

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 89-130.DOI: 10.13745/j.esf.sf.2025.8.61
Previous Articles Next Articles
WANG Tao1,2,*(
), HOU Zengqian3,*(
), HUANG He1, YANG Liqiang4, ZHENG Yuanchuan4, SUN Jian1, BAO Xuewei5, HOU Tong4, FAN Runlong2, XU Bo4, ZHANG Jianjun1, ZHU Xiaosan2, YIN Jiyuan1, SU Yuping6
Received:2025-05-07
Revised:2025-08-25
Online:2025-11-25
Published:2025-11-12
Contact:
WANG Tao, HOU Zengqian
CLC Number:
WANG Tao, HOU Zengqian, HUANG He, YANG Liqiang, ZHENG Yuanchuan, SUN Jian, BAO Xuewei, HOU Tong, FAN Runlong, XU Bo, ZHANG Jianjun, ZHU Xiaosan, YIN Jiyuan, SU Yuping. Deep earth material exploration and mineralization prediction: Methods, applications, and future prospects[J]. Earth Science Frontiers, 2025, 32(6): 89-130.
Fig.1 Schematic illustration of the multidisciplinary, multi-dimensional, multi-modal, and multi-source data integration approach for exploring the architecture of deep Earth materials
Fig.2 Schematic diagram of the theoretical and technicalframwork for exploring the deep material composition architecture of the lithosphere, integrating multidisciplinary approaches, multi-dimensional and multi-modal techniques, and diverse datasets for joint tracing and mapping
Fig.3 Flowchart of the application process of the theoretical and technical framework for exploring the deep material composition architecture of the lithosphere using multidisciplinary approaches, multi-dimensional and multi-modal techniques, and the integration of diverse data for joint tracing and mapping
Fig.4 Method for iterative analysis of deep rock types using multiple geophysical parameters (such as seismic wave velocity, density, magnetic susceptibility, electrical resistivity, and heat flow values). Adapted from [88,90].
Fig.5 Isotope mapping and geophysical jointtracing and detect the deep material architecture in the Western Junggar region of the Central Asian Accretionary Orogenic Belt. (a) Contour map of δ18O for intermediate-felsic magmatic rocks (modified from [29]), (b) vS map at 39 km depth (data were obtained from mobile broadband seismic stations; Zhu Xiaoshan et al., unpublished data).
Fig.6 Schematic diagram of deep material investigation results for juvenile intra-oceanic arc terranes in West Junggar and ancient terranes in West Tianshan, western Central Asian Orogenic Belt. Left panel: Geochemical fingerprints and geophysical constraints on the middle-lower crust and mantle; Right panel: Surface magmatic rock assemblages and their inferred deep source lithologies within the terranes.
Fig.8 Schematic diagram of deep material exploration results in the central ancient block and southern young block of the Lhasa Terrane in the Tibetan Plateau. The left figure shows the main geochemical and geophysical parameters of the upper crust, middle-lower crust, and mantle in the aforementioned blocks; the right figure shows the surface igneous rock assemblages in the blocks and their inferred deep-source rock types.
Fig.9 Architecture of the Lhasa block. (a),(b) and (c)contour maps of zircon εHf(t), whole-rock εNd(t), and zircon δ18O for Cenozoic igneous rocks (<65 Ma) in the Lhasa block; (d)70 km depth slice of the resistivity model from 3-D MT inversion of the Himalayan-Tibetan orogen shows four zones of lower-crustal conductors across the Lhasa block; (e) A cartoon showing the tearing of the Indian lithospheric slab with different subduction angles beneath the Himalayan-Tibetan orogen and the formation of collision-related PCDs[132-133].
Fig.12 Schematic diagram showing the deep material architecture both in the stable western region and the destructed eastern region of the North China Craton The left figure shows the main geochemical and geophysical parameters of the uppercrust, middle-lowercrust, and mantle in the aforementioned blocks; the right figure shows the surface igneous rock assemblages in the blocks and their inferred deep-source rock types.
Fig.13 Nd isotope mapping profiles reveal differences in deep material composition between the Central Asian Orogenic Belt (CAOB). (a) Profile across the Siberian Craton - Central Asian Orogenic Belt - North China Craton; (b) and (c), Nd isotope profiles along the boundary between the Central Asian Orogenic Belt and the North China Craton.
Fig.14 Deep material compositionarchitxcture of the Junggar Orogen and the Junggar Basin in the western CAOB and the juvenile mafic characteristics of the basin basement. (a) Whole-rock Nd + zircon Hf isotope joint maps of intermediate-acidic magmatic rocks outside and within the basin (drill holes); (b) Shear wave velocity distribution map at a depth of 30~40 km obtained from surface wave imaging; (c) Nb isotope, Hf isotope, and Sr isotope profiles, xenocrystic/ inherited zircon profiles, and shear wave velocity (vS) profiles, along with the inferred SiO2 profiles, show consistency (with a similarity of ) and reveal that the Western Junggar Orogen and the basin have similar juvenile mafic crustal characteristics. Modified after [52].
