

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 63-79.DOI: 10.13745/j.esf.sf.2025.10.33
Previous Articles Next Articles
YU Furong1(
), LI Rui1, LI Zhiping1,2,*(
), WU Lin1, LIU Zhongpei1
Received:2025-05-20
Revised:2025-09-29
Online:2026-01-25
Published:2025-11-10
CLC Number:
YU Furong, LI Rui, LI Zhiping, WU Lin, LIU Zhongpei. Distribution prediction of natural low-quality groundwater in the plains of Henan Province based on machine learning[J]. Earth Science Frontiers, 2026, 33(1): 63-79.
| 参数类别 | 具体参数 | 数据类型 | 单位/描述 |
|---|---|---|---|
| 气候气象条件 | 年平均气温 | 数值型 | ℃ |
| 年降水量 | 数值型 | mm/a | |
| 潜在蒸发量 | 数值型 | mm/a | |
| 干燥指数(AI) | 数值型 | 无单位 | |
| 地表沉积条件 | 表层岩性类型 | 类别型 | 黏土、砂砾等 |
| 土壤渗透系数 | 数值型 | cm/s | |
| 表层有机质含量 | 数值型 | % | |
| 地表盐渍化程度 | 数值型 | 无单位 | |
| 地下水理化特征 | pH值 | 数值型 | 无单位 |
| 主要阳离子 | 数值型 | mg/L | |
| 主要阴离子 | 数值型 | mg/L | |
| 微量元素 | 数值型 | μg/L | |
| 水文地质条件 | 地下水埋深 | 数值型 | m |
| 含水层水力传导系数 | 数值型 | m/d | |
| 气候气象条件 | 年平均气温 | 数值型 | ℃ |
| 年降水量 | 数值型 | mm/a | |
| 潜在蒸发量 | 数值型 | mm/a |
Table 1 Environment parameters
| 参数类别 | 具体参数 | 数据类型 | 单位/描述 |
|---|---|---|---|
| 气候气象条件 | 年平均气温 | 数值型 | ℃ |
| 年降水量 | 数值型 | mm/a | |
| 潜在蒸发量 | 数值型 | mm/a | |
| 干燥指数(AI) | 数值型 | 无单位 | |
| 地表沉积条件 | 表层岩性类型 | 类别型 | 黏土、砂砾等 |
| 土壤渗透系数 | 数值型 | cm/s | |
| 表层有机质含量 | 数值型 | % | |
| 地表盐渍化程度 | 数值型 | 无单位 | |
| 地下水理化特征 | pH值 | 数值型 | 无单位 |
| 主要阳离子 | 数值型 | mg/L | |
| 主要阴离子 | 数值型 | mg/L | |
| 微量元素 | 数值型 | μg/L | |
| 水文地质条件 | 地下水埋深 | 数值型 | m |
| 含水层水力传导系数 | 数值型 | m/d | |
| 气候气象条件 | 年平均气温 | 数值型 | ℃ |
| 年降水量 | 数值型 | mm/a | |
| 潜在蒸发量 | 数值型 | mm/a |
| 组分 | 各赋值类别的标准限值/(mg·L-1) | |||
|---|---|---|---|---|
| 0 | 1 | 2 | ||
| 砷(As) | ≤0.01 | 0.01~0.05 | ≥0.05 | |
| 氟(F) | ≤1.0 | 1.0~2.0 | ≥2.0 | |
| 碘(I) | ≤0.1 | 0.1~0.50 | ≥0.50 | |
Table 2 Classification standards of Primary Inferior Components (unit: mg/L)
| 组分 | 各赋值类别的标准限值/(mg·L-1) | |||
|---|---|---|---|---|
| 0 | 1 | 2 | ||
| 砷(As) | ≤0.01 | 0.01~0.05 | ≥0.05 | |
| 氟(F) | ≤1.0 | 1.0~2.0 | ≥2.0 | |
| 碘(I) | ≤0.1 | 0.1~0.50 | ≥0.50 | |
| 层位 | 年份 | 原生劣质组分 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 原生劣质地下水分布率 |
|---|---|---|---|---|---|---|---|---|
| 潜水 | 2020 | As | 0 | 0.12 | 0.01 | 0.01 | 2.27 | 14.49% |
| F | 0.01 | 3.3 | 0.72 | 0.59 | 0.83 | 21.98% | ||
| I | 0.01 | 0.8 | 0.07 | 0.1 | 1.36 | 12.08% | ||
| 2021 | As | 0 | 0.14 | 0.01 | 0.01 | 2.38 | 16.91% | |
| F | 0.05 | 3.4 | 0.72 | 0.61 | 0.85 | 25.85% | ||
