Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 25-41.DOI: 10.13745/j.esf.sf.2022.1.1

Previous Articles     Next Articles

Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model

GONG Chenglin1,2(), LIU Li3, SHAO Dali4, GUO Rongtao5, ZHU Yijie2, QI Kun2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
    3. State Key Laboratory of Geological Processes and Mineral Resources, Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
    4. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China
    5. Sinopec Petroleum Exploration & Production Research Institute, Beijing 100083, China
  • Received:2021-08-24 Revised:2021-11-01 Online:2022-07-25 Published:2022-07-28

Abstract:

Tectonic and climate reconstruction based on punctuated, abrupt changes in depositional patterns represents a new research focus in source-sink analysis. Since the Cenozoic, the convergence of the India and Asian plates, and the subsequent Himalayan exhumation, erosion and sediment transport to the Bengal Bay, formed the world largest source-sink system. Our current study mainly employed 3D seismic and detrital zircon U-Pb age data to address the punctuated, abrupt changes in the depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene, and explore the genetic mechanism of these changes according to the source-sink model. Our findings suggest a seesaw-like stepwise evolution and development of the Bengal-Nicobar Fan system. The Nicobar Fan experienced progradation in the Late Miocene, slow growth in the Pliocene and dormant growth in the Quaternary, which run opposite to the evolution of the Bengal Fan. The U-Pb detrital zircon chronology of the Himalayan-Bengal source-sink system by normalized kernel-density estimates suggest that since the Late Miocene, the 60-0 Ma zircon age populations (indicative of the Brahmaputra sediment routing system) progressively decreased in the Rakhine-Nicobar Fan while increased gradually in the Bengal Fan, revealing an overall stepwise evolutionary pattern of the Brahmaputra sediment routing system. In the Late Miocene, the Brahmaputra River with robust delivery capacity developed along the eastern Bengal Bay delivering large volume of clastic detritus into the Nicobar Fan; whereas the Tista and Ganges Rivers with low delivery capacity developed along the western Bengal Bay transporting small volume of detrital sediments into the Bengal Fan. Such a sediment routing system fostered progradation in the Nicobar Fan and dormant growth in the Bengal Fan. In the Pliocene, the uplift of the Shillong Plateau led to divergence of the Brahmaputra River into eastern and western tributaries. The eastern Brahmaputra tributary with deceased delivery capacity delivered less clastic detritus into the Nicobar Fan, whereas the western Brahmaputra River merged with the Tista and Ganges Rivers to deliver more detrital sediments into the Bengal Fan. Such a sediment routing system fostered slow growth in the Nicobar and Bengal Fans. In the Quaternary, convergence of the Shillong Plateau and Indo-Burman Ranges disrupted sediment transport to the Nicobar Fan via the eastern Brahmaputra tributary; whereas the merge of Brahmaputra River with Tista and Ganges Rivers ensured all sediment budget going into the Bengal Fan. Such a sediment routing system fostered progradation in the Bengal Fan and relatively slow growth in the Nicobar Fan. The most prominent changes in the depositional patterns of the Bengal-Nicobar Fans happened in the Late Pliocene reflecting the source-sink depositional response to the most intense collision between the Indian and Asian plates.

Key words: source-sink systems, Bengal-Nicobar Fans, stepwise changes in depositional patterns, uplift of the Tibetan Plateau, Brahmaputra River

CLC Number: