Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 10-24.DOI: 10.13745/j.esf.sf.2022.1.16
Previous Articles Next Articles
HU Zhaobin1(), WEI Jiangong2,3,*(
), XIE Zhiyuan2,3, ZHANG Huodai1,2, ZHONG Guangfa1,*(
)
Received:
2021-11-20
Revised:
2022-01-10
Online:
2022-07-25
Published:
2022-07-28
Contact:
WEI Jiangong,ZHONG Guangfa
CLC Number:
HU Zhaobin, WEI Jiangong, XIE Zhiyuan, ZHANG Huodai, ZHONG Guangfa. Research progress in global sea level change: A critical review on international ocean drilling[J]. Earth Science Frontiers, 2022, 29(4): 10-24.
Fig.3 Comparison of Oligocene-Miocene slope sequences, onshore sequences (~0.5 m.y. uncertainty), oxygen isotopes, Bahamian reflections, and the “Haq” eustatic curve. Adapted from [48].
Fig.4 History of climate and eustatic sea level changes during the past 100 Ma reconstructed by integrating the results of the DSDP/ODP/IODP scientific ocean drilling. Adapted from [40].
Fig.5 Global mean sea level changes of the past 35 ka, which is reconstructed from the fossil coral reef materials obtained from the Great Barrier Reef during IODP Expedition 325. Adapted from [65].
Fig.7 Illustration showing the relationship between the evolution of the Antarctic Ice Sheet and the changes of global sea level, atmospheric CO2 concentrations, and global atmospheric temperature. Adapted from [37].
[1] | CHURCH J A, WHITE N J. A 20th century acceleration in global sea-level rise[J]. Geophysical Research Letters, 2006, 33(1): L01602. |
[2] | BINDOFF N L, WILLEBRAND J, ARTALE V, et al. Observations: oceanic climate change and sea level[R]. Cambridge: Cambridge University Press, 2007. |
[3] | CHURCH J A, CLARK P U, CAZENAVE A, et al. Sea level change[R]. Cambridge: Cambridge University Press, 2013. |
[4] | FOX-KEMPER B, HEWITT H T, XIAO C, et al. Ocean, cryosphere and sea level change[R]. Cambridge: Cambridge University Press, 2021. |
[5] | ALLEY R B, CLARK P U, HUYBRECHTS P, et al. Ice-sheet and sea-level changes[J]. Science, 2005, 310(5747): 456-460. |
[6] | WAGREICH M, LEIN R, SAMES B. Eustasy, its controlling factors, and the limno-eustatic hypothesis-concepts inspired by Eduard Suess[J]. Austrian Journal of Earth Sciences, 2014, 107(1): 115-131. |
[7] | CHAMBERLIN T C. Diastrophism as the ultimate basis of correlation[J]. The Journal of Geology, 1909, 17(8): 685-693. |
[8] | GRABAU A W. Revised classification of the Palaeozoic system in the light of the pulsation theory[J]. Bulletin of the Geological Society of China, 1936(1): 23-51. |
[9] | GRABAU A W. The rhythm of the ages[M]. Peking: Henri Vetch, 1940: 561. |
[10] | MITCHUM JR R M, VAIL P R, THOMPSON III S. Seismic stratigraphy and global changes of sea level:Part 2.The depositional sequence as a basic unit for stratigraphic analysis[C]//Seismic stratigraphy: applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 53-62. |
[11] | VAIL P R, TODD R G, SANGREE J B. Seismic stratigraphy and global changes of sea level:Part 5.Chronostratigraphic significance of seismic reflections[C]//Seismic stratigraphy: applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 99-116. |
[12] | VAIL P R, MITCHUM JR R M, THOMPSON III S. Seismic stratigraphy and global changes of sea level:Part 4.Global cycles of relative changes of sea level[C]//Seismic stratigraphy: applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 83-97. |
[13] | VAIL P R, MITCHUM JR R M, THOMPSON III S. Seismic stratigraphy and global changes of sea level:Part 3.Relative changes of sea level from Coastal Onlap[C]//Seismic Stratigraphy: applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 63-81. |
[14] | HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the triassic[J]. Science, 1987, 235(4793): 1156-1167. |
[15] | HAQ B U. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change[J]. Special Publications of SEPM. 1988(42): 71-108. |
[16] | HAQ B U, AL-QAHTANI A M. Phanerozoic cycles of sea-level change on the Arabian Platform[J]. GeoArabia, 2005, 10(2): 127-160. |
[17] | HAQ B U, SCHUTTER S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. |
[18] | HAQ B U. Cretaceous eustasy revisited[J]. Global and Planetary Change, 2014, 113: 44-58. |
[19] | HAQ B U, HUBER B T. Anatomy of a eustatic event during the Turonian (Late Cretaceous) hot greenhouse climate[J]. Science China Earth Sciences, 2017, 60(1): 20-29. |
[20] | HAQ B U. Triassic eustatic variations reexamined[J]. Gsa Today, 2018, 28(12): 4-9. |
[21] |
钟广法. 海平面变化的原因及结果[J]. 地球科学进展, 2003, 18(5): 706-712.
