Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 399-424.DOI: 10.13745/j.esf.sf.2022.10.46
Previous Articles Next Articles
LIU Jiawen1,2(), TIAN Shihong1,2,3,*(
), WANG Ling1,*(
)
Received:
2022-04-27
Revised:
2022-10-30
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
LIU Jiawen, TIAN Shihong, WANG Ling. Application of magnesium stable isotopes for studying important geological processes—a review[J]. Earth Science Frontiers, 2023, 30(3): 399-424.
Fig.1 Mg isotopic compositions of various natural reservoirs. The vertical dashed line represents the average δ26Mg value of (-0.25±0.07)‰ for the mantle. Modified after [4,6,11,36⇓⇓⇓-40].
分析方法 | 化学前处理 | 精度(2SD) | 空间分辨率 | 干扰校正方法 | 参考文献 | |
---|---|---|---|---|---|---|
溶液法 | TIMS | 是 | 1‰~2‰ | [ | ||
MC-ICP- MS | 是 | 0.03‰~0.14‰ | SSB和DS校正仪器质量分馏、膜去溶进样去除(C2+、CN+等)原子离子干扰、优化化学纯化流程去除基质效应 | [ | ||
原位法 | LA-MC- ICP-MS | 否 | 0.11‰~0.15‰ | 50~200 μm | SSB校正仪器质量分馏、调整激光束斑等激光剥蚀条件以减少分馏效应、提高仪器的分辨率去除48Ca2+同质异位素的干扰 | [ |
SIMS | 否 | 0.2‰ | 10~20 μm | 传输过程优化、高分辨率去除同质异位素干扰 | [ |
Table 1 Comparison of four analytical methods for Mg isotope
分析方法 | 化学前处理 | 精度(2SD) | 空间分辨率 | 干扰校正方法 | 参考文献 | |
---|---|---|---|---|---|---|
溶液法 | TIMS | 是 | 1‰~2‰ | [ | ||
MC-ICP- MS | 是 | 0.03‰~0.14‰ | SSB和DS校正仪器质量分馏、膜去溶进样去除(C2+、CN+等)原子离子干扰、优化化学纯化流程去除基质效应 | [ | ||
原位法 | LA-MC- ICP-MS | 否 | 0.11‰~0.15‰ | 50~200 μm | SSB校正仪器质量分馏、调整激光束斑等激光剥蚀条件以减少分馏效应、提高仪器的分辨率去除48Ca2+同质异位素的干扰 | [ |
SIMS | 否 | 0.2‰ | 10~20 μm | 传输过程优化、高分辨率去除同质异位素干扰 | [ |
Fig.3 Plots of εNd(t) vs. (87Sr/86Sr)i (a), εNd(t) vs. δ26Mg (b) and (87Sr/86Sr)i vs. δ26Mg (c) for peridotites and marbles from the Jinchuan magmatic sulfide deposit for ore genetic study. Modified after [33].
Fig.4 δ26Mg vs. δ41K plot for altered samples from the Dexing porphyry deposit for the identification of thermal fluid types. Grey shadows represent δ26Mg and δ41K baseline values for igneous rock. Modified after [35].
Fig.5 Plots of δ26Mg vs. CaO/Al2O3 (a), Hf/Hf* (b), Ti/Ti* (c), 87Sr/86Sr (d), 143Nd/144Nd (e) and 206Pb/204Pb (f) for the Leucite Hills lamproites for lamporphyre genetic study. Modified after [39].
Fig.6 Simplified cartoon describing two metasomatic events in modifying the lithospheric mantle sources of the Leucite Hills lamproites. Modified after [39].
Fig.12 Comparison of expression formulas between biotite-garnet Mg isotope geothermometer and garnet-clinopyroxene Mg isotope geothermometer. Modified after [156]. Black solid line is an empirical equilibrium fractionation equation of Δ26MgCpx-Grt=0.83×106/T2 from [148]; Blue solid line is also an empirical equilibrium fractionation equation of Δ26MgCpx-Grt=0.86×106/T2 from [149]; Red solid line and dotted line represent the theoretically determined equilibrium fractionation equations of Δ26MgCpx-Grt=f1(p)×(106/T2) + f2(p)×(106/T2)2 + f3(p)×(106/T2)3 from [150]; Purple circle is an empirical equilibrium fractionation equation of Δ26MgBt-Grt=0.96×106/T2 from [156].
[1] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
DOI URL |
[2] | 柯珊, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397. |
[3] |
RUDNICK R L. Making continental crust[J]. Nature, 1995, 378(6557): 571-578.
DOI |
[4] |
GUO B J, ZHU X K, DONG A G, et al. Mg isotopic systematics and geochemical applications: a critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
DOI |
[5] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[6] |
TENG F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.
DOI URL |
[7] | PILSON M E Q. An introduction to the chemistry of the sea[M]. Cambridge: Cambridge University Press, 2012. |
[8] |
BERGLUND M, WIESER M E. Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(2): 397-410.