Fig.15 Three-dimensional deep material architectures of three major typical tectonicunits:the Central Asian Accretionary Orogenic Belt, the Tibetan Plateau Collisional Orogenic Belt, and the North China Craton. (a) Three-dimensional lithospheric material architecture of the accretionary orogenic belt in northern Xinjiang; (b) Three-dimensional lithospheric material architecture of the Gangdese collisional orogenic belt; (c) Three-dimensional lithospheric architecture of the North China Craton. 3-D lithospheric material architecture
Fig.16 Nd + Hf joint isotope mapping of felsic-intermediate and mafic magmatic rocks in the Central Asian Orogenic Belt showing the deep crust and mantle architecture (3D) and its evolution (4D). Modified after [52]. (a) 600~320 and (b) 320~250 Ma.
Fig.17 Nd isotope mapping of eight typical orogens worldwide reveals deep material architectures and their constraints on mineralization. Blue areas represent juvenile crust, and brown areas represent ancient reworked crust. The enclosed lines indicate predicted strategic target regions. Base map adapted from [52].
Fig.18 Nd isotope mapping of the deep material in the Altai region and surface geochemical exploration reveal the three-dimensional material architecture of the surface and lower crust, as well as the prediction of new strategic lithium ore districts and target zones
| [1] | 邓晋福. 岩石物理化学与岩石物理学[J]. 地学前缘, 1994, 1(增刊1): 57-63. |
| [2] | 邓晋福. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004. |
| [3] | 邓晋福, 赵海玲, 莫宣学, 等. 中国大陆根-柱构造: 大陆动力学的钥匙[M]. 北京: 地质出版社, 1996. |
| [4] | 莫宣学. 岩浆与岩浆岩: 地球深部“探针”与演化记录[J]. 自然, 2011, 33(5): 255-259. |
| [5] | 莫宣学. 阐明壳幔物质架构和深部过程是解决重大资源战略问题的关键: 评侯增谦论文《同位素填图与深部物质探测: 揭示地壳三维架构与区域成矿规律》[J]. 地学前缘, 2021, 28(6): 344-346. |
| [6] | O’REILLY S Y, GRIFFIN W L. 4-D Lithosphere Mapping: methodology and examples[J]. Tectonophysics, 1996, 262(1): 3-18. |
| [7] | GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910. |
| [8] | WANG T, TONG Y, HUANG H, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023, 237: 104298. |
| [9] | DICKIN A P. Nd isotope mapping of a cryptic continental suture, Grenville Province of Ontario[J]. Precambrian Research, 1998, 91(3/4): 433-444. |
| [10] | MILISENDA CC, LIEWA T C, HOFMANNA A W, et al. Nd isotopic mapping of the Sri Lanka basement: update, and additional constraints from Sr isotopes[J]. Precambrian Research, 1994, 66(1/2/3/4): 95-110. |
| [11] | CHEN J F, JAHN B. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 1998, 284(1/2): 101-133. |
| [12] | ZHANG H F, GAO S, ZHANG B R, et al. Pb isotopes of granitoids suggest Devonian accretion of Yangtze (South China) craton to North China craton[J]. Geology, 1998, 26(11): 1015. |
| [13] | ZHOU X M, SUN T, SHEN W, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33. |
| [14] | HONG D, XIE X, ZHANG J. Isotope geochemistry of granitoids in South China and their metallogeny[J]. Resource Geology, 2010, 48(4): 251-263. |
| [15] | 张本仁. 秦岭造山带地球化学[M]. 北京: 科学出版社, 2002. |
| [16] | 周新华, 陈文寄. 华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义[J]. 地球化学, 2001, 30(1): 10-23. |
| [17] | 朱炳泉. 地球化学省与地球化学急变带[M]. 北京: 科学出版社, 2001. |
| [18] | MOLE D R, FIORENTINI M L, THEBAUD N, et al. Archean komatiite volcanism controlled by the evolution of early continents[J]. Proceedings of the National Academy of Sciences, 2014, 111(28): 10083-10088. |
| [19] | WANG T, JAHN B M, KOVACH V P, et al. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1): 359-372. |
| [20] | HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110(6): 1541-1575. |
| [21] | ZHANG XX, WANG T, KE C H, et al. Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China: constraint on the basements of terranes and distribution of Mo mineralization[J]. Journal of Asian Earth Sciences, 2015, 103(S2): 169-183. |
| [22] | CHAMPION D, HUSTON D L. Radiogenic isotopes, ore deposits and metallogenic terranes: Novel approaches based on regional isotopic maps and the mineral systems concept[J]. Ore Geology Reviews, 2016, 76(2): 229-256. |
