Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (6): 29-45.DOI: 10.13745/j.esf.sf.2021.1.38
Previous Articles Next Articles
XIA Zhiguang1, HU Zhongya1,2, LIU Chuan1, WEI Haizhen1, LI Weiqiang1,*
Received:
2021-01-10
Revised:
2021-02-18
Online:
2021-11-25
Published:
2021-11-25
CLC Number:
XIA Zhiguang, HU Zhongya, LIU Chuan, WEI Haizhen, LI Weiqiang. Non-traditional stable isotopes in evaporite system: A research review[J]. Earth Science Frontiers, 2021, 28(6): 29-45.
[1] WARREN K J.Evaporites: a geological compendium, 2nd Edition[M]. Berlin, Heidelberg: Springer, 2016: 1-1813. [2] BĄBEL M, SCHREIBER B C. Geochemistry of evaporites and evolution of seawater[M]∥HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Oxford: Elsevier, 2014: 483-560. [3] LOWENSTEIN T K, TIMOFEEFF M N, BRENNAN S T, et al.Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions[J]. Science, 2001, 294: 1086-1088. [4] HORITA J, ZIMMERMANN H, HOLLAND H D.Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756. [5] 郑绵平, 袁鹤然, 张永生, 等. 中国钾盐区域分布与找钾远景[J]. 地质学报, 2010, 84(11): 1523-1553. [6] 郑绵平, 张震, 张永生, 等. 我国钾盐找矿规律新认识和进展[J]. 地球学报, 2012, 33(3): 280-294. [7] 郑绵平, 刘喜方. 中国的锂资源[J]. 新材料产业, 2007(8): 13-16. [8] 严军, 黄小良. 青海省盐湖钾、镁、锂盐资源开发利用探讨[J]. 盐湖研究, 2002(4): 63-69. [9] 郑学家. 硼及硼酸盐产品开发和应用前景[J]. 无机盐工业, 2005(4): 1-3. [10] 林勇杰, 郑绵平, 刘喜方. 青藏高原盐湖硼矿资源[J]. 科技导报, 2017, 35(12): 77-82. [11] 申军. 国内外硼矿资源及硼工业发展综述[J]. 化工矿物与加工, 2013, 42(3): 38-42. [12] MENG F, NI P, SCHIFFBAUER J D, et al.Ediacaran seawater temperature: evidence from inclusions of Sinian halite[J]. Precambrian Research, 2011, 184: 63-69. [13] LOWENSTEIN T K, LI J, BROWN C B.Paleotemperatures from fluid inclusions in halite: method verification and a 100000 year paleotemperature record, Death Valley, CA[J]. Chemical Geology, 1998, 150: 223-245. [14] SUN X, ZHAO Y, LIU C, et al.Paleoclimatic information recorded in fluid inclusions in halites from Lop Nur, Western China[J]. Scientific Reports, 2017, 7(1): 1-9. [15] MENG F, ZHANG Y, GALAMAY A R, et al.Ordovician seawater composition: evidence from fluid inclusions in halite[J]. Geological Quarterly, 2018, 62(2): 344-352. [16] TIMOFEEFF M N, LOWENSTEIN T K, DA SILVA M A M, et al. Secular variation in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites[J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 1977-1994. [17] PARIS G, GAILLARDET J, LOUVAT P.Geological evolution of seawater boron isotopic composition recorded in evaporites[J]. Geology, 2010, 38(11): 1035-1038. [18] WARREN K J.Evaporites: sediments, resources and hydrocarbons[M]. Berlin, Heidelberg: Springer, 2006: 1-1035. [19] SANCHEZ-MORAL S, SALVADOR O, DEL-CURA M Á, et al. Penecontemporaneous diagenesis in continental saline sediments: bloeditization in Quero playa lake (La Mancha, Central Spain)[J]. Chemical Geology, 1998, 149: 189-207. [20] SCHREIBER B, HELMAN M.Criteria for distinguishing primary evaporite features from deformation features in sulfate evaporites[J]. Journal of Sedimentary Research, 2005, 75: 525-533. [21] WILGUS C, HOLSER W.Marine and nonmarine salts of Western Interior, United States[J]. Bulletin of the American Association of Petroleum Geologists, 1984, 68: 765-767. [22] SMOOT J P, LOWENSTEIN T K.Depositional environments of non-marine evaporites[J]. Developments in Sedimentology, 1991, 50: 189-347. [23] 郑绵平, 张震, 尹宏伟, 等. 云南江城勐野井钾盐成矿新认识[J]. 地球学报, 2014, 35(1): 11-24. [24] EUGSTER H, HARVIE C, WEARE J.Mineral equilibria in a six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 ℃[J]. Geochimica et Cosmochimica Acta, 1980, 44: 1335-1347. [25] 林耀庭. 