

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 107-120.DOI: 10.13745/j.esf.sf.2025.10.23
Previous Articles Next Articles
GUO Jiju1,2(
), CAO Wengeng1,2,*(
), LU Chongsheng1,2, WANG Zhe3, ZHU Jingsi4,*(
), WANG Yanyan1,2, LI Xiangzhi1,2, MA Cuiyan1,2
Received:2025-07-05
Revised:2025-10-26
Online:2026-01-25
Published:2025-11-10
CLC Number:
GUO Jiju, CAO Wengeng, LU Chongsheng, WANG Zhe, ZHU Jingsi, WANG Yanyan, LI Xiangzhi, MA Cuiyan. Spatial evolution and genetic mechanisms of manganese in shallow groundwater of the North Shandong Plain[J]. Earth Science Frontiers, 2026, 33(1): 107-120.
![]() |
Table 1 Statistical characteristics of the main physicochemical parameters of shallow groundwater sampling points in the typical profile of the study area (n=1 083)
![]() |
| 超过25%毫克当量的离子 | HCO3 | HCO3·SO4 | HCO3·SO4·Cl | HCO3·Cl | SO4 | SO4·Cl | Cl |
|---|---|---|---|---|---|---|---|
| Ca | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ca·Mg | 24 | 8 | 0 | 1 | 0 | 8 | 0 |
| Mg | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
| Na·Ca | 58 | 31 | 9 | 2 | 0 | 9 | 2 |
| Na·Ca·Mg | 118 | 83 | 58 | 0 | 0 | 48 | 2 |
| Na·Mg | 84 | 87 | 120 | 14 | 1 | 79 | 43 |
| Na | 24 | 22 | 24 | 1 | 0 | 19 | 95 |
Table 2 Statistical results for ions exceeding 25% of the total milliequivalents
| 超过25%毫克当量的离子 | HCO3 | HCO3·SO4 | HCO3·SO4·Cl | HCO3·Cl | SO4 | SO4·Cl | Cl |
|---|---|---|---|---|---|---|---|
| Ca | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ca·Mg | 24 | 8 | 0 | 1 | 0 | 8 | 0 |
| Mg | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
| Na·Ca | 58 | 31 | 9 | 2 | 0 | 9 | 2 |
| Na·Ca·Mg | 118 | 83 | 58 | 0 | 0 | 48 | 2 |
| Na·Mg | 84 | 87 | 120 | 14 | 1 | 79 | 43 |
| Na | 24 | 22 | 24 | 1 | 0 | 19 | 95 |
Fig.3 The Piper diagram shows the concentrations of major cations and anions in shallow groundwater of the typical profile in the study area (expressed in units of % meq·L-1)
| 水化学参数 | 相关系数 | 水化学参数 | 相关系数 |
|---|---|---|---|
| pH | -0.304** | 0.139** | |
| Eh | 0.196** | 0.133** | |
| TDS | 0.441** | -0.066* | |
| Ca2+ | 0.542** | Fe3+ | 0.128** |
| Mg2+ | 0.497** | Fe2+ | 0.006 |
| K+ | 0.071* | F- | -0.211** |
| Na+ | 0.322** | 耗氧量 | 0.213** |
| Cl- | 0.494** | 偏硅酸 | -0.338** |
| 0.426** | As | -0.176** | |
| 0.043 |
Table 3 Spearman correlation coefficients between Mn concentration and various hydrochemical parameters in shallow groundwater of the study area
| 水化学参数 | 相关系数 | 水化学参数 | 相关系数 |
|---|---|---|---|
| pH | -0.304** | 0.139** | |
| Eh | 0.196** | 0.133** | |
| TDS | 0.441** | -0.066* | |
| Ca2+ | 0.542** | Fe3+ | 0.128** |
| Mg2+ | 0.497** | Fe2+ | 0.006 |
| K+ | 0.071* | F- | -0.211** |
| Na+ | 0.322** | 耗氧量 | 0.213** |
| Cl- | 0.494** | 偏硅酸 | -0.338** |
| 0.426** | As | -0.176** | |
| 0.043 |
Fig.4 Variation characteristics of Mn(a) and related physicochemical factors ((b) Eh、(c) pH、(d)TDS) in shallow groundwater along a representative study area profile
Fig.5 Normalized molar ratio relationships of (a) Mg2+/Na+ and (b) ${\mathrm{HCO}}_{3}^{-}$/Na+ with Ca2+/Na+ in shallow groundwater of the typical profile in the study area
