Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 140-152.DOI: 10.13745/j.esf.sf.2024.11.20
Previous Articles Next Articles
LIANG Chen1(), JIANG Tao1,*(
), KUANG Zenggui2, HU Yipan1, YANG Chengzhi2, REN Jinfeng2, LAI Hongfei2
Received:
2024-05-16
Revised:
2024-11-20
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
LIANG Chen, JIANG Tao, KUANG Zenggui, HU Yipan, YANG Chengzhi, REN Jinfeng, LAI Hongfei. Sedimentary time and genesis mechanism of natural gas hydrate reservoirs in the Qiongdongnan Basin[J]. Earth Science Frontiers, 2025, 32(2): 140-152.
样品编号 | 埋藏深度/ m | 含水率/ % | U含量/ 10-6 | Th含量/ 10-6 | K含量/ % | 等效剂量/ Gy | 环境剂量率/ (Gy·ka-1) | 释光年龄/ ka |
---|---|---|---|---|---|---|---|---|
W07B 1H-2b | 1.8 | 85.72 | 2.35 | 12.5 | 2.38 | 32.3±2.2 | 2.22±0.06 | 14.6±1.1 |
W07B 1H-3b | 2.8 | 84.07 | 2.52 | 13.5 | 2.43 | 45.1±7.4 | 2.34±0.06 | 19.2±3.2 |
W07B 1H-4b | 3.8 | 87.69 | 2.54 | 12.7 | 2.32 | 47.3±7.9 | 2.20±0.06 | 21.4±3.6 |
W07B 1H-5b | 4.9 | 75.00 | 2.32 | 12.3 | 2.27 | 60.7±4.9 | 2.30±0.06 | 26.4±2.2 |
W07B 2H-1b | 8.8 | 79.41 | 2.45 | 12.1 | 2.25 | 63.2±3.7 | 2.23±0.06 | 28.3±1.8 |
W07B 2H-2b | 9.8 | 81.79 | 2.52 | 13.1 | 2.22 | 71.8±3.1 | 2.25±0.06 | 31.9±1.6 |
W07B 2H-3b | 10.8 | 73.45 | 2.46 | 14.2 | 2.3 | 82.5±4.4 | 2.46±0.06 | 33.5±2.0 |
W07B 2H-4b | 11.8 | 78.11 | 2.45 | 13.7 | 2.19 | 91.4±7.1 | 2.30±0.06 | 39.7±3.2 |
W07B 4H-2c | 24.7 | 77.17 | 2.51 | 14.4 | 2.41 | 126.8±6.4 | 2.48±0.06 | 51.1±2.9 |
W07B 4H-5b | 27.7 | 80.25 | 2.31 | 15 | 2.52 | 119.7±8.5 | 2.49±0.06 | 48.1±3.6 |
W07B 7H-2c | 45.2 | 79.19 | 2.46 | 14.3 | 2.59 | 166.2±11.1 | 2.53±0.06 | 65.6±4.7 |
W07B 7H-5b | 47.8 | 76.57 | 2.54 | 13.8 | 2.32 | 168.4±7.0 | 2.42±0.06 | 69.7±3.4 |
W07B 11H-3b | 70.1 | 78.39 | 2.64 | 12.5 | 2.19 | 265.1±10.8 | 2.27±0.06 | 116.8±5.6 |
W07B 11H-4c | 72.0 | 70.26 | 2.38 | 13.6 | 2.39 | 322.8±4.4 | 2.52±0.06 | 128.3±3.6 |
W07B 13C-1b | 80.8 | 73.50 | 2.36 | 12.8 | 2.41 | 343.0±5.6 | 2.43±0.06 | 141.2±4.2 |
W07B 13C-4b | 83.8 | 70.58 | 2.41 | 12.9 | 2.18 | 348.6±8.1 | 2.36±0.06 | 147.7±5.0 |
W07B 15C-2b | 102.8 | 72.40 | 2.27 | 11.7 | 2.12 | 406.8±2.7 | 2.21±0.05 | 184.1±4.6 |