DOI URL |
[9] | 范百龄, 陶发祥, 赵志琦. 地表及海洋环境的镁同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(1): 114-120. |
[10] | 戴梦宁. 溶液和(纳秒/飞秒)激光剥蚀进样多接收等离子体质谱技术及其在地球科学中的应用[D]. 西安: 西北大学, 2016. |
[11] | 陈洁, 龚迎莉, 陈露, 等. 镁同位素地球化学研究新进展及其在碳酸岩研究中的应用[J]. 地球科学, 2021, 46(12): 4366-4389. |
[12] |
TIPPER E T, GALY A, BICKLE M J. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1057-1075.
DOI URL |
[13] |
董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
DOI |
[14] |
WANG S J, TENG F Z, LI S G, et al. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes[J]. Lithos, 2017, 290/291: 94-103.
DOI URL |
[15] |
TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 63-71.
DOI URL |
[16] |
HUANG K J, TENG F Z, PLANK T, et al. Magnesium isotopic composition of altered oceanic crust and the global Mg cycle[J]. Geochimica et Cosmochimica Acta, 2018, 238: 357-373.
DOI URL |
[17] |
GRAY C M, COMPSTON W. Excess 26Mg in the Allende meteorite[J]. Nature, 1974, 251(5475): 495-497.
DOI |
[18] |
LEE T, PAPANASTASSIOU D A. Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects[J]. Geophysical Research Letters, 1974, 1(6): 225-228.
DOI URL |
[19] | 唐波, 王景腾, 付勇. 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. |
[20] |
GALY A, BELSHAW N S, HALICZ L, et al. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1/2/3): 89-98.
DOI URL |
[21] |
GOTHMANNA M, STOLARSKI J, ADKINS J F, et al. A Cenozoic record of seawater Mg isotopes in well-preserved fossil corals[J]. Geology, 2017, 45(11): 1039-1042.
DOI URL |
[22] |
RIECHELMANN S, MAVROMATIS V, BUHL D, et al. Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ26Mg) signatures: experimental versus field data[J]. Chemical Geology, 2016, 440: 191-206.
DOI URL |
[23] |
YOUNG E D, ASH R D, GALY A, et al. Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 683-698.
DOI URL |
[24] |
YOUNG E D, GALY A. The isotope geochemistry and cosmochemistry of magnesium[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230.
DOI URL |
[25] | SCHILLER M, DALLAS J A, CREECH J, et al. Tracking the formation of magma oceans in the Solar System using stable magnesium isotopes[J]. Geochemical Perspectives Letters, 2017, 3(1): 22-31. |
[26] |
YANG W, TENG F Z, ZHANG H F, et al. Magnesium isotopic systematics of continental basalts from the North China Craton: implications for tracing subducted carbonate in the mantle[J]. Chemical Geology, 2012, 328: 185-194.
DOI URL |
[27] |
SU B X, TENG F Z, HU Y, et al. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites[J]. Earth and Planetary Science Letters, 2015, 430: 523-532.
DOI URL |
[28] |
WANG S J, TENG F Z, SCOTT J M. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics[J]. Geochimica et Cosmochimica Acta, 2016, 185: 78-87.
DOI URL |
[29] |
LIU F, LI X, WANG G Q, et al. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 9729-9744.
DOI URL |
[30] |
CHEN Y, HUANG F, SHI G H, et al. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7566-7585.
DOI URL |
[31] |
LING M X, LIU Y L, WILLIAMS I S, et al. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids[J]. Scientific Reports, 2013, 3: 1776.
DOI |
[32] |
DONG A G, ZHU X K, LI S Z, et al. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: constraints from Mg isotopes[J]. Precambrian Research, 2016, 281: 673-683.
DOI URL |
[33] |
TANG Q Y, BAO J, DANG Y X, et al. Mg-Sr-Nd isotopic constraints on the genesis of the giant Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Earth and Planetary Science Letters, 2018, 502: 221-230.
DOI URL |
[34] |
MENG J, LI H M, LI Y H, et al. Stable isotope (S, Mg, B) constraints on the origin of the early Precambrian Zhaoanzhuang serpentine-magnetite deposit, southern North China Craton[J]. Minerals, 2019, 9(6): 377.
DOI URL |
[35] |
LI W Q, ZHAO S G, WANG X M, et al. Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes[J]. Science China Earth Sciences, 2020, 63(1): 108-120.
DOI |
[36] |
TENG F Z, LI W Y, KE S, et al. Magnesium isotopic composition of the earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166.
DOI URL |
[37] |
ZHONG Y, ZHANG G L, JIN Q Z, et al. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes[J]. Science Bulletin, 2021, 66(7): 740-748.
DOI PMID |
[38] | YU S Y, XU Y G, HUANG K J, et al. Magnesium isotope constraints on contributions of recycled oceanic crust and lithospheric mantle to generation of intraplate basalts in a big mantle wedge[J]. Lithos, 2021, 398: 106327. |
[39] |
SUN Y, TENG F Z, PANG K N, et al. Multistage mantle metasomatism deciphered by Mg-Sr-Nd-Pb isotopes in the leucite hills lamproites[J]. Contributions to Mineralogy and Petrology, 2021, 176(6): 1-12.
DOI |
[40] |
WANG Z X, LIU S A, LI S G, et al. Linking deep CO2 outgassing to cratonic destruction[J]. National Science Review, 2022, 9(6): nwac001.