| [23] | YANG Q, WANG T, GUO L, et al. Nd isotopic variation of Paleozoic-Mesozoic granit oids from the Da Hinggan Mountains and adjacent areas, NE Asia: implications for the architecture and growth of continental crust[J]. Lithos, 2017, s272-273: 164-184. |
| [24] | XU Y X, YANG B, ZHANG A Q, et al. Magnetotelluric imaging of a fossil oceanic plate in northwestern Xinjiang, China[J]. Geology, 2020, 48(4): G47053.1.A |
| [25] | LV Y, WINGATE M T D, SMITHIES R H, et al. Preserved intercratonic lithosphere reveals Proterozoic assembly of Australia[J]. Geology, 2022, 50(10): 1202-1207. |
| [26] | 王涛, 黄河, 杨立强, 等. 揭示三维岩石圈物质架构的技术方法体系框架[J]. 地质学报, 2022, 96(10): 3589-3618. |
| [27] | 王涛, 侯增谦. 同位素填图与深部物质探测(Ⅰ): 揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 2018, 25(6): 7-25. |
| [28] | CHAPPELL B W, WHITE A J R. Two contrasting granitic provinces in southeastern Australia[J]. Geological Society of America Bulletin, 1974, 85(12): 1757-1764. |
| [29] | YIN J Y, XIAO W J, WANG T, et al. Maturation from oceanic arcs to continental crust: insights from Paleozoic magmatism in West Junggar, NW China[J]. Earth-Science Reviews, 2024, 253: 104795. |
| [30] | 王晓霞, 王涛, 陈小丹, 等. 花岗质岩石中黑云母成分区域性变化对深部物质示踪及成矿的约束: 以秦岭地区为例[J]. 岩石学报, 2024, 40(3): 811-826. |
| [31] | 王晓霞, 陈小丹, 王涛, 等. 秦岭造山带早中生代花岗质岩体中角闪石成分空间变化及其深部物质组成示踪和成矿意义[J]. 岩石学报, 2025, 41(9): 3038-3052. |
| [32] | XU C B, WANG J, WANG Q, et al. First identification of Mid-Miocene north-south trending dikes in the eastern Qiangtang terrane, eastern Tibet: Mantle melting and implications for plateau uplift[J]. Lithos, 2024, 478: 107620. |
| [33] | HUANG H, WANG T, GUO L, et al. Crustal modification influenced by multiple convergent systems: Insights from Mesozoic magmatism in northeastern China[J]. Earth-Science Reviews, 2024, 252: 104737. |
| [34] | ZHENG J P, GRIFFIN W L, O’REILLY S Y, et al. Continental collision and accretion recorded in the deep lithosphere of central China[J]. Earth and Planetary Science Letters, 2008, 269: 496-506. |
| [35] | GRIFFIN B, ANDI Z, O’REILLY S, et al. Phanerozoic evolution of the lithosphere beneath the sino-korean craton: conference on mantle dynamics and plate interactions in east Asia[J]. Mantle Dynamics and Plate Interactions in East Asia, 1998: 107-126. |
| [36] | 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135-1159. |
| [37] | 郑建平, 夏冰, 平先权, 等. 岩石探针和地震探测手段约束华北深部地壳结构组成及演化[J]. 科学通报, 2021, 66(23): 3018-3031. |
| [38] | 许文良, 王清海, 王冬艳, 等. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据[J]. 地学前缘, 2004, 11(3): 309-317. |
| [39] | XU W L, GAO S, WANG Q H, et al. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications[J]. Geology, 2006, 34(9): 721-724. |
| [40] | XU W L, HERGT J M, GAO S, et al. Interaction of adakitic melt-perid, otite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 265: 123-137. |
| [41] | GAO S, RUDNICK R L, XU W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters, 2008, 270: 41-53. |
| [42] | 路凤香, 侯青叶. 由深源捕虏体限定的华北克拉通下地壳特征[J]. 地学前缘, 2012, 19(3): 177-187. |
| [43] | GRIFFIN W L, O’REILLY S Y. Making and unmaking continental mantle: geochemical and geophysical perspectives[J]. Acta Geologica Sinica - English Edition, 2019, 93: 249-250. |
| [44] | 郑建平, 戴宏坤, 熊庆, 等. 克拉通地幔形成与演化及对大陆命运制约因素的思考[J]. 岩石学报, 2022, 38(12): 3609-3620. |
| [45] | GUO J F, MA Q, ZHENG J P, et al. Spatial and temporal evolution of lithospheric mantle beneath the eastern North China Craton: constraints from mineral chemistry of Peridotite Xenoliths from the Miocene Qingyuan Basalts and a regional synthesis[J]. Journal of Earth Science, 2025, 36(2): 474-484. |
| [46] | SU Y P, ZHENG J P, GRIFFIN W L, et al. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: implications for the evolution and structure of the lower crust[J]. Lithos, 2017, 292-293: 1-14. |
| [47] | ZHANG Z M, DONG X, XIANG H, et al. Metagabbros of the Gangdese arc root, south Tibet: implications for the growth of continental crust[J]. Geochimica et Cosmochimica Acta, 2014, 143: 268-284. |
| [48] | ZHANG X Z, WANG Q, WYMAN D, et al. Tibetan Plateau growth linked to crustal thermal transitions since the Miocene[J]. Geology, 2022, 50: 610-614. |