Fig.8 Ratios of major ions in shallow groundwater of the typical profile in the study area: ${{\mathrm{Ca}}^{2+}}^{}$+ Mg2+ -${{\mathrm{HCO}}_{3}^{-}}^{}$-${\mathrm{SO}}_{4}^{2-}$ to ${{\mathrm{Na}}^{+}}^{}$+ ${{\mathrm{K}}^{+}}^{}$-Cl- ratio; Chloro-alkali index
Fig.9 Relationships related to Mn in the groundwater of the study area: (a) Eh-pH diagram; (b) statistical relationship between Eh and Mn; (c) statistical relationship between pH and Mn
| [1] |
BOUCHARD M F, SAUVÉ S, BARBEAU B, et al. Intellectual impairment in school-age children exposed to manganese from drinking water[J]. Environmental Health Perspectives, 2011, 119(1): 138-143.
DOI PMID |
| [2] |
HUANG B, LI Z, CHEN Z, et al. Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River[J]. Environmental Science and Pollution Research, 2015, 22(24): 19912-19921.
DOI URL |
| [3] | RAHMAN M F, ALI M A, CHOWDHURY A I A, et al. Manganese in groundwater in South Asia needs attention[J]. ACS ES&T Water, 2022, 3(6): 1425-1428. |
| [4] |
CROSSGROVE J, ZHENG W. Manganese toxicity upon overexposure[J]. NMR in Biomedicine, 2004, 17(8): 544-553.
DOI PMID |
| [5] |
REN Y, CAO W, ZHAO L, et al. Environmental factors influencing groundwater quality and health risks in northern Henan Plain, China[J]. Exposure and Health, 2025, 17(2): 507-522.
DOI |
| [6] |
USTAOGLU F, TAS B, TEPE Y, et al. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey[J]. Environmental Science and Pollution Research, 2021, 28(44): 62736-62754.
DOI |
| [7] |
HAGAGE M, HEWAIDY A G A, ABDULAZIZ A M, et al. Nutrient and manganese pollution in groundwater of the northeastern Nile Delta: distribution, sources, and health risks[J]. Applied Water Science, 2025, 15(7): 151.
DOI |
| [8] |
JIANG J, SU C, GENG H, et al. Fe and Mn biogeochemical cycling associated with basin-scale redox dynamics traced by DOM degradation in different alluvial aquifers[J]. Water Research, 2025, 282: 123759.
DOI URL |
| [9] | 蔡玲, 胡成, 陈植华, 等. 江汉平原东北部地区高铁锰地下水成因与分布规律[J]. 水文地质工程地质, 2019, 46(4): 18-25. |
| [10] | 陈吉吉, 陶蕾, 刘保献, 等. 北京市平原区地下水铁锰分布特征及成因分析[J]. 水文地质工程地质, 2024, 51(6): 198-207. |
| [11] |
LU X, FAN Y, HU Y, et al. Spatial distribution characteristics and source analysis of shallow groundwater pollution in typical areas of Yangtze River Delta[J]. Science of the Total Environment, 2024, 906: 167369.
DOI URL |
| [12] |
RAMACHANDRAN M, SCHWABE K A, YING S C. Shallow groundwater manganese merits deeper consideration[J]. Environmental Science & Technology, 2021, 55(6): 3465-3466.
DOI URL |
| [13] |
DESIMONE L A, RANSOM K M. Manganese in the northern Atlantic coastal plain aquifer system, eastern USA — modeling regional occurrence with pH, redox, and machine learning[J]. Journal of Hydrology: Regional Studies, 2021, 37: 100925.
DOI URL |
| [14] |
LI Q, GUÉGUEN C, HAUSLADEN D M. Impact of organic carbon on manganese release, colloid formation, and aggregation in surface and groundwater[J]. Environmental Science & Technology, 2025, 59(22): 11229-11238.