DOI URL |
[41] |
LIU S G, QU Y R, WANG Z Z, et al. The fate of subducting carbon tracked by Mg and Zn isotopes: a review and new perspectives[J]. Earth-Science Reviews, 2022, 228: 104010.
DOI URL |
[42] |
CATANZARO E J, MURPHY T J, GARNER E L, et al. Absolute isotopic abundance ratios and atomic weight of magnesium[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1966, 70A(6): 453-458.
DOI URL |
[43] |
GALY A, YOFFE O, JANNEY P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(11): 1352.
DOI URL |
[44] |
GONZÁLEZ DE VEGA C, CHERNONOZHKIN S M, GRIGORYAN R, et al. Characterization of the new isotopic reference materials IRMM-524A and ERM-AE143 for Fe and Mg isotopic analysis of geological and biological samples[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(11): 2517-2529.
DOI URL |
[45] |
AN Y J, WU F, XIANG Y X, et al. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS[J]. Chemical Geology, 2014, 390: 9-21.
DOI URL |
[46] |
COATH C D, ELLIOTT T, HIN R C. Double-spike inversion for three-isotope systems[J]. Chemical Geology, 2017, 451: 78-89.
DOI URL |
[47] | 葛璐, 蒋少涌. 镁同位素地球化学研究进展[J]. 岩石矿物学杂志, 2008, 27(4): 367-374. |
[48] |
CHAUSSIDON M, DENG Z B, VILLENEUVE J, et al. In situ analysis of non-traditional isotopes by SIMS and LA-MC-ICP-MS: key aspects and the example of Mg isotopes in olivines and silicate glasses[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 127-163.
DOI URL |
[49] |
FUKUDA K, BEARD B L, DUNLAP D R, et al. Magnesium isotope analysis of olivine and pyroxene by SIMS: evaluation of matrix effects[J]. Chemical Geology, 2020, 540: 119482.
DOI URL |
[50] |
HE Y S, SUN A Y, ZHANG Y C, et al. High-precision and high-accuracy magnesium isotope analysis on multiple-collector inductively coupled plasma mass spectrometry using a critical mixture double spike technique[J]. Solid Earth Sciences, 2022, 7(3): 188-199.
DOI URL |
[51] |
OESER M, WEYER S, HORN I, et al. High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38(3): 311-328.
DOI URL |
[52] |
LU J, CHEN W, SUN J, et al. High-precision magnesium isotope analysis of carbonates by laser ablation MC-ICP-MS using wet and dry conditions[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(8): 1665-1674.
DOI URL |
[53] |
WOMBACHER F, EISENHAUER A, HEUSER A, et al. Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(5): 627-636.
DOI URL |
[54] | HOANG T H A, CHOI S H, YU Y, et al. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam[J]. Lithos, 2018, 296/297/298/299: 382-395. |
[55] |
李献华, 刘宇, 汤艳杰, 等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘, 2015, 22(5): 160-170.
DOI |
[56] | 向蜜, 龚迎莉, 刘涛, 等. 钙同位素地球化学研究新进展及其在碳酸岩-共生硅酸盐研究中的应用[J]. 地质学报, 2021, 95(12): 3937-3960. |
[57] |
张洪铭, 黄士春, 李曙光. 高温Ca同位素地球化学研究进展与双稀释剂校正[J]. 地学前缘, 2017, 24(5): 402-415.
DOI |
[58] |
白江昊, 刘芳, 张兆峰, 等. 非传统稳定同位素分析技术要点[J]. 地学前缘, 2020, 27(3): 1-13.
DOI |
[59] |
赵新苗, 唐索寒, 李津, 等. 钛同位素地球化学综述[J]. 地学前缘, 2020, 27(3): 68-77.
DOI |
[60] | 赵严, 温汉捷, 周正兵, 等. 同位素双稀释剂计算软件(DSCAL)的开发及其地球化学应用[J]. 地质学报, 2021, 95(5): 1644-1653. |
[61] | 何学贤, 朱祥坤, 杨淳, 等. 多接收等离子质谱(MC-ICP-MS)测定Mg同位素初步研究[J]. 地球学报, 2005, 26(B09): 15-18. |
[62] |
HANDLER M R, BAKER J A, SCHILLER M, et al. Magnesium stable isotope composition of Earth’s upper mantle[J]. Earth and Planetary Science Letters, 2009, 282(1/2/3/4): 306-313.
DOI URL |
[63] |
HUANG F, GLESSNER J, IANNO A, et al. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology, 2009, 268(1/2): 15-23.
DOI URL |
[64] |
YANG W, TENG F Z, ZHANG H F. Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 475-482.
DOI URL |
[65] |
BOURDON B, TIPPER E T, FITOUSSI C, et al. Chondritic Mg isotope composition of the Earth[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5069-5083.
DOI URL |
[66] | TENG F Z, HUANG K J, LI W Y, et al. Magnesium isotope fractionation during continental weathering[C]// AGU Fall Meeting Abstracts. San Francisco: American Geophysical Union, 2014: 1041. |
[67] |
TENG F Z, YIN Q Z, ULLMANN C V, et al. Interlaboratory comparison of magnesium isotopic compositions of 12 felsic to ultramafic igneous rock standards analyzed by MC-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3197-3209.