Table 1 Optically stimulated luminescence dating results of the Qiongdongnan borehole W07B
样品编号 | 埋藏深度/ m | 含水率/ % | U含量/ 10-6 | Th含量/ 10-6 | K含量/ % | 等效剂量/ Gy | 环境剂量率/ (Gy·ka-1) | 释光年龄/ ka |
---|---|---|---|---|---|---|---|---|
W07B 1H-2b | 1.8 | 85.72 | 2.35 | 12.5 | 2.38 | 32.3±2.2 | 2.22±0.06 | 14.6±1.1 |
W07B 1H-3b | 2.8 | 84.07 | 2.52 | 13.5 | 2.43 | 45.1±7.4 | 2.34±0.06 | 19.2±3.2 |
W07B 1H-4b | 3.8 | 87.69 | 2.54 | 12.7 | 2.32 | 47.3±7.9 | 2.20±0.06 | 21.4±3.6 |
W07B 1H-5b | 4.9 | 75.00 | 2.32 | 12.3 | 2.27 | 60.7±4.9 | 2.30±0.06 | 26.4±2.2 |
W07B 2H-1b | 8.8 | 79.41 | 2.45 | 12.1 | 2.25 | 63.2±3.7 | 2.23±0.06 | 28.3±1.8 |
W07B 2H-2b | 9.8 | 81.79 | 2.52 | 13.1 | 2.22 | 71.8±3.1 | 2.25±0.06 | 31.9±1.6 |
W07B 2H-3b | 10.8 | 73.45 | 2.46 | 14.2 | 2.3 | 82.5±4.4 | 2.46±0.06 | 33.5±2.0 |
W07B 2H-4b | 11.8 | 78.11 | 2.45 | 13.7 | 2.19 | 91.4±7.1 | 2.30±0.06 | 39.7±3.2 |
W07B 4H-2c | 24.7 | 77.17 | 2.51 | 14.4 | 2.41 | 126.8±6.4 | 2.48±0.06 | 51.1±2.9 |
W07B 4H-5b | 27.7 | 80.25 | 2.31 | 15 | 2.52 | 119.7±8.5 | 2.49±0.06 | 48.1±3.6 |
W07B 7H-2c | 45.2 | 79.19 | 2.46 | 14.3 | 2.59 | 166.2±11.1 | 2.53±0.06 | 65.6±4.7 |
W07B 7H-5b | 47.8 | 76.57 | 2.54 | 13.8 | 2.32 | 168.4±7.0 | 2.42±0.06 | 69.7±3.4 |
W07B 11H-3b | 70.1 | 78.39 | 2.64 | 12.5 | 2.19 | 265.1±10.8 | 2.27±0.06 | 116.8±5.6 |
W07B 11H-4c | 72.0 | 70.26 | 2.38 | 13.6 | 2.39 | 322.8±4.4 | 2.52±0.06 | 128.3±3.6 |
W07B 13C-1b | 80.8 | 73.50 | 2.36 | 12.8 | 2.41 | 343.0±5.6 | 2.43±0.06 | 141.2±4.2 |
W07B 13C-4b | 83.8 | 70.58 | 2.41 | 12.9 | 2.18 | 348.6±8.1 | 2.36±0.06 | 147.7±5.0 |
W07B 15C-2b | 102.8 | 72.40 | 2.27 | 11.7 | 2.12 | 406.8±2.7 | 2.21±0.05 | 184.1±4.6 |
Fig.5 Equivalent dose experimental results of representative samples a—The growth curves; b—The histograms of De distribution; c—Radial plots of De values.
Fig.6 Age-depth model a—Age-depth model of borehole W07B; b—Comparison of OSL and AMS 14C dating results (The drilling location is shown in Figure 1).
Fig.7 Sedimentary rate and global sea level change trend in the Qiongdongnan Basin a—Average sedimentation rate at different isotopic stages; b—The global relative sea level change curve.