| [49] | ZHANG X Z, WANG Q, WYMAN D, et al. Tibetan Plateau insights into >1100 ℃ crustal melting in the Quaternary[J]. Geology, 2022, 50: 1432-1437. |
| [50] | 卞宵. 塔里木西北缘橄榄岩包体揭示岩石圈地幔性质与演化[D]. 武汉: 中国地质大学(武汉), 2024. |
| [51] | 黄河, 龙晓平, 尹纪元, 等. 增生造山带典型地区三维岩石圈物质架构的示踪方法[R]. 北京: 中国地质科学院地质研究所, 2025. |
| [52] | WANG T, HUANG H, ZHANG J J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023, 10(2): nwac283. |
| [53] | XU B, HOU Z Q, GRIFFIN W L, et al. Recycled volatiles determine fertility of porphyry deposits in collisional settings[J]. American Mineralogist, 2021, 106(4): 656-661. |
| [54] | XU B, HOU Z Q, GRIFFIN W L. Elevated magmatic chlorine and sulfur concentrations in the Eocene-oligocene machangqing Cu-Mo porphyry system[J]. SEG Special Publications, 2021, 24 (2): 257-276. |
| [55] | XU B, HOU Z Q, GRIFFIN W L, et al. Apatite halogens and Sr-O and zircon Hf-O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet[J]. Chemical Geology, 2022, 605: 120924. |
| [56] | XU B, HOU Z Q, GRIFFIN W L, et al. Cenozoic lithospheric architecture and metallogenesis in southeastern Tibet. Earth-Science Reviews, 2021, 214: 103472. |
| [57] | NIELSEN S G, MARSCHALL H R. Geochemical evidence for mélange melting in global arcs[J]. Science advances, 2017, 3(4): e1602402. |
| [58] | WANG X X, WANG T, CHEN X D, et al. Regional variation of biotite composition of granitoid and its significance to deep crust component and mineralization: a case study on biotite from Early Mesozoic granitoid in the Qinling orogen[J]. Acta Petrologica Sinica, 2024, 40(3): 811-826. |
| [59] | ZHANG X, SU Y, ZHENG J, et al. Considerable heating during clockwise decompression of a long-lived Paleoproterozoic hot orogen: evidence from the Xuanhua Complex, North China Craton[J]. Precambrian Research, 2024, 400: 107251. |
| [60] | ZHU X K, GUO Y, WILLIAMS R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth & Planetary Science Letters, 2002, 200(1): 47-62. |
| [61] | 张宏福, 汤艳杰, 赵新苗, 等. 非传统同位素体系在地幔地球化学研究中的重要性及其前景[J]. 地学前缘, 2007, 14: 037-057. |
| [62] | 黄方. 高温下非传统稳定同位素分馏[J]. 岩石学报, 2011, 27(2): 365-382. |
| [63] | 朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32: 651-688. |
| [64] | GREBER N D, DAUPHAS N, BEKKER A, et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago[J]. Science, 2017, 357: 1271-1274. |
| [65] | SHEN B, JACOBSEN B, LEE C T A, et al. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20652-20657. |
| [66] | LI S, MILLER C F, WANG T, et al. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas[J]. Geology, 2022, 50: 427-431. |
| [67] | WANG Y, HE Y, WU H, et al. 2019 Calcium isotope fractionation during crustal melting and magma differentiation: granitoid and mineral-pair perspectives[J]. Geochimica et Cosmochimica Acta, 2019, 259: 37-52. |
| [68] | DENG Z, CHAUSSIDON M., SAVAGE P, et al. Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks[J]. Proceedings of the National Academy of Sciences, 2019, 116: 1132-1135. |
| [69] | ELLIOTT T, THOMAS A, JEFFCOATE A, et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts[J]. Nature, 2006, 443: 565-568. |
| [70] | LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 298: 111-120. |
| [71] | ZHU X, O’NIONS R K, GUO Y, et al. Secular variation of iron isotopes in North Atlantic deep water[J]. Science, 2000, 287: 5460. |
| [72] | 孙剑, 房楠, 李世珍, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28: 2890-2902. |
| [73] | SUN J, ZHU X, CHEN Y, et al. Iron isotopic constraints on the genesis of Bayan Obo ore deposit, Inner Mongolia, China[J]. Precambrian Research, 2013, 235: 88-106. |
| [74] | ZHENG Y C, LIU S A, WU C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 47: 135-138. |
| [75] | SUN J, ZHU X K, BELSHAW N S, et al. Ca isotope systematics of carbonatites: insights into carbonatite source and evolution[J]. Geochemical Perspectives Letters, 2021, 17: 11-15. |
| [76] | AMSELLEM E, MOYNIER F, BERTRAND H, 等. 火成碳酸岩的成因: 来自钙同位素的证据[J]. 矿物岩石地球化学通报, 2020, 39(5): 1067. |
| [77] | 汪子辰, 孙剑, 李世珍, 等. Cr-Ca化学分离方法研究[J]. 岩石矿物学杂志, 2024, 43(4): 1066-1072. |