DOI URL |
[68] | 张群, 秦礼萍. 双稀释剂计算及校正方法[J]. 地球化学, 2017, 46(1): 15-21. |
[69] |
HIN R C, COATH C D, CARTER P J, et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions[J]. Nature, 2017, 549(7673): 511-515.
DOI URL |
[70] |
NORMAN M D, YAXLEY G M, BENNETT V C, et al. Magnesium isotopic composition of olivine from the Earth, Mars, Moon, and pallasite parent body[J]. Geophysical Research Letters, 2006, 33(15): L15202.
DOI URL |
[71] |
JANNEY P E, RICHTER F M, MENDYBAEV R A, et al. Matrix effects in the analysis of Mg and Si isotope ratios in natural and synthetic glasses by laser ablation-multicollector ICPMS: a comparison of single- and double-focusing mass spectrometers[J]. Chemical Geology, 2011, 281(1/2): 26-40.
DOI URL |
[72] |
XIE L W, YIN Q Z, YANG J H, et al. High precision analysis of Mg isotopic composition in olivine by laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1773-1780.
DOI URL |
[73] |
OESER M, DOHMEN R, HORN I, et al. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154: 130-150.
DOI URL |
[74] |
ZHANG W, HU Z C. A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 171: 105929.
DOI URL |
[75] |
PEARSON N J, GRIFFIN W L, ALARD O, et al. The isotopic composition of magnesium in mantle olivine: records of depletion and metasomatism[J]. Chemical Geology, 2006, 226(3/4): 115-133.
DOI URL |
[76] |
DAI M N, BAO Z A, CHEN K Y, et al. In situ analysis of Mg isotopic compositions of basalt glasses by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(2): 173-178.
DOI URL |
[77] |
LIN J, LIU Y S, YANG A, et al. Non-matrix-matched calibration of Mg isotopic ratios in silicate samples by fs-LA-MC-ICP-MS with low mass resolution under wet plasma conditions[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 592-602.
DOI URL |
[78] | XIE Y L, HOU Z Q, GOLDFARB R J, et al. Rare earth element deposits in China[M]// Rare earth and critical elements in ore deposits. New York: Society of Economic Geologists, 2016: 115-136. |
[79] |
邓淼, 韦春婉, 许成, 等. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28.
DOI |
[80] |
SUN J, ZHU X K, CHEN Y L, et al. Is the Bayan Obo ore deposit a micrite mound? A comparison with the Sailinhudong micrite mound[J]. International Geology Review, 2014, 56(14): 1720-1731.
DOI URL |
[81] | 孙剑, 房楠, 李世珍, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28(9): 2890-2902. |
[82] |
FAN H R, YANG K F, HU F F, et al. The giant Bayan Obo REE-Nb-Fe deposit, China: controversy and ore genesis[J]. Geoscience Frontiers, 2016, 7(3): 335-344.
DOI URL |
[83] |
GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115.
DOI URL |
[84] |
TIPPER E T, GALY A, BICKLE M J. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 267-279.
DOI URL |
[85] |
TIPPER E T, GALY A, GAILLARDET J, et al. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.
DOI URL |
[86] |
YANG X Y, SUN W D, ZHANG Y X, et al. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1417-1435.
DOI URL |
[87] | 刘铁庚. 白云鄂博白云岩氧、碳同位素组成及其成因讨论[J]. 地质论评, 1986, 32(2): 150-159. |
[88] | 曹荣龙, 朱寿华, 王俊文. 白云鄂博铁-稀土矿床的物质来源和成因理论问题[J]. 中国科学 (B辑), 1994, 24(12): 1298-1307. |
[89] | 丁悌平, 蒋少涌, 田世洪, 等. 白云鄂博矿区赋矿“白云质大理岩”成因的稳定同位素证据[J]. 地球学报, 2003, 24(6): 535-542. |
[90] | 张宗清, 袁忠信, 唐索寒, 等. 白云鄂博矿床年龄和地球化学[M]. 北京: 地质出版社, 2003: 1-222. |
[91] |
LING M X, SEDAGHATPOUR F, TENG F Z, et al. Homogeneous magnesium isotopic composition of seawater: an excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2011, 25(19): 2828-2836.
DOI URL |
[92] | 孟洁. 华北克拉通南缘早前寒武纪赵案庄铁矿床的成因研究[D]. 北京: 中国地质大学(北京), 2018. |
[93] |
ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
DOI URL |
[94] | 兰彩云, 赵太平, 罗正传, 等. 河南舞阳赵案庄铁矿床成因: 来自磁铁矿和磷灰石的矿物学证据[J]. 岩石学报, 2015, 31(6): 1653-1670. |
[95] | 张阔, 沈保丰, 孙丰月, 等. 河南舞阳地区赵案庄铁矿床成矿时代及地质意义: 中国最古老的岩浆型铁矿床[J]. 矿床地质, 2016, 35(5): 889-901. |
[96] |
MENG J, LI H M, LI L X, et al. Petrological and geochemical constraints on the protoliths of serpentine-magnetite ores in the Zhaoanzhuang iron deposit, southern North China Craton[J]. Acta Geologica Sinica-English Edition, 2018, 92(2): 627-665.