DOI |
[22] | WATTS A B. Tectonic subsidence, flexure and global changes of sea level[J]. Nature, 1982, 297(5866): 469-474. |
[23] | THORNE J, WATTS A B. Seismic reflectors and unconformities at passive continental margins[J]. Nature, 1984, 311(5984): 365-368. |
[24] | MIALL A D. Eustatic sea level changes interpreted from seismic stratigraphy: a critique of the methodology with particular reference to the North Sea Jurassic record[J]. AAPG Bulletin, 1986, 70(2): 131-137. |
[25] | 中国大洋发现计划办公室、 海洋地质国家重点实验室(同济大学). 大洋钻探五十年[M]. 上海: 同济大学出版社, 2018: 2-49. |
[26] | COSOD II. Report of the second conference on scientific ocean drilling[R]. Strasbourg: European Science Foundation(ESF), 1987. |
[27] | RICHMAN B T. COSOD update[J]. Eos Transactions American Geophysical Union, 1981, 62(51): 1197. |
[28] | DE GRACIANSKY P C, POAG C W, FOSS G. Drilling on the goban spur:objectives, regional geological setting, and operational summary[C]//Initial Reports of the deep sea drilling project. Washington D C: US Government printing office, 1985, 80: 5-13. |
[29] | WISE JR S W, VAN HINTE J E. Mesozoic-Cenozoic depositional environments revealed by deep sea drilling project leg 93, drilling on the continental rise off the Eastern United States: cruise summary[C]//Initial reports of the deep sea drilling project. Washington DC: US Government Printing Office, 1987, 93: 1367-1423. |
[30] | POAG C W, WATTS A B. Background and objectives of the New Jersey Transect: continental slope and upper rise[C]//Initial reports of the deep sea drilling project. Washington DC: US Government Printing Office, 1987, 95: 15-27. |
[31] | WATKINS J S, MOUNTAIN G S. Role of ODP drilling in the investigation of global changes in sea level[R]. El Paso: JOI/USSAC Workshop, 1988. |
[32] | JOIDES SL-WG. Sea Level Working Group[J]. JOIDES Journal, 1992, 18(3): 28-36. |
[33] | JOIDES PLANNING COMMITTEE. Understanding our dynamic earth through ocean drilling: ocean drilling program long range plan: into the 21st century[R]. Washington DC: Joint Oceanographic Institutions, 1996. |
[34] | IODP Planning Sub-Committee. Earth, oceans and Life: IODP Initial Science Plan[M]. Washington DC: International Working Group Support Office, 2001: 32-46. |
[35] | FULTHORPE C S, MILLER K G, DROXLER A W, et al. Drilling to decipher long-term sea-level changes and effects: a joint consortium for ocean leadership, ICDP, IODP, DOSECC, and chevron workshop[J]. Scientific Drilling, 2008(6): 19-28. |
[36] | BACH W, RAVELO C, BEHRMANN J, et al. IODP new ventures in exploring scientific targets (INVEST): defining the new goals of an international drilling program[J]. Scientific Drilling, 2010(9): 54-64. |
[37] | BOARD O S, NATIONAL RESEARCH COUNCIL. Scientific ocean drilling: accomplishments and challenges[M]. Washington DC: National Academies Press, 2011: 44-46. |
[38] | BICKLE M, ARCULUS R, BARRETT P, et al. Illuminating earth’s past, present and future the science plan for the international ocean discovery program 2013-2023[M]. Washington DC: Integrated Ocean Drilling Program, 2011: 15-18. |
[39] | WILLIAMS T, MCKAY R, GOHL K, et al. Antarctica’s Cenozoic ice and climate history: new science and new challenges of drilling in Antarctic waters[R]. College Station: IODP-USSSP workshop, 2016. |
[40] | KOPPERS A A P, COGGON R. Exploring earth by scientific ocean drilling: 2050 science framework[M/OL]. [2020-10-27]. https://doi.org/10.6075/J0W66J9H. |