| I | 0.05 | 0.9 | 0.07 | 0.09 | 1.39 | 7.25% | ||
| 2022 | As | 0 | 0.16 | 0.01 | 0.01 | 2.81 | 13.04% | |
| F | 0.05 | 3.3 | 0.68 | 0.58 | 0.85 | 22.46% | ||
| I | 0.03 | 1 | 0.07 | 0.1 | 1.4 | 8.21% | ||
| 承压水 | 2020 | As | 0 | 0.09 | 0 | 0.01 | 2.55 | 2.86% |
| F | 0.05 | 2.2 | 0.72 | 0.52 | 0.72 | 32.86% | ||
| I | 0.01 | 1 | 0.08 | 0.15 | 1.77 | 15.71% | ||
| 2021 | As | 0 | 0.04 | 0 | 0.01 | 2 | 4.29% | |
| F | 0.05 | 2.72 | 0.75 | 0.61 | 0.82 | 35.71% | ||
| I | 0.02 | 0.9 | 0.06 | 0.1 | 1.61 | 8.57% | ||
| 2022 | As | 0 | 0.05 | 0.01 | 0.01 | 2.22 | 1.43% | |
| F | 0.06 | 2.56 | 0.76 | 0.61 | 0.8 | 30.00% | ||
| I | 0.05 | 0.9 | 0.09 | 0.15 | 1.63 | 10.00% |
Table 3 Pollutant concentrations in groundwater
| 层位 | 年份 | 原生劣质组分 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 原生劣质地下水分布率 |
|---|---|---|---|---|---|---|---|---|
| 潜水 | 2020 | As | 0 | 0.12 | 0.01 | 0.01 | 2.27 | 14.49% |
| F | 0.01 | 3.3 | 0.72 | 0.59 | 0.83 | 21.98% | ||
| I | 0.01 | 0.8 | 0.07 | 0.1 | 1.36 | 12.08% | ||
| 2021 | As | 0 | 0.14 | 0.01 | 0.01 | 2.38 | 16.91% | |
| F | 0.05 | 3.4 | 0.72 | 0.61 | 0.85 | 25.85% | ||
| I | 0.05 | 0.9 | 0.07 | 0.09 | 1.39 | 7.25% | ||
| 2022 | As | 0 | 0.16 | 0.01 | 0.01 | 2.81 | 13.04% | |
| F | 0.05 | 3.3 | 0.68 | 0.58 | 0.85 | 22.46% | ||
| I | 0.03 | 1 | 0.07 | 0.1 | 1.4 | 8.21% | ||
| 承压水 | 2020 | As | 0 | 0.09 | 0 | 0.01 | 2.55 | 2.86% |
| F | 0.05 | 2.2 | 0.72 | 0.52 | 0.72 | 32.86% | ||
| I | 0.01 | 1 | 0.08 | 0.15 | 1.77 | 15.71% | ||
| 2021 | As | 0 | 0.04 | 0 | 0.01 | 2 | 4.29% | |
| F | 0.05 | 2.72 | 0.75 | 0.61 | 0.82 | 35.71% | ||
| I | 0.02 | 0.9 | 0.06 | 0.1 | 1.61 | 8.57% | ||
| 2022 | As | 0 | 0.05 | 0.01 | 0.01 | 2.22 | 1.43% | |
| F | 0.06 | 2.56 | 0.76 | 0.61 | 0.8 | 30.00% | ||
| I | 0.05 | 0.9 | 0.09 | 0.15 | 1.63 | 10.00% |
| 赋值类别 | 各赋值类别的混淆矩阵 | |||
|---|---|---|---|---|
| 0 | 1 | 2 | ||
| 0 | TP0 | FN0-1 | FN0-2 | |
| 1 | FN1-0 | TP1 | FN1-2 | |
| 2 | FN2-0 | FN2-1 | TP2 | |
Table 4 Confusion matrix structure of the three-classification problem
| 赋值类别 | 各赋值类别的混淆矩阵 | |||
|---|---|---|---|---|
| 0 | 1 | 2 | ||
| 0 | TP0 | FN0-1 | FN0-2 | |
| 1 | FN1-0 | TP1 | FN1-2 | |
| 2 | FN2-0 | FN2-1 | TP2 | |
| 模型 | 准确率/% | |||
|---|---|---|---|---|
| As | F | I | 平均 | |
| SVM | 81.40 | 77.48 | 86.16 | 81.68 |
| RF | 95.87 | 91.53 | 96.28 | 94.56 |
| AdaBoost | 89.67 | 85.74 | 91.12 | 88.84 |
| XGBoost | 98.14 | 95.45 | 97.93 | 97.17 |