DOI URL |
[97] |
GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149: 131-151.
DOI URL |
[98] |
HUANG K J, SHEN B, LANG X G, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351.
DOI URL |
[99] |
LI F B, TENG F Z, CHEN J T, et al. Constraining ribbon rock dolomitization by Mg isotopes: implications for the ‘dolomite problem’[J]. Chemical Geology, 2016, 445: 208-220.
DOI URL |
[100] |
POHL W. Genesis of magnesite deposits: models and trends[J]. Geologische Rundschau, 1990, 79(2): 291-299.
DOI URL |
[101] |
AHARON P. A stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: implications for the origin of strata-bound massive magnesites[J]. Chemical Geology, 1988, 69(1/2): 127-145.
DOI URL |
[102] |
HENJES-KUNST F, PROCHASKA W, NIEDERMAYR A, et al. Sm-Nd dating of hydrothermal carbonate formation: an example from the Breitenau magnesite deposit (Styria, Austria)[J]. Chemical Geology, 2014, 387: 184-201.
DOI URL |
[103] | 蒋少涌, 陈从喜, 陈永权, 等. 中国辽东地区超大型菱镁矿矿床的地球化学特征和成因模式[J]. 岩石学报, 2004, 20(4): 765-772. |
[104] | 鲍坚. Mg-Sr-Nd同位素组成对金川Cu-Ni-(PGE)硫化物矿床成因的制约[D]. 兰州: 兰州大学, 2019. |
[105] | NALDRETT A J. Fundamentals of magmatic sulfide deposits[J]. Littleton Reviews in Economic Geology, 2011, 17: 1-50. |
[106] |
RIPLEY E M, LI C S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1): 45-58.
DOI URL |
[107] | 段俊. 金川Cu-Ni(PGE)岩浆硫化物矿床成因与成矿模式研究[D]. 西安: 长安大学, 2015. |
[108] | 杨胜洪, 陈江峰, 屈文俊, 等. 金川铜镍硫化物矿床的Re-Os“年龄”及其意义[J]. 地球化学, 2007, 36(1): 27-36. |
[109] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[110] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 1-51. |
[111] |
SONG X Y, ZHOU M F, WANG C Y, et al. Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni-Cu-(PGE) sulfide deposit, Northwest China[J]. International Geology Review, 2006, 48(12): 1113-1132.
DOI URL |
[112] |
WANG C Y, WEI B, ZHOU M F, et al. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the 260 Ma Emeishan large igneous province, SW China and northern Vietnam[J]. Journal of Asian Earth Sciences, 2018, 154: 162-186.
DOI URL |
[113] |
LU Y J, CAMPBELL MCCUAIG T, LI Z X, et al. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: mantle source and tectonic implications[J]. Lithos, 2015, 233: 139-161.
DOI URL |
[114] | 孙悦, 李巨初, 丁俊, 等. 冕西煌斑岩脉型铀矿化特征及成因[J]. 四川地质学报, 2017, 37(2): 209-213. |
[115] | 严清高, 郭忠林, 李超, 等. 滇中姚安干沟金矿床煌斑岩锆石LA-ICP-MS U-Pb年代学及Hf同位素特征[J]. 矿床地质, 2019, 38(3): 526-540. |
[116] |
YU H Z, DENG J, WANG Q F, et al. Petrogenesis of Paleogene lamprophyres in the Ailaoshan tectonic belt, western Yangtze Craton: implications for the mantle source of orogenic gold deposits[J]. Ore Geology Reviews, 2020, 122: 103507.
DOI URL |
[117] |
鲁麟, 梁婷, 任文琴, 等. 江西崇义淘锡坑钨矿区煌斑岩LA-ICP-MS锆石U-Pb同位素定年及地质意义[J]. 地学前缘, 2017, 24(5): 93-108.
DOI |
[118] | 王璐. 新疆瓦吉里塔格地区钠质煌斑岩的矿物学、地球化学特征及源区[D]. 北京: 中国地质大学(北京), 2014. |
[119] |
DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407.
DOI URL |
[120] |
GASPERINI D, BLICHERT-TOFT J, BOSCH D, et al. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth’s mantle[J]. Nature, 2000, 408(6813): 701-704.
DOI |
[121] |
EISELE J, SHARMA M, GALER S J G, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot[J]. Earth and Planetary Science Letters, 2002, 196(3/4): 197-212.
DOI URL |
[122] |
WILLBOLD M, STRACKE A. Formation of enriched mantle components by recycling of upper and lower continental crust[J]. Chemical Geology, 2010, 276(3/4): 188-197.
DOI URL |
[123] |
DELAVAULT H, CHAUVEL C, THOMASSOT E, et al. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12952-12956.
PMID |
[124] | WANG X J, CHEN L H, HOFMANN A W, et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(35): 8682-8687. |
[125] | 刘迪. 山东煌斑岩的镁、锌同位素研究及其地质意义[D]. 北京: 中国地质大学(北京), 2020. |
[126] |
SUN Y, YING J F, ZHOU X H, et al. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe, NE China: implications for the role of ancient subducted sediments[J]. Lithos, 2014, 208/209: 53-66.