[41] | COFFIN M, PARR J, GRICE K, et al. Ocean planet: an ANZIC workshop report focused on future research challenges and opportunities for collaborative international scientific ocean drilling[R]. Canberra: The Australian and New Zealand IODP Consortium (ANZIC), 2020. |
[42] | DE GRACIANSKY P C, POAG C W, CUNNINGHAM JR R, et al. The goban spur transect: geologic evolution of a sediment-starved passive continental margin[J]. Geological Society of America Bulletin, 1985, 96(1): 58-76. |
[43] | DE GRACIANSKY P C, POAG C W. Geologic history of Goban Spur, northwest Europe continental margin[C]//Initial reports of the deep sea drilling project. Washington DC: U.S. Government Printing Office, 1985, 80: 1187-1216. |
[44] | POAG C W. The New Jersey transect: stratigraphic framework and depositional history of a sediment-rich passive margin[C]//Initial reports of the deep sea drilling project. Washington DC: US Government Printing Office, 1987, 95: 763-817. |
[45] | POAG C W, LOW D J. Unconformable sequence boundaries at deep sea drilling project Site 612, New Jersey transect: their characteristics and stratigraphic significance[C]//Initial reports of the deep sea drilling project. Washington DC: US Government Printing Office, 1987, 95: 435-498. |
[46] | MILLER K G, LIU C, FEIGENSON M D. Oligocene to middle Miocene Sr-isotopic stratigraphy of the New Jersey continental slope[C]//Proceedings of the ocean drilling program. College Station: Ocean Drilling Program, 1996, 150: 97-114. |
[47] | MILLER K G, MOUNTAIN G S. Drilling and dating New Jersey oligocene-miocene sequences: ice volume, global sea level, and Exxon records[J]. Science, 1996, 271(5252): 1092-1095. |
[48] | MILLER K G, MOUNTAIN G S, BROWNING J V, et al. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling[J]. Reviews of Geophysics, 1998, 36(4): 569-601. |
[49] | BROWNING J V, MILLER K G, SUGARMAN P J, et al. Chronology of eocene-miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations[J]. Geosphere, 2013, 9(6): 1434-1456. |
[50] | RÖHL U, OGG J G. Aptian-Albian sea level history from guyots in the western Pacific[J]. Paleoceanography, 1996, 11(5): 595-624. |
[51] | EBERLI G P. The record of Neogene sea-level changes in the prograding carbonates along the Bahamas Transect—Leg 166 Synthesis[C]//Proceedings of the ocean drilling program, scientific results. College Station: Ocean Drilling Program, 2000, 166: 167-177. |
[52] | ANSELMETTI F S, EBERLI G P, DING Z D. From the Great Bahama Bank into the straits of Florida: a margin architecture controlled by sea-level fluctuations and ocean currents[J]. Geological Society of America Bulletin, 2000, 112(6): 829-844. |
[53] | EBERLI G P, ANSELMETTI F S, KROON D, et al. The chronostratigraphic significance of seismic reflections along the Bahamas Transect[J]. Marine Geology, 2002, 185(1/2): 1-17. |
[54] | BETZLER C, KROON D, REIJMER J J G. Synchroneity of major late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms[J]. Paleoceanography, 2000, 15(6): 722-730. |
[55] | JOHN C M, KARNER G D, BROWNING E, et al. Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 455-467. |
[56] | VILLASEÑOR T, JAEGER J M, MARSAGLIA K M, et al. Evaluation of the relative roles of global versus local sedimentary controls on Middle to Late Pleistocene formation of continental margin strata, Canterbury Basin, New Zealand[J]. Sedimentology, 2015, 62(4): 1118-1148. |