Table 5 Accuracy of each model
| 模型 | 准确率/% | |||
|---|---|---|---|---|
| As | F | I | 平均 | |
| SVM | 81.40 | 77.48 | 86.16 | 81.68 |
| RF | 95.87 | 91.53 | 96.28 | 94.56 |
| AdaBoost | 89.67 | 85.74 | 91.12 | 88.84 |
| XGBoost | 98.14 | 95.45 | 97.93 | 97.17 |
| 离子 | Moran’s I | z得分 | p值 |
|---|---|---|---|
| As | 0.108 558 | 3.777 109 | 0.000 159 |
| F | 0.085 841 | 2.984 546 | 0.002 84 |
| I | 0.273 991 | 9.430 531 | 0 |
Table 6 Global Moran index spatial autocorrelation of Primary Inferior Components classification output by XGBoost
| 离子 | Moran’s I | z得分 | p值 |
|---|---|---|---|
| As | 0.108 558 | 3.777 109 | 0.000 159 |
| F | 0.085 841 | 2.984 546 | 0.002 84 |
| I | 0.273 991 | 9.430 531 | 0 |
| [1] |
MALIK A SUGANDH. Groundwater hydro-geochemistry, irrigation and drinking quality, and source apportionment in the intensively cultivated area of Sutlej Sub-basin of main Indus Basin[J]. Environmental Earth Sciences, 2022, 81(18): 456.
DOI |
| [2] |
TYOPINE A A, ELOM N I, ALOMAJA F, et al. Assessment of heavy metal contamination and health risks in groundwater of Abakaliki Metropolis, Nigeria[J]. Discover Water, 2024, 4(1): 1-16.
DOI |
| [3] |
WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933.
DOI URL |
| [4] | 纪媛媛. 新疆阿克苏河流域平原区地下水砷氟赋存环境及共富集机理研究[D]. 乌鲁木齐: 新疆农业大学, 2024. |
| [5] | 刘锐平, KHAN T, RAHMAN S, 等. 孟加拉国饮用水砷污染控制策略与方向[J]. 环境工程学报, 2020, 14 (8): 2075-2080. |
| [6] |
HABIB M A, REZA A H M S, HASAN M I, et al. Evaluating arsenic contamination in northwestern Bangladesh: a GIS-Based assessment of groundwater vulnerability and human health impacts[J]. Heliyon, 2024, 10(6): e27917.
DOI URL |
| [7] |
KHAN M U, RAI N. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic Basin, India[J]. Environmental Geochemistry and Health, 2022, 45(5): 2099-2115.
DOI PMID |
| [8] | 任宇, 曹文庚, 潘登, 等. 2010—2020年黄河下游河南典型灌区浅层地下水中砷和氟的演化特征及变化机制[J]. 岩矿测试, 2021, 40(6): 846-859. |
| [9] |
ZHU Y, YANG Q, WANG H, et al. A hydrochemical and isotopic approach for source identification and health risk assessment of groundwater arsenic pollution in the central Yinchuan Basin[J]. Environmental Research, 2023, 231(2): 116153.
DOI URL |
| [10] |
FENG S, GUO H, SUN X, et al. Relative importance of hydrogeochemical and hydrogeological processes on arsenic enrichment in groundwater of the Yinchuan Basin, China[J]. Applied Geochemistry, 2022, 137: 105180.