| [78] | LU J, CHEN W, SUN J, et al. High-precision magnesium isotope analysis of carbonates by laser ablation MC-ICP-MS using wet and dry conditions[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(8): 1665-1674. |
| [79] | WU Z, SUN J, LI X, et al. Iron isotope fractionation during fenitization: a case study of carbonatite dykes from Bayan Obo, Inner Mongolia, China[J]. Acta Geochimica, 2022, 41(5): 789-793. |
| [80] | 孙剑. 非传统稳定同位素示踪深部物质的理论模型与应用[J]. 地球学报, 2025, 46(2): 429-437. |
| [81] | XU B, YIN R S, CHIARADIA M, et al. Mercury isotope evidence for the importance of recycled fluids in collisional ore systems[J]. Science Advances, 2024, 10(34): eadp7383. |
| [82] | MILLER J S, MATZEL J E P, MILLER C F, et al. Zircon growth and recycling during the assembly of large, composite arc plutons[J]. Journal of Volcanology and Geothermal Research, 2007, 167(1/2/3/4): 282-299. |
| [83] | BUYS J, SPANDLER C, HOLM R J, et al. Remnants of ancient Australia in Vanuatu: implications for crustal evolution in island arcs and tectonic development of the southwest Pacific[J]. Geology, 2014, 42(3): 939-942. |
| [84] | ZHANG J J, WANG T, TONG Y, et al. Tracking deep ancient crustal components by xenocrystic/inherited zircons of Palaeozoic felsic igneous rocks from the Altai-East Junggar terrane and adjacent regions, western Central Asian Orogenic Belt and its tectonic significance[J]. International Geology Review, 2017, 59: 2021-2040. |
| [85] | ZHANG J J, WANG T, ZHANG L, et al. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: constraints on the southern boundary of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 108: 150-169. |
| [86] | XIA B, ARTEMIEVA I M, THYBO H. Phanerozoic emergence of global continental collision and onset of massive crustal eclogitization[J]. Geology, 2024, 53: 18-22. |
| [87] | AFONSO J, FULLEA W, GRIFFIN Y, et al. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables[J]. Journal of Geophysical Research: Solid Earth, 2013, 118: 2586-2617. |
| [88] | 杨立强, 和文言, 高雪, 等. 克拉通岩石圈三维物质架构示踪方法[J]. 地学前缘, 2023, 30(6): 391-405. |
| [89] | YANG L Q, DENG J, ZHANG L, et al. Mantle-rooted fluid pathways and world-class gold mineralization in the giant jiaodong gold province: insights from integrated deep seismic reflection and tectonics[J]. Earth-Science Reviews, 2024, 255: 104862. |
| [90] | YANG L Q, ZHAI S Y, HE W Y, et al. Calculation of lithosphere composition based on machine learning of multiple physical parameters[J]. GSA Bulletin (major revision), 2025. |
| [91] | MAVKO G, MUKERJI T, DVORKIN J, et al. The rock physics handbook[M]. Cambridge: Cambridge university press, 2020. |
| [92] | JI S, WANG Q, XIA B. Handbook of seismic properties of minerals, rocks and ores[M]. Montreal: Polytechnic International Press, 2002: 32-38. |
| [93] | YU J, WU B. Attention and hybrid loss guided deep learning for consecutively missing seismic data reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-8. |
| [94] | PAN R H, HOU T, WANG X D, et al. Multiple magma storage regions and open system processes revealed by chemistry and textures of the Datong tholeiitic lavas, North China Craton[J]. Journal of Petrology, 2022, 63(5): 1-34. |
| [95] | DASGUPTA R, HIRSCHMANN M M, SMITH N D. Partial Melting Experiments of Peridotite CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts[J]. Journal of Petrology, 2017, 48(11): 2093-2124. |
| [96] | HOLLAND T J B, GREEN E C R, POWELL R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr[J]. Journal of Petrology, 2018, 59: 881-900. |
| [97] | SALTERS V J M, LONGHI J E, BIZIMIS M. Near mantle solidus trace element partitioning at pressures up to 3.4 GPa[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(7): 1-23. |
| [98] | SÖDERLUND U L F, PATCHETT P J, VERVOORT J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324. |
| [99] | SAHA S, DASGUPTA R. Phase relations of a depleted peridotite fluxed by a CO2-H2O fluid—implications for the stability of partial melts versus volatile-bearing mineral phases in the cratonic mantle[J]. Journal of Geophysical Research: Solid Earth, 2018, 124(10): 10089-10106. |