[1] | CHAND S, MINSHULL T A, GEI D, et al. Elastic velocity models for gas-hydrate-bearing sediments-a comparison[J]. Geophysical Journal International, 2004, 159(2): 573-590. |
[2] | BAI C, ZHANG G, LU J, et al. Deep-water sediment waves as a special gas hydrate reservoirs in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2019, 101: 476-485. |
[3] | XIE Y, LI R, WANG X H, et al. Review on the accumulation behavior of natural gas hydrates in porous sediments[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103520. |
[4] | SCHMUCK E A, PAULL C K. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide[J]. Geo-Marine Letters, 1993, 13(3): 145-152. |
[5] | MACDONALD I R, BENDER L C, VARDARO M, et al. Thermal and visual time-series at a seafloor gas hydrate deposit on the gulf of Mexico slope[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 45-59. |
[6] | LU H, SEO Y, LEE J, et al. Complex gas hydrate from the Cascadia margin[J]. Nature, 2007, 445(7125): 303-306. |
[7] | RÖMER M, SAHLING H, PAPE T, et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea—the Kerch seep area[J]. Marine Geology, 2012, 319-322: 57-74. |
[8] | BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725-734. |
[9] | WENAU S, SPIESS V, PAPE T, et al. Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage[J]. Marine and Petroleum Geology, 2015, 67: 880-893. |
[10] | COLLETT T S, LEE M W. Reservoir characterization of marine and permafrost associated gas hydrate accumulations with downhole well logs[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 51-64. |
[11] | BOSWELL R, COLLETT T S. The Gas Hydrates Resource Pyramid[J]. 2006. |
[12] | WANG X, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[13] | ZHANG G, LIANG J, LU J, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. |
[14] | SU M, YANG R, WANG H, et al. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gas-hydrate petroleum system[J]. Geologica Acta, 2016, 14(2): 79-100. |
[15] | CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
[16] | SASSEN R, SWEET S T, MILKOV A V, et al. Thermogenic vent gas and gas hydrate in the gulf of Mexico slope: is gas hydrate decomposition significant?[J]. Geology, 2001, 29(2): 107. |
[17] | MILKOV A V, CLAYPOOL G E, LEE Y-J, et al. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1007-1026. |
[18] | LAI H, FANG Y, KUANG Z, et al. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: implications from site GMGS5-W08[J]. Marine and Petroleum Geology, 2021, 123: 104774. |
[19] | ZHANG W, LIANG J, WEI J, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104191. |
[20] | COLLETT T S, BOSWELL R, LEE M W, et al. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope[J]. Spe Reservoir Evaluation and Engineering, 2012 15(2): 243-264. |
[21] | YE J, QIN X, XIE W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. |
[22] | KIM G Y, NARANTSETSEG B, RYU B-J, et al. Fracture orientation and induced anisotropy of gas hydrate-bearing sediments in seismic chimney-like-structures of the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 182-194. |
[23] | CHENG C, JIANG T, KUANG Z, et al. Characteristics of gas chimneys and their implications on gas hydrate accumulation in the Shenhu area, northern south China sea[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103629. |
[24] | MATSUMOTO R, BOROWSKI W S. Gas hydrate estimates from newly determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial waters: leg 164, Blake Ridge[J]. Proc. odp Sci. results, 2000, 164: 59-66. |
[25] |
RIEDEL M, SCHERWATH M, RöMER M, et al. Distributed natural gas venting offshore along the Cascadia margin[J]. Nature communications, 2018, 9(1): 3264.
DOI PMID |
[26] | COLLETT T S, AGENA W F, LEE M W, et al. Assessment of gas hydrate resources on the North Slope, Alaska, 2008[J]. American Geophysical Union, 2008, 1: 52-64. |
[27] | ANDREASSEN K, HART P E, GRANTZ A. Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the beaufort sea[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12659-12673. |
[28] | VEDACHALAM N, RAMESH S, SRINIVASALU S, et al. Assessment of methane gas production from Indian gas hydrate petroleum systems[J]. Applied Energy, 2016, 168: 649-660. |
[29] | HEIN J R, SCHOLL D W. Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea[J]. Geological Society of America Bulletin, 1978, 89(2): 197-210. |
[30] | GORNITZ V, FUNG I. Potential distribution of methane hydrates in the world’s oceans[J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347. |
[31] |
YE J L, WEI J G, LIANG J Q, ET AL. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104: 29-39.
