Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 68-84.DOI: 10.13745/j.esf.sf.2024.12.130
Previous Articles Next Articles
WEN Guotao(), SU Shangguo*(
), DU Jinxue, ZHANG Yanan, WANG Wenbo
Received:
2024-11-14
Revised:
2024-12-28
Online:
2025-09-25
Published:
2025-10-14
Contact:
SU Shangguo
CLC Number:
WEN Guotao, SU Shangguo, DU Jinxue, ZHANG Yanan, WANG Wenbo. Characteristics and formation mechanism of the Hongshiwan dome in Beijing[J]. Earth Science Frontiers, 2025, 32(5): 68-84.
[1] | ESKOLA P E. The problem of mantled gneiss domes[J]. Quarterly Journal of the Geological Society of London, 1948, 104(1/2/3/4): 461-476. |
[2] | WHITNEY D L, TEYSSIER C, VANDERHAEGHE O. Gneiss domes and crustal flow[J]. Special Paper of the Geological Society of America, 2004, 380: 15-33. |
[3] | FENG J, LIU J L, HAO G J, et al. Formation of the Hengshanli granitic gneiss dome in the Paleoproterozoic Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2022, 371: 106571. |
[4] | STEVENS L M, BENDICK R, BALDWIN J A. Synconvergent exhumation of metamorphic core complexes in the northern North American Cordillera[J]. Geology, 2017, 45(6): 495-498. |
[5] | STECK A. Tectonics of the Simplon massif and Lepontine gneiss dome: deformation structures due to collision between the underthrusting European plate and the Adriatic indenter[J]. Swiss Journal of Geosciences, 2008, 101(2): 515-546. |
[6] | DENÈLE Y, LAUMONIER B, PAQUETTE J L, et al. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees[J]. Geological Society, London, Special Publications, 2014, 405(1): 265-287. |
[7] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹隆构造的建立: 来自藏南错那洞穹隆的厘定[J]. 中国地质, 2018, 45(4): 783-802. |
[8] | XU Z Q, ZHENG B H, JI S C, et al. Genesis and exhumation of the Kongur-Muztaghata and Maeryang gneiss domes in NE Pamir since the Mesozoic[J]. Solid Earth Sciences, 2023, 8(2): 123-145. |
[9] | BELL T H, HAM A P, HAYWARD N, et al. On the development of gneiss domes[J]. Australian Journal of Earth Sciences, 2005, 52(2): 183-204. |
[10] | BRUN J P, GAPAIS D, LE THEOFF B. The mantled gneiss domes of Kuopio (Finland): interfering diapirs[J]. Tectonophysics, 1981, 74(3/4): 283-304. |
[11] | BROWN S R, ANDREWS G D M, GIBSON H D. Corrugated architecture of the Okanagan Valley shear zone and the Shuswap metamorphic complex, Canadian Cordillera[J]. Lithosphere, 2016, 8(4): 412-421. |
[12] | TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12): 1139-1142. |
[13] | BURG J P, KAUS B J P, PODLADCHIKOV Y Y. Dome structures in collision orogens: mechanical investigation of the gravity/compression interplay[M]//Gneiss domes in orogeny. Boulder: Geological Society of America, 2004: 47-66. |