DOI URL |
| [11] |
NASEEM S, RAFI S. Source of arsenic pollution in southern Indus alluvial plain aquifers, Pakistan[J]. Groundwater for Sustainable Development, 2024, 25: 101157.
DOI URL |
| [12] |
ZHANG Y, XIE X, SUN S, et al. Coupled redox cycling of arsenic and sulfur regulates thioarsenate enrichment in groundwater[J]. Science of The Total Environment, 2024, 943: 173776.
DOI URL |
| [13] |
LI Y, GUO H, ZHAO B, et al. High biodegradability of microbially-derived dissolved organic matter facilitates arsenic enrichment in groundwater: evidence from molecular compositions and structures[J]. Journal of Hazardous Materials, 2024, 470: 134133.
DOI URL |
| [14] |
XIU W, KAI T T, LLOYD J R, et al. Understanding microbial arsenic-mobilization in multiple aquifers: insight from DNA and RNA analyses[J]. Environmental Science & Technology, 2021, 55(22): 15181-15195.
DOI URL |
| [15] |
CHEN J, WANG S, ZHANG S, et al. Identifying the hydrochemical features, driving factors, and associated human health risks of high-fluoride groundwater in a typical Yellow River floodplain, North China[J]. Environmental Geochemistry and Health, 2023, 45(11): 8709-8733.
DOI PMID |
| [16] |
YUE K, YANG Y, QIAN K, et al. Spatial distribution and hydrogeochemical processes of high iodine groundwater in the Hetao Basin, China[J]. Science of the Total Environment, 2024, 953: 176116.
DOI URL |
| [17] |
PATRICK M, SAHU O. Origins, mechanisms, and remedies of fluoride ions from ground and surface water: a review[J]. Chemistry Africa, 2023, 6(6): 2737-2768.
DOI |
| [18] |
PODGORSKI J, BERG M. Global analysis and prediction of fluoride in groundwater[J]. Nature Communications, 2022, 13(1): 4232.
DOI PMID |
| [19] | SHAIKH A, KURIAN S, SHENOY D M, et al. Spatial and temporal variation of dissolved iodine in the eastern Arabian Sea[J]. Marine Chemistry, 2023, 257(Suppl C): 104322. |
| [20] |
JOTHIMANI M, ABEBE A, BERHANU G. Application of remote sensing, GIS, and drainage morphometric analysis in groundwater potential assessment for sustainable development in Iyenda River Catchment, Konso Zone, Rift Valley, southern Ethiopia[J]. IOP Conference Series: Earth and Environmental Science, 2022, 982(1): 012032.
DOI |
| [21] |
JIANG G, SU C, LIU H, et al. Mobilization and enrichment of geogenic iodine in a floodplain groundwater system: new insights from sources and characterization of dissolved organic matter[J]. Science of the Total Environment, 2024, 956: 177299.
DOI URL |
| [22] |
JIANG Z, HUANG M, JIANG Y, et al. Microbial contributions to iodide enrichment in deep groundwater in the North China Plain[J]. Environmental Science & Technology, 2023, 57(6): 2625-2635.
DOI URL |
| [23] |
ZHI C, HU B X, CHANG W, et al. Enrichment mechanism of fluoride and iodine in saline groundwater in the lower flood plain of the Yellow River, northern China[J]. Journal of Hydrology, 2023, 621: 129529.
DOI URL |
| [24] |
LIU W, QIAN K, XIE X, et al. Co-occurrence of arsenic and iodine in the middle-deep groundwater of the Datong Basin: from the perspective of optical properties and isotopic characteristics[J]. Environmental Pollution, 2023, 329: 121686.
DOI URL |
| [25] |
LI J, ZHAO S, JIANG Z, et al. Spatial distribution and formation mechanisms of high-iodine groundwater throughout China[J]. Earth-Science Reviews, 2025, 265: 105134.
DOI URL |
| [26] | 王焰新, 曹海龙, 谢先军, 等. 基于树的机器学习方法预测地质成因劣质地下水空间分布[J]. 安全与环境工程, 2022, 29(5): 58-64, 77. |
| [27] |
CAO W, FU Y, CHENG Y, et al. Modeling potential arsenic enrichment and distribution using stacking ensemble learning in the lower Yellow River Plain, China[J]. Journal of Hydrology, 2023, 625: 129985.