溴的地球化学习性及其在四川找钾工作中的应用[J]. 化工矿产地质, 1995, 17(3): 175-181. [26] 李善平, 马海州, 陈有顺, 等. 老挝万象盆地钾盐矿床微量元素地球化学特征及矿床的成因[J]. 地质通报, 2010, 29(5): 760-770. [27] 苗忠英, 郑绵平, 张雪飞, 等. 蒸发岩中硫同位素的地球化学特征及其沉积学意义: 以思茅盆地MZK-3井为例[J]. 地质学报, 2019, 93(5): 1166-1179. [28] RAAB M, SPIRO B.Sulfur isotopic variations during seawater evaporation with fractional crystallization[J]. Chemical Geology: Isotope Geoscience Section, 1991, 86(4): 323-333. [29] 张华, 刘成林, 王立成, 等. 老挝他曲盆地钾盐矿床蒸发岩硫同位素特征及成钾指示意义[J]. 地质论评, 2014, 60(4): 851-857. [30] LI M, YAN M, FANG X, et al.Origins of the mid-cretaceous evaporite deposits of the Sakhon Nakhon Basin in Laos: evidence from the stable isotopes of halite[J]. Journal of Geochemical Exploration, 2018, 184: 209-222. [31] PIERRE C.Applications of stable isotope geochemistry to study of evaporites[J]. Evaporites and Hydrocarbons, 1988: 300-344. [32] 肖荣阁, 大井隆夫, 蔡克勤, 等. 硼及硼同位素地球化学在地质研究中的应用[J]. 地学前缘, 1999, 6(2): 168-175. [33] LI W, BEARD B L, JOHNSON C M.Exchange and fractionation of Mg isotopes between epsomite and saturated MgSO4 solution[J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1814-1828. [34] LI W, KWON K D, LI S, et al.Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: laboratory experiments and theoretical calculations[J]. Geochimica et Cosmochimica Acta, 2017, 214: 1-13. [35] HENSLEY T.Calcium isotopic variation in marine evaporites and carbonates: applications to late Miocene Mediterranean brine chemistry and late Cenozoic calcium cycling in the oceans[D]. San Diego: University of California, 2006. [36] FUJITANI T, YAMASHITA K, NUMATA M, et al.Measurement of chlorine stable isotopic composition by negative thermal ionization mass spectrometry using total evaporation technique[J]. Geochemical Journal, 2010, 44(3): 241-246. [37] XIAO Y K, ZHOU Y M, LIU W G.Precise measurement of chlorine isotopes based on Cs2Cl2 by thermal ionization mass spectrometry[J]. Analytical Letters, 1995, 28: 1295-1304. [38] EGGENKAMP H G M.δ37Cl: the geochemistry of chlorine isotopes[D]. Utrecht: Utrecht University, 1994. [39] SHOUAKAR-STASH O, DRIMMIE R J, FRAPE S K.Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(2): 121-127. [40] XIAO Y K, BEARY E S, FASSETT J D.An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1988, 85(2): 203-213. [41] FOSTER G L, NI Y, HALEY B, et al.Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS[J]. Chemical Geology, 2006, 230: 161-174. [42] FOSTER G L.Seawater pH, pCO2 and [$CO_{3}^{2-}$] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters, 2008, 271: 254-266. [43] CAMERON A E, LIPPERT E L.Isotopic composition of bromine in nature[J]. Science, 1955, 121: 136-137. [44] XIAO Y K, LIU W G, QI H P, et al.A new method for the high precision isotopic measurement of bromine by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1993, 123(2): 117-123. [45] EGGENKAMP H G M, COLEMAN M L. Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples[J]. Chemical Geology, 2000, 167(3): 393-402. [46] SHOUAKAR-STASH O, FRAPE S K, DRIMMIE R J.Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry[J]. Analytical Chemistry, 2005, 77(13): 4027-4033. [47] DU Y, MA T, YANG J, et al.A precise analytical method for bromine stable isotopes in natural waters by GasBench II-IRMS[J]. International Journal of Mass Spectrometry, 2013, 338: 50-56. [48] WEI H, JIANG S, ZHU Z, et al.Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry[J]. Talanta, 2015, 143: 302-306. [49] SCHRAMM D N, TERA F, WASSERBURG G J.The isotopic abundance of 26Mg and limits on 26Al in the early solar system[J]. Earth and Planetary Science Letters, 1970, 10(1): 44-59. [50] HUANG F, GLESSNER J, IANNO A, et al.Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology, 2009, 268(1): 15-23. [51] GARNER E L, MACHLAN L A, BARNES I L.The isotopic composition of lithium, potasium, and rubidium in some Apollo 11, 12, 14, 15, and 16 samples[C]∥Proceedings of the Sixth Lunar Science Conference, Houston, Texas, 1975: 1845-1855. [52] HUMAYUN M, CLAYTON R N.Precise determination of the isotopic composition of potassium: application to terrestrial rocks and lunar soils[J]. Geochimica Et Cosmochimica Acta, 1995, 59(10): 2115-2130. [53] LI W, BEARD B, LI S.Precise measurement of stable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 1023-1029. [54] WANG K, JACOBSEN S B.An estimate of the bulk silicate earth potassium isotopic composition based on MC-ICPMS measurements of basalts[J]. Geochimica et Cosmochimica Acta, 2016, 178: 223-232. [55] HU Y, CHEN X, XU Y, et al.High-precision analysis of potassium isotopes by HR-MC-ICPMS[J]. Chemical Geology, 2018, 493: 100-108. [56] SKULAN J, DEPAOLO D J, OWENS T L.Biological control of calcium isotopic abundances in the global calcium cycle[J]. Geochimica et Cosmochimica Acta, 1997, 61(12): 2505-2510. [57] DAI W, WANG Z, LIU Y, et al.Calcium isotope compositions of mantle pyroxenites[J]. Geochimica et Cosmochimica Acta, 2020, 270: 144-159. [58] ROLLION-BARD C, VIGIER N, SPEZZAFERRI S.In situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera[J]. Chemical Geology, 2007, 244: 679-690. [59] KAUFMANN R, LONG A, BENTLEYT H, et al.Natural chlorine isotope variations[J]. Nature, 1984, 309: 338-340. [60] XIAO Y K, YINMING Z, QINGZHONG W, et al.A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology, 2002, 182(2): 655-661. [61] CATANZARO E J, CHAMPION C E, GARNER E L, et al.Standard reference materials: Boric acid; isotopic and assay standard reference material[J]. National Bureau of Standards Special Publication, 1970, 260: 1-17. [62] BERGLUND M, WIESER M E.Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(2): 397-410. [63] CATANZARO E J, MURPHY T J, GARNER E L, et al.Absolute isotopic abundance ratio and the atomic weight of bromine[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1964, 68A(6): 593. [64] DU Y, MA T, CHEN L, et al.Genesis of salinized groundwater in Quaternary aquifer system of coastal plain, Laizhou Bay, China: geochemical evidences, especially from bromine stable isotope[J]. Applied Geochemistry, 2015, 59: 155-165. [65] LOUVAT P, BONIFACIE M, GIUNTA T, et al.Determination of bromine stable isotope ratios from saline solutions by “Wet Plasma” MC-ICPMS including a comparison between high-and low-resolution modes, and three introduction systems[J]. Analytical Chemistry, 2016, 88(7): 3891-3898. [66] EGGENKAMP H G M, LOUVAT P. A simple distillation method to extract bromine from natural water and salt samples for isotope analysis by multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(8): 612-618. [67] EGGENKAMP H G M, LOUVAT P, GRIFFIOEN J, et al. Chlorine and bromine isotope evolution within a fully developed Upper Permian natural salt sequence[J]. Geochimica et Cosmochimica Acta, 2019, 245: 316-326. [68] EGGENKAMP H G M, LOUVAT P, AGRINIER P, et al. The bromine and chlorine isotope composition of primary halite deposits and their significance for the secular isotope composition of seawater[J]. Geochimica et Cosmochimica Acta, 2019, 264: 13-29. [69] ROSMAN K, TAYLOR P.Isotopic compositions of the elements 1997 (Technical Report)[J]. Pure and Applied Chemistry, 1998, 70: 217-235. [70] GALY A, YOFFE O, JANNEY P E, et al.Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(11): 1352. [71] GALY A, BAR-MATTHEWS M, HALICZ L, et al.Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115. [72] GALY A, BELSHAW N S, HALICZ L, et al.High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208: 89-98. [73] YOUNG E D, ASH R D, GALY A, et al.Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 683-698. [74] TENG F, LI W, KE S, et al.Magnesium isotopic compositions of international geological reference materials[J]. Geostandards and Geoanalytical Research, 2015, 39(3): 329-339. [75] LI W.Vital effects of K isotope fractionation in organisms: observations and a hypothesis[J]. Acta Geochimica, 2017, 36(3): 374-378. [76] LI S, LI W, BEARD B L, et al.K isotopes as a tracer for continental weathering and geological K cycling[J]. Proceedings of the National Academy of Sciences, 2019, 116(18): 8740-8745. [77] LI W, LI S, BEARD B L.Geological cycling of potassium and the K isotopic response: insights from loess and shales[J]. Acta Geochimica, 2019, 38(4): 508-516. [78] LI W, ZHAO S, WANG X, et al.Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes[J]. Science China Earth Sciences, 2019, 63: 108-120. [79] TULLER-ROSS B, SAVAGE P S, CHEN H, et al.Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite[J]. Chemical Geology, 2019, 525: 37-45. [80] TULLER-ROSS B, MARTY B, CHEN H, et al.Potassium isotope systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2019, 259: 144-154. [81] TIAN Z, CHEN H, FEGLEY B, et al.Potassium isotopic compositions of howardite-eucrite-diogenite meteorites[J]. Geochimica et Cosmochimica Acta, 2019, 266: 611-632. [82] MORGAN L E, SANTIAGO RAMOS D P, DAVIDHEISER-KROLL B, et al. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability ofδ41K[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 175-186. [83] SANTIAGO RAMOS D P, MORGAN L E, LLOYD N S, et al. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids[J]. Geochimica et Cosmochimica Acta, 2018, 236: 99-120. [84] WANG K, JACOBSEN S B.Potassium isotopic evidence for a high-energy giant impact origin of the Moon[J]. Nature, 2016, 538(7626): 487-490. [85] CHEN H, TIAN Z, TULLER-ROSS B, et al.High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(1): 160-171. [86] XU Y, HU Y, CHEN X, et al.Potassium isotopic compositions of international geological reference materials[J]. Chemical Geology, 2019, 513: 101-107. [87] LIDE D R, HAYNES W M M. CRC handbook of chemistry and physics[J]. Azeotropic Data for Binary Mixtures, 1996: 157-158. [88] MEIJA J, COPLEN T, BERGLUND M, et al.Atomic weights of the elements 2013 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2016, 88: 265-291. [89] GUSSONE N.Calcium stable isotope geochemistry[M]. Berlin, Heidelberg: Springer, 2016: 1-260. [90] LI M, LEI Y, FENG L, et al.High-precision Ca isotopic measurement using a large geometry high resolution MC-ICP-MS with a dummy bucket[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1707-1719. [91] KASEMANN S A, SCHMIDT D N, PEARSON P N, et al.Biological and ecological insights into Ca isotopes in planktic foraminifers as a palaeotemperature proxy[J]. Earth and Planetary Science Letters, 2008, 271: 292-302. [92] BOULYGA S F, KLÖTZLI U, STINGEDER G, et al. Optimization and application of ICPMS with dynamic reaction cell for precise determination of 44Ca/40Ca isotope ratios[J]. Analytical Chemistry, 2007, 79(20): 7753-7760. [93] FIETZKE J, EISENHAUER A, GUSSONE N, et al.Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique[J]. Chemical Geology, 2004, 206: 11-20. [94] RUSSELL W A, PAPANASTASSIOU D A, TOMBRELLO T A.Ca isotope fractionation on the Earth and other solar system materials[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1075-1090. [95] 肖应凯, 刘卫国, 张崇耿. 盐湖中盐类矿物沉积过程中氯同位素效应的初步研究[J]. 盐湖研究, 1994(3): 35-40. [96] EGGENKAMP H G M, KREULEN R, KOSTER VAN GROOS A F. Chlorine stable isotope fractionation in evaporites[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5169-5175. [97] LUO C, XIAO Y, WEN H, et al.Stable isotope fractionation of chlorine during the precipitation of single chloride minerals[J]. Applied Geochemistry, 2014, 47: 141-149. [98] LUO C, XIAO Y, MA H, et al.Stable isotope fractionation of chlorine during evaporation of brine from a saline lake[J]. Chinese Science Bulletin, 2012, 57(15): 1833-1843. [99] EGGENKAMP H G M, BONIFACIE M, ADER M, et al. Experimental determination of stable chlorine and bromine isotope fractionation during precipitation of salt from a saturated solution[J]. Chemical Geology, 2016, 433: 46-56. [100] XIAO Y K, VOCKE R D, SWIHART G H, et al.Boron volatilization and its isotope fractionation during evaporation of boron solution[J]. Analytical Chemistry, 1997, 69(24): 5203-5207. [101] XIAO Y, G H S, XIAO Y, et al. A preliminary experimental study of the boron concentration in vapor and the isotopic fractionation of boron between seawater and vapor during evaporation of seawater[J]. Science in China (Series B), 2001, 44: 540-551. [102] XIAO Y K, LI S Z, WEI H Z, et al.Boron isotopic fractionation during seawater evaporation[J]. Marine Chemistry, 2007, 103(3/4): 382-392. [103] VENGOSH A, STARINSKY A, KOLODNY Y, et al.Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20(9): 799-802. [104] LIU W G, XIAO Y K, PENG Z C, et al.Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2177-2183. [105] FENG C, GAO C, YIN Q, et al.Tracking physicochemical conditions of evaporite deposition by stable magnesium isotopes: a case study of Late Permian Langbeinites[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2615-2630. [106] SHALEV N, LAZAR B, HALICZ L, et al.Mg isotope fractionation during precipitation of marine Mg-evaporites[C]. Goldschmidt Abstracts, Paris, 2017. [107] HAROUAKA K, EISENHAUER A, FANTLE M S.Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation[J]. Geochimica et Cosmochimica Acta, 2014, 129: 157-176. [108] HAROUAKA K, MANSOR M, MACALADY J L, et al.Calcium isotopic fractionation in microbially mediated gypsum precipitates[J]. Geochimica et Cosmochimica Acta, 2016, 184: 114-131. [109] BLÄTTLER C L, HIGGINS J A. Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca[J]. Geology, 2014, 42: 711-714. [110] BRATISCH O.Bromine distribution in evaporite salt systems at 25 ℃[J]. Naturwissenschaften, 1962, 49(15): 346. [111] EASTOE C J, LONG A, KNAUTH L P.Stable chlorine isotopes in the Palo Duro Basin, Texas: evidence for preservation of Permian evaporite brines[J]. Geochimica et Cosmochimica Acta, 1999, 63(9): 1375-1382. [112] EGGENKAMP H G M. Comment on “Stable isotope fractionation of chlorine during the precipitation of single chloride minerals” by Luo, C. -g., Xiao, Y. -k., Wen, H. -j., Ma, H. -z., Ma, Y. -q., Zhang, Y. -l., Zhang, Y. -x. and He, M. -y. [Applied Geochemistry 47 (2014) 141-149][J]. Applied Geochemistry, 2015, 54: 111-116. [113] LUO C, XIAO Y, WEN H, et al.Reply to the comment on the paper “Stable isotope fractionation of chlorine during the precipitation of single chloride minerals”[J]. Applied Geochemistry, 2015, 54: 117-118. [114] FAN Q, MA Y, CHENG H, et al.Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China[J]. Sedimentary Geology, 2015, 322: 34-42. [115] SHALEV N, LAZAR B, HALICZ L, et al.Magnesium isotopic fractionation between Mg salts and brine in the course of evaporation of marine derived brines[C]. European Geosciences Union Abstract paper, Vienna, 2014. [116] LI Y, WANG W, WU Z, et al.First-principles investigation of equilibrium K isotope fractionation among K-bearing minerals[J]. Geochimica et Cosmochimica Acta, 2019, 264: 30-42. [117] TAN H.Characteristics of chlorine isotope distribution and analysis on sylvinite deposit formation based on ancient salt rock in the western Tarim Basin[J]. Science in China Series D, 2005, 48(11): 1913-1920. [118] 谭红兵, 马海洲, 张西营, 等.蒸发岩序列中氯化物盐的氯同位素分馏效应及应用:兼论塔里木盆地古代岩盐的沉积阶段[J]. 岩石学报, 2009, 25(4): 955-962. [119] XIAO Y, LIU W, ZHOU Y, et al.Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam basin, China[J]. Chinese Journal of Oceanology and Limnology, 2000, 2(18): 169-177. [120] 孙大鹏, 帅开业, 高建华, 等. 氯化物型钾盐矿床氯同位素地球化学的初步研究[J]. 现代地质, 1998(2): 80-85. [121] TAN H, MA H, WEI H Z, et al.Chlorine, sulfur and oxygen isotopic constraints on ancient evaporite deposit in the Western Tarim Basin, China[J]. Geochemical Journal, 2006, 40: 569-577. [122] EASTOE C J, PERYT T.Stable chlorine isotope evidence for non-marine chloride in Badenian evaporites, Carpathian mountain region[J]. Terra Nova, 1999, 11(2/3): 118-131. [123] EASTOE C J, PERYT T M, PETRYCHENKO O Y, et al.Stable chlorine isotopes in Phanerozoic evaporites[J]. Applied Geochemistry, 2007, 22(3): 575-588. [124] SWIHART G H, MOORE P B, CALLIS E L.Boron isotopic composition of marine and nonmarine evaporite borates[J]. Geochimica et Cosmochimica Acta, 1986, 50(6): 1297-1301. [125] SPIVACK A J, EDMOND J M.Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033-1043. [126] XIAO J, XIAO Y K, JIN Z D, et al.Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 2013, 60: 431-447. [127] VENGOSH A, CHIVAS A R, STARINSKY A, et al.Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China[J]. Chemical Geology, 1995, 120(1): 135-154. [128] WEI H, JIANG S, TAN H, et al.Boron isotope geochemistry of salt sediments from the Dongtai Salt Lake in Qaidam Basin: Boron budget and sources[J]. Chemical Geology, 2014, 380: 74-83. [129] KASEMANN S A, PRAVE A R, FALLICK A E, et al.Neoproterozoic ice ages, boron isotopes, and ocean acidification: implications for a snowball Earth[J]. Geology, 2010, 38(9): 775-778. [130] JOACHIMSKI M M, SIMON L, van GELDERN R, et al. Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic[J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 4035-4044. [131] BAGHERI R, NADRI A, RAEISI E, et al.Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches[J]. Environmental Earth Sciences, 2014, 72(4): 1055-1072. [132] BOSCHETTI T, TOSCANI L, SHOUAKAR-STASH O, et al.Salt waters of the northern apennine foredeep Basin (Italy): origin and evolution[J]. Aquatic Geochemistry, 2011, 17(1): 71-108. [133] SHOUAKAR-STASH O, ALEXEEV S V, FRAPE S K, et al.Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia[J]. Applied Geochemistry, 2007, 22(3): 589-605. [134] EGGENKAMP H.The geochemistry of stable chlorine and bromine isotopes[M]. Berlin, Heidelberg: Springer, 2015: 1-172. [135] TENG F.Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287. [136] BIALIK O M, WANG X, ZHAO S, et al.Mg isotope response to dolomitization in hinterland-attached carbonate platforms: outlook ofδ26Mg as a tracer of basin restriction and seawater Mg/Ca ratio[J]. Geochimica et Cosmochimica Acta, 2018, 235: 189-207. [137] LI W, BEARD B L, LI C, et al.Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta, 2015, 157: 164-181. [138] GESKE A, LOKIER S, DIETZEL M, et al. Magnesium isotope composition of sabkha porewater and related (Sub-)Recent stoichiometric dolomites, Abu Dhabi (UAE)[J]. Chemical Geology, 2015, 393-394: 112-124. [139] HU Z, HU W, WANG X, et al.Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: outlook of Mg isotopes as geothermometer and seawater proxy[J]. Geochimica et Cosmochimica Acta, 2017, 208: 24-40. [140] LI W, BIALIK O M, WANG X, et al.Effects of early diagenesis on Mg isotopes in dolomite: the roles of Mn(IV)-reduction and recrystallization[J]. Geochimica et Cosmochimica Acta, 2019, 250: 1-17. [141] ELDERFIELD H, SCHULTZ A.Mid-Ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 191-224. [142] KRONBERG B I.Weathering dynamics and geosphere mixing with reference to the potassium cycle[J]. Physics of the Earth and Planetary Interiors, 1985, 41(2): 125-132. [143] BLOCH S, BISCHOFF J L.The effect of low-temperature alteration of basalt on the oceanic budget of potassium[J]. Geology, 1979, 7(4): 193-196. [144] GARRELS R, MACKENZIE F.Evolution of sedimentary rocks[M]. New York: W. W. Norton and Company, 1971. [145] KANG J, IONOV D A, LIU F, et al.Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth[J]. Earth and Planetary Science Letters, 2017, 474: 128-137. [146] EDWARD T TIPPER M S, TIPPER E T. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy[J]. Earth-Science Reviews, 2014, 129: 148-177. [147] TIPPER E T, GAILLARDET J, GALY A, et al. Calcium isotope ratios in the world's largest rivers: a constraint on the maximum imbalance of oceanic calcium fluxes[J]. Global Biogeochemical Cycles, 2010, 24(3). https:∥doi.org/10.1029/2009GB003574. [148] SIMON J, DEPAOLO D.Stable calcium isotopic composition of meteorites and rocky planets[J]. Earth and Planetary Science Letters, 2010, 289: 457-466. [149] WIEGAND B A, CHADWICK O, VITOUSEK P M, et al.Ca cycling and isotopic fluxes in forested ecosystems in Hawaii[J]. Geophysical Research Letters, 2005, 32(11): L11404. [150] KREISSIG K, ELLIOTT T.Ca isotope fingerprints of early crust-mantle evolution[J]. Geochimica et Cosmochimica Acta, 2005, 69: 165-176. [151] De La ROCHA C L, DEPAOLO D J. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic[J]. Science, 2000, 289: 1176-1178. [152] HOLMDEN C.Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: implications for subsurface dolomitization and local Ca cycling[J]. Chemical Geology, 2009, 268(3/4): 180-188. [153] BRADBURY H J, TORFSTEIN A, WONG K, et al.The calcium isotope systematics of the Late Quaternary dead sea basin lakes[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4260-4273. [154] FARKAŠ J, BÖHM F, WALLMANN K, et al. Calcium isotope record of Phanerozoic oceans: implications for chemical evolution of seawater and its causative mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5117-5134. [155] STEUBER T, BUHL D.Calcium-isotope fractionation in selected modern and ancient marine carbonates[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5507-5521. [156] HEUSER A, EISENHAUER A, BÖHM F, et al. Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera[J]. Paleoceanography, 2005, 20(2): 1-13. [157] SOUDRY D, SEGAL I, NATHAN Y, et al.44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous Eocene Tethyan francolites and their bearing on phosphogenesis in the southern Tethys[J]. Geology, 2004, 32(5): 389-392. [158] SCHMITT A, STILLE P, VENNEMANN T.Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence fromδ44Ca andδ18O values of Miocene phosphates[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2607-2614. |