[14] | MAKOVSKY Y, KLEMPERER S L, RATSCHBACHER L, et al. Midcrustal reflector on INDEPTH wide-angle profiles: an ophiolitic slab beneath the India-Asia suture in southern Tibet?[J]. Tectonics, 1999, 18(5): 793-808. |
[15] | BURG J P, VANDERHAEGHE O. Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central)[J]. Journal of Structural Geology, 1993, 15(11): 1293-1301. |
[16] | CROWLEY J L, BROWN R L, PARRISH R R. Diachronous deformation and a strain gradient beneath the Selkirk allochthon, northern Monashee complex, southeastern Canadian Cordillera[J]. Journal of Structural Geology, 2001, 23(6/7): 1103-1121. |
[17] | TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12): 1139. |
[18] | VANDERHAEGHE O, KRUCKENBERG S C, GERBAULT M. et al. Crustal-scale convection and diapiric upwelling of a partially molten orogenic root (Naxos dome, Greece)[J]. Tectonophysics, 2018, 746: 459-469 |
[19] | LEDRU P, COURRIOUX G, DALLAIN C, et al. The velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution[J]. Tectonophysics, 2001, 342(3/4): 207-237. |
[20] | KRUCKENBERG S C, VANDERHAEGHE O, FERRÉ E C, et al. Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece[J]. Tectonics, 2011, 30: TC3001. |
[21] | 许志琴, 马绪宣. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523. |
[22] | CHEN X Y, LIU J L, WENG S T, et al. Structural geometry and kinematics of the Ailao Shan shear zone: insights from integrated structural, microstructural, and fabric studies of the Yao Shan complex, Yunnan, Southwest China[J]. International Geology Review, 2016, 58(7): 849-873. |
[23] | 杨进辉, 许蕾, 孙金凤, 等. 华北克拉通破坏与岩浆-成矿的深部动力学过程[J]. 中国科学: 地球科学, 2021, 51(9): 1401-1419. |
[24] | 朱日祥, 陈凌, 吴福元, 等. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 2011, 41(5): 583-592. |
[25] | 刘俊来, 倪金龙, 陈小宇, 等. 岩石圈伸展的壳/幔拆离模型(Parallel Extension Tectonics): 华北克拉通东部早白垩世岩石圈减薄与破坏机理[J]. 岩石学报, 2020, 36(8): 2331-2343. |
[26] | 沈其韩, 耿元生, 宋会侠. 华北克拉通的组成及其变质演化[J]. 地球学报, 2016, 37(4): 387-406. |
[27] | 王涛, 郑亚东, 张进江, 等. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J]. 地质通报, 2007, 26(9): 1154-1166. |
[28] | 刘俊来, 关会梅, 纪沫, 等. 华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J]. 自然科学进展, 2006, 16(1): 21-26. |
[29] | LIN W, WANG J, LIU F, et al. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics[J]. Acta Petrologica Sinica, 2013, 29(5): 1791-1810. |
[30] | WANG T, GUO L, ZHENG Y D, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: mainly constrained by zircon U-Pb ages from metamorphic core complexes[J]. Lithos, 2012, 154: 315-345. |
[31] | 张岳桥, 董树文, 李建华, 等. 华南中生代大地构造研究新进展[J]. 地球学报, 2012, 33(3): 257-279. |
[32] | 林伟, 王军, 刘飞, 等. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报, 2013, 29(5): 1791-1810. |