[57] | MCHUGH C M, FULTHORPE C S, HOYANAGI K, et al. The sedimentary imprint of Pleistocene glacio-eustasy: implications for global correlations of seismic sequences[J]. Geosphere, 2018, 14(1): 265-285. |
[58] | MESTDAGH T, LOBO F J, LLAVE E, et al. Review of the late Quaternary stratigraphy of the northern Gulf of Cadiz continental margin: new insights into controlling factors and global implications[J]. Earth-Science Reviews, 2019, 198: 102944. |
[59] | MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298. |
[60] | MILLER K N N G, MOUNTAIN G G S, WRIGHT J M S D, et al. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records[J]. Oceanography, 2011, 24(2): 40-53. |
[61] | KOMINZ M A, BROWNING J V, MILLER K G, et al. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis[J]. Basin Research, 2008, 20(2): 211-226. |
[62] | KOMINZ M A, MILLER K G, BROWNING J V, et al. Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one-dimensional backstripping: a case for both eustasy and epeirogeny[J]. Geosphere, 2016, 12(5): 1437-1456. |
[63] | JOHN C M, KARNER G D, MUTTI M. δ18O and Marion plateau backstripping: combining two approaches to constrain late middle Miocene eustatic amplitude[J]. Geology, 2004, 32(9): 829-832. |
[64] | DESCHAMPS P, DURAND N, BARD E, et al. Ice-sheet collapse and sea-level rise at the Bølling warming 14, 600 years ago[J]. Nature, 2012, 483(7391): 559-564. |
[65] | YOKOYAMA Y, ESAT T M, THOMPSON W G, et al. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum[J]. Nature, 2018, 559(7715): 603-607. |
[66] | MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science advances, 2020, 6(20): eaaz1346. |
[67] | MILLER K G, SCHMELZ W J, BROWNING J V, et al. Ancient sea level[J]. Oceanography, 2020, 33(2): 32-41. |
[68] | BARRON E J, THOMPSON S L, SCHNEIDER S H. An ice-free cretaceous? Results from climate model simulations[J]. Science, 1981, 212(4494): 501-508. |
[69] | HUBER B T, HODELL D A, HAMILTON C P. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients[J]. Geological Society of America Bulletin, 1995, 107(10): 1164-1191. |
[70] | BICE K L, BIRGEL D, MEYERS P A, et al. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations[J]. Paleoceanography, 2006, 21(2): PA2002. |
[71] | HAY W W. Evolving ideas about the Cretaceous climate and ocean circulation[J]. Cretaceous Research, 2008, 29(5/6): 725-753. |
[72] | MILLER K G, SUGARMAN P J, BROWNING J V, et al. Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during the greenhouse world[J]. Geology, 2003, 31(7): 585-588. |
[73] | MILLER K G, SUGARMAN P J, BROWNING J V, et al. Upper Cretaceous sequences and sea-level history, New Jersey coastal plain[J]. Geological Society of America Bulletin, 2004, 116(3/4): 368-393. |
[74] | MILLER K G, WRIGHT J D, BROWNING J V. Visions of ice sheets in a greenhouse world[J]. Marine Geology, 2005, 217(3/4): 215-231. |
[75] | FRAKES L A, FRANCIS J E. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous[J]. Nature, 1988, 333(6173): 547-549. |
[76] | STOLL H M, SCHRAG D P. Evidence for glacial control of rapid sea level changes in the Early Cretaceous[J]. Science, 1996, 272(5269): 1771-1774. |
[77] | STOLL H M, SCHRAG D P. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet?[J]. Geological Society of America Bulletin, 2000, 112(2): 308-319. |
[78] | BORNEMANN A, NORRIS R D, FRIEDRICH O, et al. Isotopic evidence for glaciation during the Cretaceous supergreenhouse[J]. Science, 2008, 319(5860): 189-192. |