| [100] | HOLLAND T J B, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 29: 333-383. |
| [101] | XIANG H, CONNOLLY J A D. GeoPS: an interactive visual computing tool for thermodynamic modelling of phase equilibria[J]. Journal of Metamorphic Geology, 2022, 40: 243-255. |
| [102] | GE R F, ZHU W, WILDE S A, WU H. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 4: eaao3159. |
| [103] | GE R F, WILDE S A, ZHU W B, et al. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 2023, 623: 334-339. |
| [104] | WANG K, CAI K, SUN M, et al. Diapir melting of subducted mélange generating alkaline arc magmatism and its implications for material recycling at subduction zone settings[J]. Geophysical Research Letters, 2022, 49: e2021GL097693. |
| [105] | GUY A, SCHULMANN K, JANOUŠEK V, et al. Geophysical and geochemical nature of relaminated arc-derived lower crust underneath oceanic domain in southern Mongolia[J]. Tectonics, 2015, 34: 1030-1053. |
| [106] | JIANG Y D, SCHULMANN K, SUN M, et al. Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt[J]. Tectonics, 2016, 35: 3095-3118. |
| [107] | PEARSON D G, SCOTT J M, LIU J G, et al. Deep continental roots and cratons[J]. Nature, 2021, 596: 199-210. |
| [108] | WANG X, ZHANG J, RUSHMER T, et al. Adakite-like potassic magmatism and crust-mantle interaction in a postcollisional setting: an experimental study of melting beneath the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 12782-12798. |
| [109] | LI W J, ZHANG J, WANG X, et al. Petrofabrics and seismic properties of Himalayan amphibolites: implications for a thick anisotropic deep crust beneath souther Tibet[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018700. |
| [110] | WANG X, ZHANG J, TOMMASI A, et al. Experimental evidence for a weak calcic-amphibole-rich deep crust in orogens[J]. Geophyscial Research Letters, 2023, 50: e2022GL102320. |
| [111] | 王涛, 童英, 丁毅, 等. DDE-岩浆岩数据库初步构建与应用[J]. 岩石学报, 2024, 40(3): 873-888. |
| [112] | YIN J, CHEN W, YUAN C, et al. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution[J]. Gondwana Research, 2015, 27: 1630-1645. |
| [113] | YIN J, YUAN C, SUN M, et al. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 2010, 17: 145-152. |
| [114] | HUANG H, WANG T, TONG Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103255. |
| [115] | WANG T, XIAO W J, WILLIAM J C, et al. Quantitative characterization of orogens through isotopic mapping[J]. Communications Earth & Environment, 2023, 4(1): 110. |
| [116] | YU Y, SUN M, HUANG X L, et al. Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai[J]. Lithos, 2017, 284: 207-221. |
| [117] | SANG M, TAN Z, XIAO W, et al. Formation of the eclogites of the Atbashi complex, Kyrgyzstan, in a subduction zone mélange diapir[J]. Communications Earth & Environment, 2023, 4: 434. |
| [118] | SUN SS, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. |
| [119] | 郑永飞, 李曙光, 陈江峰, 等. 化学地球动力学[J]. 地球科学进展, 1998, 13(2): 121-128. |
| [120] | 徐盛林, 丁伟翠, 陈宣华, 等. 西准噶尔晚古生代地壳组成与生长: 来自 Sr-Nd-Pb 同位素填图的证据[J]. 地学前缘, 2022, 29(2): 261-280 |
| [121] | CASTRO A. A non-basaltic experimental cotectic array for calc-alkaline batholiths[J]. Lithos, 2021, 382/383: 105929. |
| [122] | WU C D, ZHENG Y C, HOU Z Q, et al. Petrogenesis of Eocene Wangdui adakitic pluton in the western Gangdese belt, southern Tibet: implications for crustal thickening[J]. Geological Magazine, 2022, 159(8): 1335-1354. |
| [123] | GUO Z F, WILSON M, ZHANG M L, et al. Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slab-to-wedge transport processes and plateau uplift[J]. Contributions to Mineralogy and Petrology, 2013, 165(6): 1311-1340. |
| [124] | LIU D, ZHAO Z D, ZHU D C, et al. Postcollisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India-Asia collision and convergence[J]. Geochimica et Cosmochimica Acta, 2014, 143: 207-231. |
| [125] | WU C D, ZHENG Y C, XU B, et al. Ultrapotassic enclaves in the Miocene adakitic granitoids, southern Tibet: direct evidence for collision-related crust-mantle interaction and its implications[J]. Lithos, 2023, 442: 107052. |