DOI URL |
| [28] |
CAO W, ZHANG Z, FU Y, et al. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning[J]. Water Research, 2024, 259: 121848.
DOI URL |
| [29] | LIU H, LI J, CAO H, et al. Prediction modeling of geogenic iodine contaminated groundwater throughout China[J]. Journal of Environmental Management, 2022, 303(Suppl C): 114249. |
| [30] | 曹文庚, 潘登, 徐郅杰, 等. 河南省滑坡灾害易发性制图研究:多种机器学习模型的对比[J]. 地质科技通报, 2025, 44(1):101-111. |
| [31] | KNOLL L, MÜLLER S, STUMPP C, et al. Random forest-based prediction of nitrate contamination in groundwater using hydrogeochemical and land-use data[J]. Journal of Hydrology, 2020, 588: 125023. |
| [32] |
ZHAO Y, YANG L, PAN H, et al. Spatio-temporal prediction of groundwater vulnerability based on CNN-LSTM model with self-attention mechanism: a case study in Hetao Plain, northern China[J]. Journal of Environmental Sciences, 2025, 153: 128-142.
DOI PMID |
| [33] |
LV S, ZHANG Z, SUN N, et al. Regional groundwater water quality assessment and contamination source identification by a self-organizing map and entropy method in Pinggu Basin, Northeast Beijing[J]. Frontiers in Environmental Science, 2022, 10: 946914.
DOI URL |
| [34] |
CAO H, XIE X, SHI J, et al. Evaluating the validity of class balancing algorithms-based machine learning models for geogenic contaminated groundwaters prediction[J]. Journal of Hydrology, 2022, 610: 127933.
DOI URL |
| [35] |
王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10.
DOI |
| [36] |
GUO H, LIU C, LU H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: an iron isotope approach[J]. Geochimica et Cosmochimica Acta, 2013, 112(1): 130-145.
DOI URL |
| [37] |
CAO H, XIE X, SHI J, et al. Siamese network-based transfer learning model to predict geogenic contaminated groundwaters[J]. Environmental Science & Technology, 2022, 56(15):11071-11079.
DOI URL |
| [38] | AHSAN H, CHEN Y, PARVEZ F, et al. Health effects of arsenic longitudinal study (HEALS): description of a multidisciplinary epidemiologic investigation[J]. Journal of Exposure Science & Environmental Epidemiology, 2006, 16: 191-205. |
| [39] |
LI Y F, WANG D, LIU Y Y, et al. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region’s cluster of elevated cancer mortalities[J]. Applied Geochemistry, 2017, 77: 178-183.
DOI URL |
| [40] |
MA R, YAN M, HAN P, et al. Deficiency and excess of groundwater iodine and their health associations[J]. Nature Communications, 2022, 13(1): 7354.
DOI PMID |
| [41] |
ZHU Y, TONG M, WANG Y, et al. Prevalence of thyroid nodules and its association with water iodine among Chinese men and women[J]. Environmental Research, 2022, 212: 113270.
DOI URL |
| [42] |
CAO W, FU Y, REN Y, et al. Arsenic health risk in shallow groundwater of the alluvial plains in the lower Yellow River, China: driving mechanisms of climate change and human activities[J]. Environment International, 2025, 202: 109711.
DOI URL |
| [43] | 贾秀阁, 吴冰华, 王唯锦, 等. 河南省浅层原生劣质地下水分布特征研究[J]. 河南科学, 2022, 40(1): 93-97. |
| [44] |
LI X, GUO H, JIAO J J, et al. Modified Gibbs diagram for high-fluoride groundwater classification: a case study in the Loess Plateau[J]. Applied Geochemistry, 2020, 123: 104788.
DOI URL |
| [45] |
ADIMALLA N, QIAN H. Hydrogeochemical characterization and groundwater quality assessment in urbanizing regions using Gibbs ratios and pollution indices[J]. Environmental Science and Pollution Research, 2021, 28(45): 63815-63832.