[79] | HUBER B T, MACLEOD K G, WATKINS D K, et al. The rise and fall of the cretaceous hot greenhouse climate[J]. Global and Planetary Change, 2018, 167: 1-23. |
[80] | RAY D C, VAN BUCHEM F S P, BAINES G, et al. The magnitude and cause of short-term eustatic Cretaceous sea-level change: a synthesis[J]. Earth-Science Reviews, 2019, 197: 102901. |
[81] | VAN SICKEL W A, KOMINZ M A, MILLER K G, et al. Late Cretaceous and Cenozoic sea-level estimates: backstripping analysis of borehole data, onshore New Jersey[J]. Basin Research, 2004, 16(4): 451-465. |
[82] | SLUIJS A, SCHOUTEN S, PAGANI M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 2006, 441(7093): 610-613. |
[83] | LOWENSTEIN T K, DEMICCO R V. Elevated Eocene atmospheric CO2 and its subsequent decline[J]. Science, 2006, 313(5795): 1928-1928. |
[84] | GULICK S P S, SHEVENELL A E, MONTELLI A, et al. Initiation and long-term instability of the East Antarctic Ice Sheet[J]. Nature, 2017, 552(7684): 225-229. |
[85] | MOUCHA R, FORTE A M, MITROVICA J X, et al. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 101-108. |
[86] | SCHMELZ W J, MILLER K G, KOPP R E, et al. Influence of mantle dynamic topographical variations on US mid-atlantic continental margin estimates of sea-level change[J]. Geophysical Research Letters, 2021, 48(4): e2020GL090521. |
[87] | KOMINZ M A, PEKAR S F. Oligocene eustasy from two-dimensional sequence stratigraphic backstripping[J]. Geological Society of America Bulletin, 2001, 113(3): 291-304. |
[88] | MILLER K G, WRIGHT J D, FAIRBANKS R G. Unlocking the ice house: oligocene-Miocene oxygen isotopes, eustasy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848. |
[89] | ISERN A R, ANSELMETTI F, BLUM P. ODP Leg 194: sea level magnitudes recorded by continental margin sequences on the Marion Plateau, northeast Australia[J]. JOIDES Journal, 2001, 27(2): 7-11. |
[90] | CAMOIN G F, IRYU Y, MCINROY D B, et al. IODP Expedition 310 reconstructs sea level, climatic, and environmental changes in the South Pacific during the last deglaciation[J]. Scientific Drilling, 2007(5): 4-12. |
[91] | YOKOYAMA Y, WEBSTER J M, COTTERILL C, et al. IODP Expedition 325: great barrier reefs reveals past sea-level, climate and environmental changes since the last ice age[J]. Scientific Drilling, 2011(12): 32-45. |
[92] | THOMAS A L, HENDERSON G M, DESCHAMPS P, et al. Penultimate deglacial sea-level timing from uranium/thorium dating of Tahitian corals[J]. Science, 2009, 324(5931): 1186-1189. |
[93] | BARD E, HAMELIN B, DELANGHE-SABATIER D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti[J]. Science, 2010, 327(5970): 1235-1237. |
[94] | FUJITA K, OMORI A, YOKOYAMA Y, et al. Sea-level rise during Termination II inferred from large benthic foraminifers: IODP Expedition 310, Tahiti Sea Level[J]. Marine Geology, 2010, 271(1/2): 149-155. |
[95] | PEKAR S F, CHRISTIE-BLICK N, KOMINZ M A, et al. Evaluating the stratigraphic response to eustasy from Oligocene strata in New Jersey[J]. Geology, 2001, 29(1): 55-58. |
[96] | PEKAR S F, CHRISTIE-BLICK N, MILLER K G, et al. Quantitative constraints on the origin of stratigraphic architecture at passive continental margins: oligocene sedimentation in New Jersey, USA[J]. Journal of Sedimentary Research, 2003, 73(2): 227-245. |
[97] | STECKLER M S, MOUNTAIN G S, MILLER K G, et al. Reconstruction of tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping[J]. Marine Geology, 1999, 154(1/2/3/4): 399-420. |