DOI |
[32] | LIANG J, ZHANG W, LU J an, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[33] | 雷新华, 林功成, 苗永胜, 等. 天然气水合物与传统油气资源共生成藏模式初探[J]. 海相油气地质, 2013, 18(1): 47-52. |
[34] | NANDA J, SHUKLA K M, LALL M V, et al. Lithofacies characterization of gas hydrate prospects discovered during the National Gas Hydrate Program expedition 02, offshore Krishna-Godavari Basin, India[J]. Marine and Petroleum Geology, 2019, 108: 226-238. |
[35] | COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates: a review[C]//COLLETT T, JOHNSON A, KNAPP C, et al. Natural gas hydrates: Energy resource potential and associated geologic hazards. AAPG Memoir 89, 2009: 146-219. |
[36] | 卜庆涛, 胡高伟, 业渝光, 等. 天然气水合物成藏体系研究进展[J]. 新能源进展, 2015, 3(6): 435-443. |
[37] | WANG X, WU S, YUAN S, et al. Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea[J]. Geofluids, 2010, 10(3): 351-368. |
[38] | WEI J, LIANG J, LU J, et al. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea - Results of the fifth gas hydrate drilling expedition[J]. Marine and Petroleum Geology, 2019, 110: 287-298. |
[39] | FANG Y, WEI J, LU H, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea[J]. Journal of Asian Earth Sciences, 2019, 182: 103924. |
[40] | DECKER J, TEAS P, ORANGE D, et al. Sea bottom characteristics and geochemistry of oil and gas seeps in the Gulf of Mexico[J]. Interpretation, 2022, 10(1): SB49-SB62. |
[41] | BERNDT C, FESEKER T, TREUDE T, et al. Temporal constraints on hydrate-controlled methane seepage off svalbard[J]. Science, 2014, 343(6168): 284-287. |
[42] | 陈芳, 庄畅, 周洋, 等. 南海东北部陆坡天然气水合物钻探区生物地层与沉积速率[J]. 地球科学: 中国地质大学学报, 2016, 41(3): 417-424. |
[43] | 陈芳, 苏新, 周洋. 南海神狐海域水合物钻探区钙质超微化石生物地层与沉积速率[J]. 地球科学: 中国地质大学学报, 2013, 38(1): 1-9. |
[44] | 姜涛, 胡亦潘, 周从艳, 等. 海洋沉积物释光测年现状与展望[J]. 地质科技通报, 2022, 41(5): 31-54. |
[45] | UDO F, GLEN T S, RYO M, et al. Iodine dating of pore waters associated with gas hydrates in the Nankai area, Japan[J]. Geology, 2003, 31(6): 521-524. |
[46] | FEHN U, SNYDER G T, MURAMATSU Y. Iodine as a tracer of organic material: 129I results from gas hydrate systems and fore arc fluids[J]. Journal of Geochemical Exploration, 2007, 95(1-3): 66-80. |
[47] |
FEHN U, SNYDER G, EGEBERG P K. Dating of pore waters with (129)I: relevance for the origin of marine gas hydrates[J]. Science, 2000, 289(5488): 2332-2335.
PMID |
[48] | 刘广山, 纪丽红. 129^I的海洋放射年代学及其他应用研究进展[J]. 台湾海峡, 2010, 29(1): 140-147. |
[49] | 罗静兰, 魏新善, 姚泾利, 等. 物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制[J]. 地质通报, 2010, 29(6): 811-820. |
[50] | FAERSHTEIN G, PORAT N, MATMON A. Extended-range luminescence dating of quartz and alkali feldspar from aeolian sediments in the eastern Mediterranean[J]. Geochronology, 2020, 2(1): 101-118. |
[51] | CARVALHO R C, OLIVER T S, WOODROFFE C D. Transition from marine to fluvial-dominated sediment supply at Shoalhaven prograded barrier, southeastern Australia[J]. Geomorphology, 2019, 341: 65-78. |
[52] | LI Y, TSUKAMOTO S, SHANG Z, et al. Constraining the transgression history in the Bohai Coast China since the Middle Pleistocene by luminescence dating[J]. Marine Geology, 2019, 416: 105980. |
[53] | JIANG T, LIU X J, YU T, ET AL. Osl dating of late holocene coastal sediments and its implication for sea-level eustacy in hainan island, Southern China[J]. Quaternary International, 2017, 468: 24-32. |
[54] | FUCHS M, KREUTZER S, FISCHER M, et al. OSL and IRSL dating of raised beach sand deposits along the southeastern coast of Norway[J]. Quaternary Geochronology, 2012, 10: 195-200. |
[55] | POLYMERIS G S, KITIS G, LIOLIOS A K, et al. Luminescence dating of the top of a deep water core from the NESTOR site near the Hellenic Trench, east Mediterranean Sea[J]. Quaternary Geochronology, 2009, 4(1): 68-81. |