DOI URL |
| [15] |
DONG W, BHATTACHARYYA A, FOX P M, et al. Geochemical controls on release and speciation of Fe(II) and Mn(II) from hyporheic sediments of East River, Colorado[J]. Frontiers in Water, 2020, 2: 562298.
DOI URL |
| [16] | 吕晓立, 刘景涛, 韩占涛, 等. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因[J]. 环境科学, 2022, 43(10): 4449-4458. |
| [17] |
MCMAHON P B, BELITZ K, REDDY J E, et al. Elevated manganese concentrations in United States groundwater: role of land surface-soil-aquifer connections[J]. Environmental Science & Technology, 2018, 53(1): 29-38.
DOI URL |
| [18] | 王瑗, 盛连喜, 李科, 等. 中国水资源现状分析与可持续发展对策研究[J]. 水资源与水工程学报, 2008(3): 10-14. |
| [19] | 张兆吉, 雒国中, 王昭, 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009, 31(3): 355-360. |
| [20] | 程佳豪. 鲁北平原浅层地下水污染风险研究[D]. 济南: 济南大学, 2024. |
| [21] | 许乃政, 陶小虎, 龚建师, 等. 淮河流域平原区高铁锰地下水环境健康风险评估[J]. 华东地质, 2023(2): 119-127. |
| [22] | 吴忱. 华北平原古河道研究[M]. 北京: 中国科学技术出版社, 1991. |
| [23] | 刘春华, 张光辉, 杨丽芝, 等. 黄河下游鲁北平原地下水砷浓度空间变异特征与成因[J]. 地球学报, 2013, 34(4): 470-476. |
| [24] | 张兆吉, 费宇红, 陈宗宇, 等. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009. |
| [25] |
CAO W, ZHANG Z, FU Y, et al. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning[J]. Water Research, 2024, 259: 121848.
DOI URL |
| [26] |
PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126.
DOI URL |
| [27] |
PIPER A M. A graphic procedure in the geochemical interpretation of water analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928.
DOI URL |
| [28] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
DOI URL |
| [29] |
HOU Q, ZHANG Q, HUANG G, et al. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, South China[J]. Science of the Total Environment, 2020, 701: 134777.
DOI URL |
| [30] | 崔迪, 任帅, 鲁安怀, 等. 北京市平原区典型区域浅层地下水铁锰成因及演化规律[J/OL]. 地学前缘, 2025: 1-17[2025-10-29]. https://doi.org/10.13745/j.esf.sf.2025.3.64. |
| [31] |
ZHANG Y, YAN Y, YAO R, et al. Natural background levels, source apportionment and health risks of potentially toxic elements in groundwater of highly urbanized area[J]. Science of the Total Environment, 2024, 935: 173276.
DOI URL |
| [32] |
BROWN C J, BARLOW J R B, CRAVOTTA C A, et al. Factors affecting the occurrence of lead and manganese in untreated drinking water from Atlantic and Gulf Coastal Plain aquifers, eastern United States: dissolved oxygen and pH framework for evaluating risk of elevated concentrations[J]. Applied Geochemistry, 2019, 101: 88-102.
DOI URL |
| [33] |
LIU Y, NOT C, JIAO J J, et al. Tidal-induced dynamics and geochemical reactions of trace metals (Fe, Mn, and Sr) in the salinity transition zone of an intertidal aquifer[J]. Science of the Total Environment, 2019, 664: 1133-1149.
DOI URL |
| [34] |
RUSYDI A F, ONODERA S-I, SAITO M, et al. Vulnerability of groundwater to iron and manganese contamination in the coastal alluvial plain of a developing Indonesian city[J]. SN Applied Sciences, 2021, 3(4): 399.
DOI |
| [35] |
ZHANG Z, XIAO C, ADEYEYE O, et al. Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao City, northeast China[J]. Water, 2020, 12(2): 534.