| [126] | SHEN Y, ZHENG Y C, HOU Z Q, et al. Petrology of the machangqing complex in southeastern Tibet: implications for the genesis of potassium-rich adakite-like intrusions in collisional zones[J]. Journal of Petrology, 2021, 62(11): egab066. |
| [127] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. |
| [128] | SUN W R, WANG R, ZHONG X, et al. Ultrahigh-temperature metamorphism revealed by felsic granulite xenoliths in southern Tibet[J]. Geological Society of America Bulletin, 2024, 137(1/2): 481-494. |
| [129] | LIU S Q, ZHENG Y C, HOU Z Q, et al. Multi-stage crustal magma reservoirs of ultrapotassic rocks recorded by zoned clinopyroxene[J]. Journal of Asian Earth Sciences, 2022, 226: 105072. |
| [130] | ZHAO Y, XU B, ZHAO Z, et al. Gemological and chemical characterization of varicolored gem-grade spinel from Mogok, Myanmar[J]. Crystals, 2023, 13(3): 447. |
| [131] | ZHANG Y F, XU B, HOU Z Q, et al. Zircon xenocryst geochronology and implications for the Lhasa terrane evolution: insights from Cenozoic volcanic rocks (Coqen, Tibet)[J]. Journal of Asian Earth Sciences, 2023, 255: 105763. |
| [132] | HOU Z Q, WANG R., ZHANG H, et al. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate[J]. Earth-Science Reviews, 2023, 243: 104482. |
| [133] | HOU Z Q, XU B, ZHANG H J, et al. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 2023, 4: 293. |
| [134] | ZHENG J, XIA B, DAI H, et al. Lithospheric structure and evolution of the north China craton: an integrated study of geophysical and xenolith data[J]. Science China Earth Sciences, 2021, 64(2): 205-219. |
| [135] | TANG Y, YING J, ZHAO Y, et al. Nature and secular evolution of the lithospheric mantle beneath the north China craton[J]. Science China Earth Sciences, 2021, 64(9): 1492-1503. |
| [136] | ZHANG H F, GOLDSTEIN S L, ZHOU X H, et al. Comprehensive refertilization of lithospheric mantle beneath the north China craton: further Os-Sr-Nd isotopic constraints[J]. Journal of the Geological Society, 2009, 166(2): 249-259. |
| [137] | GAO S, RUDNICK R L, CARLSON R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the north China craton[J]. Earth and Planetary Science Letters, 2002, 198(3): 307-322. |
| [138] | ZHENG J. Comparison of mantle-derivedmatierals from different spatiotemporal settings: implications for destructive and accretional processes of the north China craton[J]. Chinese Science Bulletin, 2009, 54(19): 3397-3416. |
| [139] | GAO S, RUDNICK R L, YONG H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432: 892-897. |
| [140] | DOUCET L S, LAURENT O, IONOV D A, et al. Archean lithospheric differentiation: insights from Fe and Zn isotopes[J]. Geology, 2020, 48(10): 1028-1032. |
| [141] | CHRISTENSEN N I, MOONEY W D. Seismic velocity structure and composition of the continental crust: A global view[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9761-9788. |
| [142] | ZHANG X, BROWN D, DENG Y. Crustal composition model across the Bangong-Nujiang suture belt derived from INDEPTH III velocity data[J]. Journal of Geophysics and Engineering, 2011, 8(4): 549-559. |
| [143] | 杨立强, 魏瑜吉, 王偲瑞, 等. 胶东金矿床中关键金属资源储量估算与潜力初探[J]. 岩石学报, 2022, 38(1): 9-22. |
| [144] | 翟诗瑶, 杨立强, 和文言, 等. 基于多种物性参数预测岩石圈主量元素组成的方法及装置[P]. 北京市: CN118604909A, 2024-09-06. |
| [145] | 翟诗瑶, 杨立强, 和文言, 等. 一种岩石圈岩性组成判别方法、 装置及计算机程序产品[P]. 北京市: CN118859319A, 2024-10-29. |
| [146] | YU G, XU T, AI Y, et al. Significance of crustal extension and magmatism to gold deposits beneath jiaodong peninsula, eastern north China craton: seismic evidence from receiver function imaging with a dense array[J]. Tectonophysics, 2020, 789: 228532. |
| [147] | XIAO X, CHENG S, WU J, et al. CSRM-1.0: a China seismological reference model[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(9): e2024JB029520. |
| [148] | YANG Y, LIANG C, NEUBAUER F, et al. Metamorphic evolution and tectonic significance of Neoarchean high-pressure mafic granulites in the Central Limpopo Belt, South Africa[J]. International Geology Review, 2024, 66(5): 1094-1118. |