DOI URL |
[127] |
XIANG L, ZHENG J P, ZHAI M G, et al. Geochemical and Sr-Nd-Pb isotopic constraints on the origin and petrogenesis of Paleozoic lamproites in the southern Yangtze Block, South China[J]. Contributions to Mineralogy and Petrology, 2020, 175(4): 1-18.
DOI |
[128] |
LI H J, WANG Q F, GROVES D I, et al. Alteration of Eocene lamprophyres in the Zhenyuan orogenic gold deposit, Yunnan Province, China: composition and evolution of ore fluids[J]. Ore Geology Reviews, 2019, 107: 1068-1083.
DOI URL |
[129] |
DENG J, WANG Q F, SANTOSH M, et al. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274.
DOI |
[130] |
GROVES D I, SANTOSH M, DENG J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292.
DOI |
[131] |
WANG Q F, GROVES D I, DENG J, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55(6): 1085-1104.
DOI |
[132] |
LI W Y, TENG F Z, KE S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6867-6884.
DOI URL |
[133] |
TENG F Z, YANG W, RUDNICK R L, et al. Heterogeneous magnesium isotopic composition of the lower continental crust: a xenolith perspective[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(9): 3844-3856.
DOI URL |
[134] |
HUANG J, XIAO Y L. Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: implication for the initial melting depth of the carbonated mantle in eastern China[J]. International Geology Review, 2016, 58(11): 1350-1362.
DOI URL |
[135] |
WANG Z Z, LIU S A, KE S, et al. Magnesium isotopic heterogeneity across the cratonic lithosphere in eastern China and its origins[J]. Earth and Planetary Science Letters, 2016, 451: 77-88.
DOI URL |
[136] |
LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111-120.
DOI URL |
[137] |
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI |
[138] |
HOU Z Q, LIU Y, TIAN S H, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231.
DOI PMID |
[139] |
李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159.
DOI |
[140] | LIU S A, WANG Z Z, YANG C, et al. Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): 1-22. |
[141] | 贺娟, 王启宇, 闫国川. 滇西金沙江—红河构造带鲁甸始新世煌斑岩成因及动力学背景[J]. 地球科学, 2018, 43(8): 2586-2599. |
[142] | 汪在聪, 王焰, 汪翔, 等. 交代岩石圈地幔与金成矿作用[J]. 地球科学, 2021, 46(12): 4197-4229. |
[143] |
ROCK N M S. The nature and origin of lamprophyres: an overview[J]. Geological Society, London, Special Publications, 1987, 30(1): 191-226.
DOI URL |
[144] | 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 1-410. |
[145] | UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed), 1947, 85: 562-581. |
[146] | 刘帅奇, 张贵宾. 榴辉岩部分熔融过程中的同位素分馏[J]. 岩石学报, 2021, 37(1): 95-112. |
[147] |
SCHAUBLE E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 844-869.
DOI URL |
[148] |
LI W Y, TENG F Z, XIAO Y L, et al. High-temperatureinter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China[J]. Earth and Planetary Science Letters, 2011, 304(1/2): 224-230.
DOI URL |
[149] |
WANG S J, TENG F Z, WILLIAMS H M, et al. Magnesium isotopic variations in cratonic eclogites: origins and implications[J]. Earth and Planetary Science Letters, 2012, 359/360: 219-226.
DOI URL |
[150] |
HUANG F, CHEN L J, WU Z Q, et al. First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: implications for Mg isotope thermometry[J]. Earth and Planetary Science Letters, 2013, 367: 61-70.
DOI URL |
[151] |
LI W Y, TENG F Z, XIAO Y L, et al. Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications[J]. Contributions to Mineralogy and Petrology, 2016, 171(7): 1-14.
DOI URL |
[152] | 黄宏炜, 杜瑾雪, 柯珊. 榴辉岩中单斜辉石-石榴子石镁同位素地质温度计评述[J]. 岩石学报, 2020, 36(6): 1705-1718. |
[153] |
YOUNG E D, TONUI E, MANNING C E, et al. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 524-533.
DOI URL |
[154] |
LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140.
DOI URL |
[155] |
MACRIS C A, YOUNG E D, MANNING C E. Experimental determination of equilibrium magnesium isotope fractionation between spinel, forsterite, and magnesite from 600 to 800 ℃[J]. Geochimica et Cosmochimica Acta, 2013, 118: 18-32.
DOI URL |
[156] | WANG S J, TENG F Z, BEA F. Magnesium isotopic systematics of metapelite in the deep crust and implications for granite petrogenesis[J]. Geochemical Perspectives Letters, 2015, 1(1): 75-83. |
[157] |
HU Z Y, HU W X, WANG X M, et al. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: outlook of Mg isotopes as geothermometer and seawater proxy[J]. Geochimica et Cosmochimica Acta, 2017, 208: 24-40.
DOI URL |
[158] |
LI W Q, BEARD B L, LI C X, et al. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta, 2015, 157: 164-181.
DOI URL |
[159] |
MAVROMATIS V, GAUTIER Q, BOSC O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2013, 114: 188-203.