DOI URL |
| [1] | WEN Zhang, LI Yiming, GUO Xulei, WAN Tan, LUO Qingshu, ZHOU Hong. Characteristics of surface water-groundwater interaction in the fractured riverbank of the Gezhouba Reservoir area [J]. Earth Science Frontiers, 2026, 33(1): 1-13. |
| [2] | WANG Rui, JIANG Xiaowei, JI Taotao. Mg isotopes for tracing water-rock interactions in terrestrial water: Research progress and prospects [J]. Earth Science Frontiers, 2026, 33(1): 143-151. |
| [3] | ZHAO Yongsheng. Evolution and state assessment of groundwater contamination plumes [J]. Earth Science Frontiers, 2026, 33(1): 152-162. |
| [4] | JIANG Feng, ZHOU Jinlong, ZHOU Yinzhu, LIU Jiangtao, ZENG Yanyan, LIU Yu, DING Qizhen. Early warning of groundwater pollution in oasis area of Hami Basin [J]. Earth Science Frontiers, 2026, 33(1): 179-192. |
| [5] | ZHANG Boaiqi, ZHAO Chaorui, ZHU Kun, GUO Qiuzhi, CHEN Nan, FENG Chuanping, HU Yutian. Enhanced sulfate removal from groundwater by iron-carbon micro-electrolysis coupled with polyvinyl alcohol-sodium alginate immobilization: Functional community regulation and closed-loop sulfur recovery [J]. Earth Science Frontiers, 2026, 33(1): 193-206. |
| [6] | QU Cixiao, WANG Mingyu. Effective modeling framework and pertaining key breakthroughs for efficient prediction of VOCs transport and diffusion fluxes in fractured media [J]. Earth Science Frontiers, 2026, 33(1): 207-221. |
| [7] | ZHANG Mengfan, CAI Xuyi. Effect of silicon-doped ferrihydrite on the kinetics of Cr(VI) reduction by gallic acid and Pseudomonas aeruginosa in groundwater [J]. Earth Science Frontiers, 2026, 33(1): 236-249. |
| [8] | LIU Yajie, LI Jiang, WANG Xuegang, KE Pingchao, SUN Zhanxue. In-situ bioremediation of acidic uranium-contaminated groundwater: Development and challenges [J]. Earth Science Frontiers, 2026, 33(1): 250-268. |
| [9] | XU Lin, MA Haichun, WANG Jingping, ZHANG Qing, HUANG Yihang, QIAN Jiazhong, WANG Wanlin. Advances in groundwater nonlinear seepage in fractured media under conditions of high in-situ stress and temperature [J]. Earth Science Frontiers, 2026, 33(1): 313-327. |
| [10] | PU Junbing. Carbon cycling in the karst groundwater system [J]. Earth Science Frontiers, 2026, 33(1): 369-383. |
| [11] | HAN Dongmei, CAO Guoliang, XIAO Yi, SONG Xianfang. Research progress and prospect of groundwater circulation in coastal zones and its environmental effects [J]. Earth Science Frontiers, 2026, 33(1): 384-404. |
| [12] | QIAO Gang, YIN Lihe, XU Yong, ZHANG Jun, SHI Changchun, YU Kun. Impact mechanisms of groundwater dynamics on root water uptake of Salix matsudana in Mu Us Sandy Land, China [J]. Earth Science Frontiers, 2026, 33(1): 39-49. |
| [13] | HUANG Linxian, XU Zhenghe, ZHI Chuanshun, LI Shuang, LIU Zhizheng, XING Liting, ZHU Henghua, WANG Xiaowei, BI Wenwen, HU Xiaonong. Research on groundwater level prediction of northern karst spring of China based on LSTM-Attention neural network [J]. Earth Science Frontiers, 2026, 33(1): 419-431. |
| [14] | HU Litang, GAN Lin, SUN Jianchong, LIU Hongbo, TIAN Lei, SHEN Qi. Error correction method for groundwater numerical models considering parameter uncertainty [J]. Earth Science Frontiers, 2026, 33(1): 432-443. |
| [15] | MAO Deqiang, MENG Jian, ZHAI Kexiang, ZENG Zihao, LIU Shiliang. Research progress in geophysical methods on groundwater contamination [J]. Earth Science Frontiers, 2026, 33(1): 444-469. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||