[1] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[2] | LI Xi, ZHU Guangyou, LI Tingting, CHEN Zhiyong, AI Yifei, ZHANG Yan, TIAN Lianjie. Uranium isotope fractionation and application of uranium isotopes in environmental geosciences—a review [J]. Earth Science Frontiers, 2024, 31(2): 447-471. |
[3] | YU Xiaocan, LIU Chenglin, WANG Chunlian, XU Haiming, ZHAO Yanjun, HUANG Hua, LI Ruiqin. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review [J]. Earth Science Frontiers, 2022, 29(1): 107-123. |
[4] | SHI Kai, XU Lijuan, SU Yuwen, LIU Chunyang, MA Haibo, LIU Sheng’ao. Research progress on Cr isotopes in high temperature magmatic processes: A review [J]. Earth Science Frontiers, 2022, 29(1): 364-376. |
[5] | BIAN Shaoju, LIU Xin, LI Dongdong, DONG Yaping, LI Wu. Potassium extraction from potassium-rich brine in Puguang region, northeastern Sichuan, China [J]. Earth Science Frontiers, 2021, 28(6): 171-178. |
[6] | HOU Xianhua, WANG Wei, ZHENG Mianping, FAN Fu, LI Hongpu, GAO Xuefeng. Seismic response characteristics of the Heibei Concave-Dalangtan potassium-rich deep brine reservoir in western Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(6): 134-145. |
[7] | YANG Hongyu, ZHANG Bing, FANG Chaohe, YANG Kai, CAO Qian, ZHANG Saimin, LIN Xiaoyang. Sedimentary evolution of deep marine potassium/lithium-rich brine reservoirs in the Sichuan Basin and a comprehensive response model for the brine storage layer [J]. Earth Science Frontiers, 2021, 28(6): 95-104. |
[8] | CHEN Xiao'er, ZHANG Bing, FAN Kun, YANG Kai, ZHANG Saimin. Metallogenic model for the coexistence of potassium-rich brine and natural gas in the same strata: An example from the Middle Triassic Leikoupo Formation in the Moxi Anticline, Central Sichuan Basin, Southwest China [J]. Earth Science Frontiers, 2021, 28(6): 79-94. |
[9] | NIU Xinsheng, HUANG Hua, ZHENG Mianping. Geochemical characteristics and distribution patterns of subsurface brines in the Qianjiang Depression, Jianghan Basin [J]. Earth Science Frontiers, 2021, 28(6): 56-65. |
[10] | YANG Keli, DONG Yaping, LI Wu, PENG Jiaoyu, LIU Haining. Spectral and photodegradation properties of dissolved organic matter in brines [J]. Earth Science Frontiers, 2021, 28(6): 187-195. |
[11] | ZHUO Xizhun, ZHENG Xu, CHEN Xiaoshuai, XU Tianwu, CUI Jianjun. Forming conditions and indicators for deep-water evaporite deposits in inland lake basins: A case study of the Dongpu Sag and modern salt lakes [J]. Earth Science Frontiers, 2021, 28(1): 43-59. |
[12] | ZHAO Xinmiao, TANG Suohan, LI Jin, ZHU Xiangkun, WANG Hui, LI Zhihan, ZHANG Hongfu. A review of titanium isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 68-77. |
[13] | LIU Xi, WANG Yijing, WEI Haizhen. Advances in stable chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 29-41. |
[14] | LIU Bingyue,ZHANG Dongdong,HE Ling,ZHU Youfeng. Enantioselective biodegradation and carbon isotope fractionation of myclobutanil in tea orchard soils [J]. Earth Science Frontiers, 2019, 26(6): 13-18. |
[15] | ZHANG Jian,XUE Chunji,CAO Jihu,PENG Jiao. Re-Os dating and S-Pb isotopic and rare earth elements analyses of the Gaozhuang gold deposit in southwestern Henan, China [J]. Earth Science Frontiers, 2019, 26(5): 163-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||