[98] | PEKAR S F, MILLER K G, KOMINZ M A. Reconstructing the stratal geometry of latest Eocene to Oligocene sequences in New Jersey: resolving a patchwork distribution into a clear pattern of progradation[J]. Sedimentary Geology, 2000, 134(1/2): 93-109. |
[99] | FULTHORPE C S, AUSTIN JR J A, MOUNTAIN G S. Buried fluvial channels off New Jersey: did sea-level lowstands expose the entire shelf during the Miocene?[J]. Geology, 1999, 27(3): 203-206. |
[100] | PIGRAM C J, DAVIES P J, CHAPRONIERE G C H. Cement stratigraphy and the demise of the early-middle Miocene carbonate platform on the Marion plateau[C]//Proceedings of the ocean drilling program, scientific results. College Station: Ocean Drilling Program, 1993, 133: 499-512. |
[101] | BETZLER C, PFEIFFER M, SAXENA S. Carbonate shedding and sedimentary cyclicities of a distally steepened carbonate ramp (Miocene, Great Bahama Bank)[J]. International Journal of Earth Sciences, 2000, 89(1): 140-153. |
[102] | REOLID J, BETZLER C, LÜDMANN T. The record of Oligocene-Middle Miocene paleoenvironmental changes in a carbonate platform (IODP Exp. 359, Maldives, Indian Ocean)[J]. Marine Geology, 2019, 412: 199-216. |
[103] | MCKENZIE J A, DAVIES P J. Cenozoic evolution of carbonate platforms on the northeastern australian margin:synthesis of ODP Leg 133 Drilling Results[C] //Proceedings of the ocean drilling program, scientific results. College Station: Ocean Drilling Program, 1993, 133: 763-770. |
[104] | BETZLER C, KROON D, GARTNER S, et al. Eocene to Miocene chronostratigraphy of the Queensland plateau: control of climate and sea level on platform evolution[C]//Proceedings of the ocean drilling program, scientific results. College Station: Ocean Drilling Program, 1993, 133: 281-289. |
[105] | HOLBOURN A, KUHNT W, JAMES N. Late Pleistocene bryozoan reef mounds of the Great Australian Bight: Isotope stratigraphy and benthic foraminiferal record[J]. Paleoceanography, 2002, 17(3): 1-13. |
[106] | ISERN A R, ANSELMETTI F S, BLUM P. A Neogene carbonate platform, slope, and shelf edifice shaped by sea level and ocean currents, Marion Plateau (northeast Australia)[J]. AAPG Memoir, 2004: 291-307. |
[107] | PEERDEMAN F M, DAVIES P J. Sedimentological response of an outer-shelf, upper-slope sequence to rapid changes in Pleistocene eustatic sea level: hole 820A, northeastern australian margin[C]//Proceedings of the ocean drilling program, scientific results. College Station: Ocean Drilling Program, 1993, 133: 303-313. |
[108] | BETZLER C, SAXENA S, SWART P K, et al. Cool-water carbonate sedimentology and eustasy; pleistocene upper slope environments, great australian bight (Site 1127, ODP LEG 182)[J]. Sedimentary Geology, 2005, 175(1/2/3/4): 169-188. |
[109] | SWART P K, BLÄTTLER C L, NAKAKUNI M, et al. Cyclic anoxia and organic rich carbonate sediments within a drowned carbonate platform linked to Antarctic ice volume changes: Late oligocene-early miocene maldives[J]. Earth and Planetary Science Letters, 2019, 521: 1-13. |
[110] | YOUNG J R, ARCHONTIKIS O A, SU X, et al. Nannofossil palaeoecology of Lower Miocene sapropels from IODP expedition 359, the maldives[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571: 110325. |
[111] | CAMOIN G F, SEARD C, DESCHAMPS P, et al. Reef response to sea-level and environmental changes during the last deglaciation: integrated ocean drilling program expedition 310, Tahiti Sea Level[J]. Geology, 2012, 40(7): 643-646. |