[33] | 林伟, 许德如, 侯泉林, 等. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿[J]. 大地构造与成矿学, 2019, 43(3): 409-430. |
[34] | 裴磊. 京北云蒙山地区中生代收缩-伸展构造: 构造-岩浆关系证据[D]. 北京: 中国地质大学(北京), 2014. |
[35] | 刘翠, 邓晋福, 苏尚国, 等. 北京云蒙山片麻状花岗岩锆石SHRIMP定年及其地质意义[J]. 岩石矿物学杂志, 2004, 23(2): 141-146. |
[36] | 张建新, 曾令森, 邱小平. 北京云蒙山地区花岗岩穹隆及伸展构造的探讨[J]. 地质论评, 1997, 43(3): 232-240. |
[37] | 陈印, 朱光, 刘文刚, 等. 北京云蒙山地区中生代岩浆活动及构造演化[J]. 地质论评, 2018, 64(4): 843-868. |
[38] | 张家声, PASSCHIER C W, KONOPASEK J, 等. 云蒙山变质核杂岩抬升过程中伸展拆离和岩浆底辟联合作用的证据[J]. 地学前缘, 2007, 14(4): 26-39. |
[39] | 姚丽景, 颜丹平, 胡玲. 房山变质核杂岩基底拆离断层韧性剪切变形构造及环境分析[J]. 地球科学: 中国地质大学学报, 2007, 32(3): 357-365. |
[40] | 何斌, 徐义刚, 王雅玫, 等. 北京西山房山岩体岩浆底辟构造及其地质意义[J]. 地球科学: 中国地质大学学报, 2005, 30(3): 298-308. |
[41] | 曲姝玥. 医巫闾山变质核杂岩两期变形事件识别与形成时代[D]. 长春: 吉林大学, 2022. |
[42] | 梁键婷, 欧阳志侠, 张莹, 等. 医巫闾山变质核杂岩核部晚中生代花岗岩成因及地质意义[J]. 岩石矿物学杂志, 2021, 40(4): 671-686. |
[43] | 史肖飞. 燕山构造带西段千家店盆地生长构造与生长地层[D]. 北京: 中国地质大学(北京), 2019. |
[44] | 刘少峰, 李忠, 张金芳. 燕山地区中生代盆地演化及构造体制[J]. 中国科学D辑: 地球科学, 2004, 34(增刊1): 19-31. |
[45] | 李建锋, 汤文豪, 刘钊, 等. 北京千家店地区侏罗系后城组磷灰石裂变径迹分析及其地质意义[J]. 地球物理学报, 2010, 53(12): 2907-2917. |
[46] | 张长厚, 张勇, 李海龙, 等. 燕山西段及北京西山晚中生代逆冲构造格局及其地质意义[J]. 地学前缘, 2006, 13(2): 165-183. |
[47] | 张长厚, 宋鸿林. 燕山板内造山带中生代逆冲构造样式及形成过程[J]. 地质力学学报, 1996, 2(3): 21-22. |
[48] | 张长厚, 吴淦国, 徐德斌, 等. 燕山板内造山带中段中生代构造格局与构造演化[J]. 地质通报, 2004, 23(增刊2): 864-875. |
[49] | 张长厚, 徐德斌, 张维杰, 等. 同构造沉积分析反演逆冲构造变形过程: 燕山东段凌源南部中生代逆冲构造变形过程研究[J]. 地学前缘, 2004, 11(3): 227-243. |
[50] | 林逸. 燕山与太行山构造带结合部中生代构造变形与古构造应力场[D]. 北京: 中国地质大学(北京), 2019. |
[51] | 刘少峰, 林成发, 刘晓波, 等. 冀北张家口地区同构造沉积过程及其与褶皱-逆冲作用耦合[J]. 中国科学: 地球科学, 2018, 48(6): 705-731. |
[52] | 史肖飞, 刘少峰, 林成发. 燕山构造带西段千家店盆地生长构造与生长地层[J]. 中国科学: 地球科学, 2019, 49(7): 1116-1133. |
[53] | 叶涛, 牛成民, 王德英, 等. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5): 133-146. |
[54] | 李晓波, 张艳, 仝亚博. 燕辽东段侏罗、白垩纪构造转变期古地理和古环境的初步分析[J]. 地学前缘, 2021, 28(2): 391-411. |
[55] | LEAKE B E, WOOLLEY A R, BIRCH W D, et al. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature[J]. European Journal of Mineralogy, 2004, 16(1): 190-195. |
[56] | 郭盼, 吴波, 房龙, 等. 角闪石矿物化学研究进展[J]. 资源环境与工程, 2022, 36(3): 305-313, 320. |
[57] | HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90: 316-328. |
[58] | RAVNA K. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration[J]. Journal of Metamorphic Geology, 2000, 18(2): 211-219. |
[59] | McCARTHY T C, PATIÑO DOUCE A E. Empirical calibration of the silica-Ca-tschermak’s-anorthite (SCAn) geobarometer[J]. Journal of Metamorphic Geology, 1998, 16(5): 675-686. |
[60] | ECKERT J O, NEWTON R, KLEPPA O. The H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry[J]. American Mineralogist, 1991, 76(1/2): 148-160. |
[61] | HOLLAND T, BLUNDY J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447. |