DOI |
| [46] |
ZHANG Y, LI P, QIAN H, et al. Hydrochemical evolution and controlling mechanisms of groundwater in the arid Northwest China: insights from Gibbs diagrams and ionic ratios[J]. Journal of Hydrology, 2021, 603: 127045.
DOI URL |
| [47] |
KUMAR M, RAMANATHAN A, SINGH V B, et al. Deciphering groundwater salinization in coastal aquifers: an integrated approach using Gibbs plots, ionic deltas, and isotopic tracers[J]. Science of the Total Environment, 2022, 806: 150520.
DOI URL |
| [48] | HE S, WU J. Hydrogeochemical signatures of mining-impacted aquifers: combining Gibbs diagrams with Sr2+/Ca2+ and δ34S-${\mathrm{SO}}_{4}^{2-}$ ratios[J]. Chemosphere, 2023, 311: 137013. |
| [49] |
GAO Z, LIU J, WANG Z, et al. Ionic ratio evolution in arsenic-fluoride co-contaminated aquifers: implications for redox zonation and remediation[J]. Water Research, 2022, 219: 118543.
DOI URL |
| [50] | PODGORSKI J E, LABHASETWAR P, SAHA D, et al. Global-scale groundwater ion ratio analysis: a machine learning-enhanced Gibbs framework[J]. Nature Water, 2023, 1(5): 345-356. |
| [51] | 原春生, 马嘉俊, 李晓红, 等. 2019年河南省饮水型地方性砷中毒监测结果分析[J]. 中华地方病学杂志, 2023, 42(4): 325-327. |
| [52] | 原春生, 马嘉俊, 闫英洁, 等. 2021年河南省饮水型地方性氟中毒监测结果分析[J]. 中华地方病学杂志, 2023, 42(11): 883-887. |
| [1] | ZHAO Hu, GUO Feng, ZHAN Nan, LIU Siwen, JING Zhangwei, YUAN Hongfei, YU Tingting, ZHANG Xin, ZHU Yun, WANG Lei. Characteristics of mineral element distribution, geological origins, and health risk assessment of loquat fruits from Dongshan and Xishan of Suzhou [J]. Earth Science Frontiers, 2025, 32(4): 363-375. |
| [2] | WANG Wei, CHENG Xing, GAO Xubo, TIAN Zhenhuan, LIU Chunhua, WU Zhanhui, LI Chengcheng, KONG Shuqiong. The genesis of groundwater chemistry in Yellow River Delta: A case study of Gudao Town, Dongying City, Shandong Province [J]. Earth Science Frontiers, 2025, 32(2): 469-483. |
| [3] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
| [4] | LI Haiyan,WANG Yaosen,ZHANG Xiaoran,YAN Lei,WU Liyuan,JIN Yi, CUI Ru,YANG Zhichao. Pollution load and health risk assessment of heavy metals in road-deposited sediment in the urban-rural fringe of Beijing [J]. Earth Science Frontiers, 2019, 26(6): 199-206. |
| [5] | YUE Changsheng,DU Huili,PENG Ben,CUI Yanshan. In vitro assessment of the effectiveness and health risks of using different washing reagents in arsenic removal from soil [J]. Earth Science Frontiers, 2019, 26(6): 42-48. |
| [6] | CAO Ji-Hu, XIANG Shi-Gong, XUE Chun-Ji, ZHANG Xu, LI Yong-Feng, LI Bing-Ai, CHENG Wen-Hou. Ore geology and oreforming fluid geochemistry of Zhouzhuang AgPbZn deposit, southwestern Henan Province. [J]. Earth Science Frontiers, 2011, 18(5): 159-171. |
| [7] | LI Li-Xin, LI Hou-Min, WANG De-Gong, ZHANG Chang-Jing. Trace element and REE geochemistry and its metallogenic significance for CuZn deposits in the Tongbai area, Henan. [J]. Earth Science Frontiers, 2009, 16(6): 325-336. |
| [8] | JIN Li-Xin HOU Jing-Xie YANG Zhong-Fang BAO Yu-Han LI Zhong-Hui XU Zhou CHEN De-You. Environmental Health Risk Assessment of heavy metals in argoecosystems of Deyang district, Sichuan Province. [J]. Earth Science Frontiers, 2008, 15(5): 47-56. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||