| [149] | YE Z, TAN X M, GAO R., et a. Constraints on crustal compositional architecture across the North China-Altaids transition and implications for craton margin reworking[J]. National Science Review, 2024, 11: nwae171. |
| [150] | ZHANG L, WANG T, ZHANG J J, et al. Revisiting the boundary between the Central Asian Orogenic Belt and North China Craton in Alxa area, China: insights from zircon U-Pb ages and Hf isotopes of Phanerozoic granitoids. Gondwana Research, 2023, 119: 119-137. |
| [151] | QIN Q, HUANG H, WANG T, et al. Relationship of the Tarim Craton to the Central Asian Orogenic Belt: insights from Devonian intrusions in the northern margin of Tarim Craton, China[J]. International Geology Review, 2016, 58(16): 2007-2028. |
| [152] | 康磊. 敦煌及邻区中酸性岩浆演化、 地壳深部物质架构及其构造意义[D]. 西安: 西北大学, 2024: 1-103. |
| [153] | XU X W, LI X H, JIANG N, et al. Basement nature and origin of the Junggar terrane: New zircon U-Pb-Hf isotope evidence from Paleozoic rocks and their enclaves[J]. Gondwana Research, 2015, 28(1): 288-310. |
| [154] | 胡霭琴, 韦刚健. 关于准噶尔盆地基底时代问题的讨论: 据同位素年代学研究结果[J]. 新疆地质, 2003, 21(4): 398-406. |
| [155] | SUN M, LONG X, CAI K, et al. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D: Earth Sciences, 2009, 52: 1345-1358. |
| [156] | XU B, KOU G, ETSCHMANN B, et al. Spectroscopic, Raman, EMPA, micro-XRF and micro-XANES analyses of sulphur concentration and oxidation state of natural apatite crystals[J]. Crystals, 2020, 10(11): 1032. |
| [157] | 侯增谦, 王涛. 同位素填图与深部物质探测 (Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25(6): 20-41. |
| [158] | WU C, CHEN H Y, LU Y J. Crustal structure control on porphyry copper systems in accretionary orogens: insights from Nd isotopic mapping in the Central Asian Orogenic Belt[J]. Mineralium Deposita, 2022, 57(4): 631-641. |
| [159] | WANG X X, WANG T, ZHANG C L. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China: Earth Sciences, 2015(58): 1497-1512 |
| [160] | ZHANG A, ZHENG Y, FU Q, et al. Ore-forming material sources of the Pb-Zn-(Ag-Fe-Cu) deposits in the northern Gangdese belt, Lhasa terrane: constraints from geology, geochronology and S-Pb isotopes[J]. Ore Geology Reviews, 2023, 159: 105491. |
| [1] | HOU Zengqian, YANG Zhiming, ZHANG Hongrui, WANG Rui, SONG Yucai, LIU Yan, ZHENG Yuanchuan, XU Bo, WANG Qingfei, LIU Yingchao. Metallogenesis in collisional orogens: New insights and advances [J]. Earth Science Frontiers, 2025, 32(6): 179-209. |
| [2] | WANG Rui, ZHANG Jingbo, LUO Chenhao, ZHOU Qiushi, XIA Wenjie, ZHAO Yun. Deep process and lithospheric architectural control of Cu-REE mineralization in continental collision zone: Insights from a case study of the Gangdese and Sanjiang collisional belts [J]. Earth Science Frontiers, 2024, 31(1): 211-225. |
| [3] | YANG Liqiang, HE Wenyan, GAO Xue, WANG Sirui, LI Nan, QIU Kunfeng, ZHANG Liang, MA Qiang, SU Yuping, LI Dapeng, ZHANG Zhiyu, YU Hong. New method to trace the three-dimensional compositional structure of cratonic lithosphere [J]. Earth Science Frontiers, 2023, 30(6): 391-405. |
| [4] | CHEN Guochao,PEI Xianzhi,LI Ruibao,LI Zuochen,PEI Lei,LIU Chengjun,CHEN Youxin,WANG Meng,GAO Feng,LI Xiaobing. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons [J]. Earth Science Frontiers, 2019, 26(4): 191-208. |
| [5] | HOU Zengqian,WANG Tao. Isotopic mapping and deep material probing (Ⅱ):imaging crustal architecture and its control on mineral systems. [J]. Earth Science Frontiers, 2018, 25(6): 20-41. |
| [6] | WANG Tao,HOU Zengqian. Isotopic mapping and deep material probing(Ⅰ): revealing the compositional evolution of the lithosphere and crustal growth processes. [J]. Earth Science Frontiers, 2018, 25(6): 1-19. |
| [7] | DIAO Gong-Ge, LIU Che-Xiang, WANG Hai-Ran, GAO Shao-Hua, LI Meng, ZHUO Yu-Zhou, JIAO Jian-Xin, ZHANG Sun-Xuan-Qi, JIANG Cheng. LAICPMS detrital zircon dating and its provenance significance in Yanan Formation of the EarlyMiddle Jurassic in the northwestern margin of Ordos Basin. [J]. Earth Science Frontiers, 2015, 22(3): 184-193. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||