[62] | BHADRA S, BHATTACHARYA A. The barometer tremolite+tschermakite+2 albite=2 pargasite+8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages[J]. American Mineralogist, 2007, 92(4): 491-502. |
[63] | XIANG H, CONNOLLY J A D. GeoPS: an interactive visual computing tool for thermodynamic modelling of phase equilibria[J]. Journal of Metamorphic Geology, 2022, 40(2): 243-255. |
[64] | LI X W, WEI C J. Phase equilibria modelling and zircon age dating of pelitic granulites in Zhaojiayao, from the Jining Group of the khondalite belt, North China Craton[J]. Journal of Metamorphic Geology, 2016, 34(6): 595-615. |
[65] | 毛小红, 路增龙, 张建新, 等. 柴北缘欧龙布鲁克地块中元古代晚期麻粒岩相变质作用: 来自石榴夕线堇青石片麻岩的岩石学、相平衡模拟和U-Pb年代学的制约[J]. 岩石矿物学杂志, 2024, 43(2): 219-237. |
[66] | HOLLAND T J B, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 29(3): 333-383. |
[67] | 彭银彪, 于胜尧, 张建新, 等. 北祁连地区早古生代弧岩浆作用及变质作用事件: 以门源-柯柯里地区为例[J]. 岩石学报, 2017, 33(12): 3925-3941. |
[68] | ERNST W G. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths[J]. Geology, 1988, 16(12): 1081. |
[69] | HARLEY S L. The origins of granulites: a metamorphic perspective[J]. Geological Magazine, 1989, 126(3): 215-247. |
[70] | MICHAEL S, ROGER P. Deep crustal metamorphism during continental extension: modern and ancient examples[J]. Earth and Planetary Science Letters, 1986, 79(1/2): 151-158. |
[71] | BOHLEN S R. On the formation of granulites[J]. Journal of Metamorphic Geology, 1991, 9(3): 223-229. |
[72] | 张宝玲, 陈友良, 欧何琼, 等. 攀枝花大田地区康定群咱里组变质杂岩p-T-t轨迹及其构造意义[J]. 地质论评, 2023, 69(3): 881-896. |
[73] | XIAO L L, JIANG Z S, WANG G D, et al. Metamorphic reaction textures and metamorphic P-T-t loops of the Precambrian Zanhuang metamorphic complex, Hebei, North China[J]. Acta Petrologica Sinica, 2011, 27(4): 980-1002. |
[74] | 杨燕. 河北赤城高压基性麻粒岩岩石学特征及p-T-t轨迹[D]. 北京: 中国地质大学(北京), 2020. |
[75] | 魏春景, 赵亚男, 初航. 冀北红旗营杂岩多期变质作用: 古元古代俯冲/碰撞—晚古生代伸展—早中生代挤压的记录[J]. 地学前缘, 2024, 31(1): 95-110. |
[76] | 邵济安, 周新华, 张履桥. 华北克拉通北缘显生宙四次底侵作用及其构造: 岩浆活动与深部背景[J]. 地学前缘, 2020, 27(4): 124-134. |
[77] | ROSALYN G. WARREN, DAVID J E. Mantle underplating, granite tectonics, and metamorphic P-T-t paths[J]. Geology, 1996, 24 (7): 663-666. |
[78] | ZHAO G C, WILDE S A, CAWOOD P A, et al. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications[J]. Tectonophysics, 1999, 310(1/2/3/4): 37-53. |
[79] | ZHAO G C, WILDE S A, CAWOOD P A, et al. Thermal evolution of two textural types of mafic granulites in the North China Craton: evidence for both mantle plume and collisional tectonics[J]. Geological Magazine, 1999, 136(3): 223-240. |
[80] | 刘喜山. 大青山造山带中基底再造杂岩的特征及其指示意义[J]. 岩石学报, 1994, 10(4): 413-426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||