 2005, 29: 251-298. |
[97] | LI J, HUANG X L, WEI G J, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta, 2018, 240: 64-79. |
[98] | BAO C, CHEN B, LIU C, et al. Lithium isotopic systematics of ore-forming fluid in the orogenic gold deposits, Jiaodong Peninsula (East China): implications for ore-forming mechanism[J]. Ore Geology Reviews, 2021, 136: 104254. |
[1] | SHI Kai, XU Lijuan, SU Yuwen, LIU Chunyang, MA Haibo, LIU Sheng’ao. Research progress on Cr isotopes in high temperature magmatic processes: A review [J]. Earth Science Frontiers, 2022, 29(1): 364-376. |
[2] | XIA Zhiguang, HU Zhongya, LIU Chuan, WEI Haizhen, LI Weiqiang. Non-traditional stable isotopes in evaporite system: A research review [J]. Earth Science Frontiers, 2021, 28(6): 29-45. |
[3] | ZHAO Xinmiao, TANG Suohan, LI Jin, ZHU Xiangkun, WANG Hui, LI Zhihan, ZHANG Hongfu. A review of titanium isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 68-77. |
[4] | LIU Xi, WANG Yijing, WEI Haizhen. Advances in stable chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 29-41. |
[5] | LIU Bingyue,ZHANG Dongdong,HE Ling,ZHU Youfeng. Enantioselective biodegradation and carbon isotope fractionation of myclobutanil in tea orchard soils [J]. Earth Science Frontiers, 2019, 26(6): 13-18. |
[6] | XIAO Hua-Yun, LIU Cong-Jiang. Nitrogen isotope as a tracer in atmospheric environment and bioindicators. [J]. Earth Science Frontiers, 2010, 17(2): 417-425. |
[7] | HONG Jian-Guo, CHEN Dai-Zhao, YAN De-Tian. Variation in carbon and sulphur isotopes and environments during the critical geological transitions. [J]. Earth Science Frontiers, 2009, 16(6): 33-47. |
[8] | LI Jin HU Guo-Yi ZHANG Yang YANG Gui-Fang CUI Hui-Yang CAO Hong-Meng HU Xu-Long. Study and application of carbon isotope fractionation during the reduction process from CO2 to CH4 [J]. Earth Science Frontiers, 2008, 15(5): 357-363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||