[112] | WEBSTER J M, BRAGA J C, HUMBLET M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years[J]. Nature Geoscience, 2018, 11(6): 426-432. |
[113] | FUJITA K, YAGIOKA N, NAKADA C, et al. Reef-flat and back-reef development in the Great Barrier Reef caused by rapid sea-level fall during the Last Glacial Maximum (30-17 ka)[J]. Geology, 2020, 48(1): 39-43. |
[114] | ESCUTIA C, DECONTO R M, DUNBAR R, et al. Keeping an eye on Antarctic Ice Sheet stability[J]. Oceanography, 2019, 32(1): 32-46. |
[115] | PÉREZ L F, DE SANTIS L, MCKAY R M, et al. Early and middle Miocene ice sheet dynamics in the Ross Sea: results from integrated core-log-seismic interpretation[J]. Geological Society of America Bulletin, 2022, 134(1/2): 348-370. |
[116] | GOHL K, UENZELMANN-NEBEN G, GILLE-PETZOLDT J, et al. Evidence for a highly dynamic West Antarctic Ice Sheet during the Pliocene[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093103. |
[117] |
李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
DOI |
[118] |
翦知湣, 党皓文. 解读过去、预告未来: IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
DOI |
[119] | HYTTINEN O, QUINTANA KRUPINSKI N, BENNIKE O, et al. Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin[J]. Boreas, 2021, 50(2): 351-368. |
[1] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[2] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[3] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[4] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[5] | HE Chaofei, LUO Chengyan, CHEN Fulong, LONG Aihua, TANG Hao. CMIP6 multi-model prediction of future climate change in the Hotan River Basin [J]. Earth Science Frontiers, 2023, 30(3): 515-528. |
[6] | SHEN Luyin, PAN Renfang, DUAN Taizhong, LIU Yanfeng, LI Meng, LIAN Peiqing, HUANG Yuan, ZHANG Demin. Deep-time sea-level change curve recovery: A recovery method based on stratigraphic inverse modeling [J]. Earth Science Frontiers, 2023, 30(2): 109-121. |
[7] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[8] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[9] | NI Yanhua, LI Minghui, FANG Xiaomin, MENG Fanwei, YAN Maodu, LIU Yingxin. Paleotemperature during the Mid-Pleistocene Transition in western Qaidam Basin: Evidence from fluid inclusions in halite from drill hole SG-1 [J]. Earth Science Frontiers, 2021, 28(6): 115-124. |
[10] | S.K.KRIVONOGOV, T.I.KENSHINBAY, R.Kh.KURMANBAEV, B.S.KARIMOVA. The key question of the Aral Sea evolution important for understanding its economic, social and ecological values [J]. Earth Science Frontiers, 2021, 28(6): 196-204. |
[11] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[12] | GUAN Kaiping,TIAN Li,AN Zhihui,YE Qin,,HU Jun,TONG Jinnan. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation. [J]. Earth Science Frontiers, 2016, 23(6): 236-245. |
[13] | YAN Li-Juan, ZHENG Mian-Beng, WEI Le-Jun. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years. [J]. Earth Science Frontiers, 2016, 23(4): 310-323. |
[14] | TU Chao, YANG Zhong-Fang, HOU Jing-Xie, JIA Hua-Ji, ZONG Sai-Feng, LI Biao. Distribution and influencing factors of paddy soil organic carbon content in Chinas major farming areas. [J]. Earth Science Frontiers, 2011, 18(6): 11-19. |
[15] | . The sequence stratigraphic response to the basinorogene coupling process of CretaceousNeogene in Tarim Basin, China. [J]. Earth Science Frontiers, 2011, 18(4): 144-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||