DOI URL |
[160] |
STRACKE A, TIPPER E T, KLEMME S, et al. Mg isotope systematics during magmatic processes: inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths[J]. Geochimica et Cosmochimica Acta, 2018, 226: 192-205.
DOI URL |
[161] | 陈丽娟. 镁在低温地表和高温地幔下的同位素分馏行为[D]. 合肥: 中国科学技术大学, 2019. |
[162] |
RAVNA E K. Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer[J]. Lithos, 2000, 53(3/4): 265-277.
DOI URL |
[163] |
RAVNA K. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration[J]. Journal of Metamorphic Geology, 2000, 18(2): 211-219.
DOI URL |
[164] |
ELLIS D J, GREEN D H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria[J]. Contributions to Mineralogy and Petrology, 1979, 71(1): 13-22.
DOI URL |
[165] |
RÅHEIM A, GREEN D H. Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene[J]. Contributions to Mineralogy and Petrology, 1974, 48(3): 179-203.
DOI URL |
[166] |
PATTISON D R M, NEWTON R C. Reversed experimental calibration of the garnet-clinopyroxene Fe-Mg exchange thermometer[J]. Contributions to Mineralogy and Petrology, 1989, 101(1): 87-103.
DOI URL |
[167] |
AI Y. A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer[J]. Contributions to Mineralogy and Petrology, 1994, 115(4): 467-473.
DOI URL |
[168] |
TANG H L, SZUMILA I, TRAIL D, et al. Experimental determination of the effect of Cr on Mg isotope fractionation between spinel and forsterite[J]. Geochimica et Cosmochimica Acta, 2021, 296: 152-169.
DOI URL |
[169] |
O’NEILL H S C, WALL V J. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle[J]. Journal of Petrology, 1987, 28(6): 1169-1191.
DOI URL |
[170] |
BALLHAUS C, BERRY R F, GREEN D H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 1991, 107(1): 27-40.
DOI URL |
[171] |
LIERMANN H P, GANGULY J. Fe2+-Mg fractionation between orthopyroxene and spinel: experimental calibration in the system FeO-MgO-Al2O3-Cr2O3-SiO2, and applications[J]. Contributions to Mineralogy and Petrology, 2003, 145(2): 217-227.
DOI URL |
[172] |
SIO C K I, DAUPHAS N, TENG F Z, et al. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses[J]. Geochimica et Cosmochimica Acta, 2013, 123: 302-321.
DOI URL |
[173] |
HUANG F, ZHANG Z F, LUNDSTROM C C, et al. Iron and magnesium isotopic compositions of peridotite xenoliths from eastern China[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3318-3334.
DOI URL |
[174] |
VON STRANDMANN P A E P, ELLIOTT T, MARSCHALL H R, et al. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5247-5268.
DOI URL |
[175] |
ROEDER P L, CAMPBELL I H, JAMIESON H E. A re-evaluation of the olivine-spinel geothermometer[J]. Contributions to Mineralogy and Petrology, 1979, 68(3): 325-334.
DOI URL |
[176] |
WAN Z H, COOGAN L A, CANIL D. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer[J]. American Mineralogist, 2008, 93(7): 1142-1147.
DOI URL |
[177] |
DASGUPTA S, SENGUPTA P, GUHA D, et al. A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites[J]. Contributions to Mineralogy and Petrology, 1991, 109(1): 130-137.
DOI URL |
[178] |
BHATTACHARYA A, MOHANTY L, MAJI A, et al. Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer[J]. Contributions to Mineralogy and Petrology, 1992, 111(1): 87-93.
DOI URL |
[179] |
WU H J, HE Y S, TENG F Z, et al. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary[J]. Geochimica et Cosmochimica Acta, 2018, 222: 671-684.
DOI URL |
[180] | INDARES A, MARTIGNOLE J. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite[J]. American Mineralogist, 1985, 70(3/4): 272-278. |
[181] |
WANG S J, TENG F Z, LI S G, et al. Magnesium isotopic systematics of mafic rocks during continental subduction[J]. Geochimica et Cosmochimica Acta, 2014, 143: 34-48.
DOI URL |
[182] | OH K D, MORIKAWA H, IWAI S, et al. The crystal structure of magnesite[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1973, 58(11/12): 1029-1033. |
[183] | ALTHOFF P L. Structural refinements of dolomite and a magnesian calcite and implications for dolomite formation in the marine environment[J]. American Mineralogist, 1977, 62(7/8): 772-783. |
[184] |
FINCH A A, ALLISON N. Coordination of Sr and Mg in calcite and aragonite[J]. Mineralogical Magazine, 2007, 71(5): 539-552.
DOI URL |
[185] |
WANG Z R, HU P, GAETANI G, et al. Experimental calibration of Mg isotope fractionation between aragonite and seawater[J]. Geochimica et Cosmochimica Acta, 2013, 102: 113-123.
DOI URL |
[186] |
LIU D, ZHAO Z D, ZHU D C, et al. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks[J]. Earth and Planetary Science Letters, 2015, 430: 458-469.
DOI URL |
[187] |
LIU S A, TENG F Z, HE Y S, et al. Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 646-654.
DOI URL |
[188] |
LAI Y J, VON STRANDMANN P A E P, DOHMEN R, et al. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman peridotite massif[J]. Geochimica et Cosmochimica Acta, 2015, 164: 318-332.
DOI URL |
[189] |
TENG F Z, WADHWA M, HELZ R T. Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 84-92.
DOI URL |
[190] |
WANG Z Z, LIU S A, LIU Z C, et al. Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites[J]. Geochimica et Cosmochimica Acta, 2020, 278: 305-321.
DOI URL |
[191] |
ZHONG Y, CHEN L H, WANG X J, et al. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling[J]. Earth and Planetary Science Letters, 2017, 463: 127-135.
DOI URL |
[192] |
DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665.
DOI |
[193] |
ATHERTON M P, PETFORD N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146.
DOI |
[194] |
WANG Q, WYMAN D A, XU J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636.
DOI URL |
[195] |
HUANG F, LI S G, DONG F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust[J]. Chemical Geology, 2008, 255(1/2): 1-13.
DOI URL |
[196] |
HE Y S, LI S G, HOEFS J, et al. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3815-3838.
DOI URL |
[197] | 汪洋, 柯珊, 何永胜. 含石榴子石源区部分熔融过程的Mg同位素行为: 从埃达克岩的角度[C]// 2018年中国地球科学联合学术年会论文集. 北京:2018年中国地球科学联合学术年会组委会, 2018: 1728. |
[198] |
WANG Y, HE Y S, KE S. Mg isotope fractionation during partial melting of garnet-bearing sources: an adakite perspective[J]. Chemical Geology, 2020, 537: 119478.
DOI URL |
[199] |
WANG L, GAO X Y, CHEN R X, et al. Zircon and titanite behaviors during partial melting of metabasite in the post-collisional stage: constraints from garnet pyroxenite in the Dabie orogen, China[J]. Journal of Asian Earth Sciences, 2021, 205: 104615.
DOI URL |
[200] |
RONG W, ZHANG S B, ZHENG Y F. Back-reaction ofperitectic garnet as an explanation for the origin of mafic enclaves in S-type granite from the Jiuling batholith in South China[J]. Journal of Petrology, 2017, 58(3): 569-598.
DOI URL |
[201] |
PATIÑO DOUCE A E, JOHNSTON A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218.
DOI URL |
[202] |
SCHNETGER B. Partial melting during the evolution of the amphibolite- to granulite-facies gneisses of the Ivrea Zone, northern Italy[J]. Chemical Geology, 1994, 113(1/2): 71-101.
DOI URL |
[203] |
LUVIZOTTO G L, ZACK T. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea-Verbano Zone[J]. Chemical Geology, 2009, 261(3/4): 303-317.
DOI URL |
[204] |
TIAN S H, HOU Z Q, CHEN X Y, et al. Magnesium isotopic behaviors between metamorphic rocks and their associated leucogranites, and implications for Himalayan orogenesis[J]. Gondwana Research, 2020, 87: 23-40.
DOI URL |
[1] | CHEN Xin, WANG Hui, MAO Jingwen, YU Miao, QIAO Jianfeng, WANG Zhian. Genesis and geological significance of hydrothermal Pb-Zn orebodies in the Xiarihamu mining area, East Kunlun Mountains, China [J]. Earth Science Frontiers, 2023, 30(2): 347-369. |
[2] | XU Lingang, FU Xuerui, YE Huishou, ZHENG Wei, CHEN Bo, FANG Zhenglong. Geochemical composition and paleoceanic environment of the Lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region [J]. Earth Science Frontiers, 2022, 29(1): 160-175. |
[3] | ZHOU Qiushi, WANG Rui. Advances in chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 42-67. |
[4] | DENG Jun, WANG Qingfei, CHEN Fuchuan, LI Gongjian, YANG Liqiang, WANG Changming, ZHANG Jing, SUN Xiang, SHU Qihai, HE Wenyan, GAO Xue, GAO Liang, LIU Xuefei, ZHENG Yuanchuan, QIU Kunfeng, XUE Shengchao, XU Jiahao. Further discussion on the Sanjiang Tethyan composite metallogenic system [J]. Earth Science Frontiers, 2020, 27(2): 106-136. |
[5] | CHEN Li,JIA Chunhong,LIU Bingjie,JING Junjie,ZHAO Ercheng,YU Pingzhong,HE Min. Simultaneous determination of seven fluoroquinolones in sewage sludge by high performance liquid chromatography with fluorescence detection [J]. Earth Science Frontiers, 2019, 26(6): 7-12. |
[6] | . Highprecision measurement of lithium isotopes using MCICPMS. [J]. Earth Science Frontiers, 2011, 18(2): 304-314. |
[7] | . Mineralization mechanism of the Daguanchang UMo polymetallic deposit and its application in ore prospecting. [J]. Earth Science Frontiers, 2011, 18(1): 133-140. |
[8] | WU An, MEI Mei, GAO Feng-Jun, LI Zong-Pan, JIAO Cui-Jie. Oreforming fluid characteristics and genesis of silverleadzinc deposits in the Manzhouli area, Inner Mongolia, China. [J]. Earth Science Frontiers, 2010, 17(2): 239-255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||