[56] | ZHANG J F, FAN C F, WANG H, et al. Chronology of an oyster reef on the coast of Bohai Bay, China: Constraints from optical dating using different luminescence signals from fine quartz and polymineral fine grains of coastal sediments[J]. Quaternary Geochronology, 2007, 2(1-4): 71-76. |
[57] | FRECHEN M, NEBER A, TSATSKIN A, et al. Chronology of pleistocene sedimentary cycles in the carmel coastal plain of israel[J]. Quaternary International, 2004, 121(1): 41-52. |
[58] | BRYANT E A, YOUNG R W, PRICE D M, et al. The impact of tsunami on the coastline of Jervis Bay, Southeastern Australia[J]. Physical Geography, 1997, 18(5): 440-459. |
[59] | MAUZ B, BUNGENSTOCK F. How to reconstruct trends of late Holocene relative sea level: a new approach using tidal flat clastic sediments and optical dating[J]. Marine Geology, 2007, 237(3/4): 225-237. |
[60] | OLIVER T S, DONALDSON P, SHARPLES C, et al. Punctuated progradation of the Seven Mile Beach Holocene barrier system, southeastern Tasmania[J]. Marine Geology, 2017, 386: 76-87. |
[61] | BANERJEE D, MURRAY A S, FOSTER I. Scilly Isles, UK: optical dating of a possible tsunami deposit from the 1755 Lisbon earthquake[J]. Quaternary Science Reviews, 2001, 20(5): 75-718. |
[62] | BRYANT E A, PRICE D M. Late Pleistocene marine chronology of the Gippsland Lakes region, Australia[J]. Physical Geography, 1997, 18(4): 318-334. |
[63] | BRILL D, KLASEN N, BRüCKNER H, et al. OSL dating of tsunami deposits from Phra Thong Island, Thailand[J]. Quaternary Geochronology, 2012, 10: 224-229. |
[64] | NICHOL S L, LIAN O B, CARTER C H. Sheet-Gravel Evidence for a late holocene tsunami run-up on beach dunes, great barrier island, New Zealand[J]. Sedimentary Geology, 2003, 155(1/2): 129-145. |
[65] | HUNTLEY D J, CLAGUE J J. Optical Dating of Tsunami-Laid Sands[J]. Quaternary Research, 1996, 46(2): 127-140. |
[66] | RINK W J, PIEPER K D. Quartz thermoluminescence in a storm deposit and a welded beach ridge[J]. Quaternary Science Reviews, 2001, 20(5): 815-820. |
[67] | LIU J, WANG H, WANG F, et al. Sedimentary evolution during the last -1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 84-96. |
[68] | 陈永胜, 王宏, 裴艳东, 等. 渤海湾西岸晚第四纪海相地层划分及地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(3): 747-759. |
[69] | YIM W W S, HILGERS A, HUANG G, et al. Stratigraphy and optically stimulated luminescence dating of subaerially exposed Quaternary deposits from two shallow bays in Hong Kong, China[J]. Quaternary International, 2008, 183(1): 23-39. |
[70] | PORAT N, AVITAL A, FRECHEN M, et al. Chronology of upper Quaternary offshore successions from the southeastern Mediterranean Sea, Israel[J]. Quaternary Science Reviews, 2003, 22(10-13): 1191-1199. |
[71] | ALAN R C, ADRIANA G, SANDER V K. Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview[J]. Quaternary International, 2001: 19-46. |
[72] | BERGER G W, POLYAK L. Testing the use of quartz ‘micro-hole’ photon-simulated luminescence for dating sediments from the central Lomonosov Ridge, Arctic Ocean[J]. Quaternary Geochronology, 2012, 11: 42-51. |
[73] | BERGER G W. Surmounting luminescence age overestimation in Alaska-margin Arctic Ocean sediments by use of ‘micro-hole’ quartz dating[J]. Quaternary Science Reviews, 2011, 30(13/14): 1750-1769. |
[74] | BERGER G W. Trans-arctic-ocean tests of fine-silt luminescence sediment dating provide a basis for an additional geochronometer for this region[J]. Quaternary Science Reviews, 2006, 25(19/20): 2529-2551. |
[75] | JAKOBSSON M, BACKMAN J, MURRAY A S, et al. Optically Stimulated Luminescence dating supports central Arctic Ocean cm-scale sedimentation rates[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2): 10-16. |
[76] | MIAO X, FENG X, LI J, et al. Tracing the paleo-methane seepage activity over the past 20, 000 years in the sediments of Qiongdongnan Basin, northwestern South China Sea[J]. Chemical Geology, 2021, 559: 1-13. |
[77] | RYAN W B F, CARBOTTE S M, COPLAN J O, et al. Global Multi-Resolution Topography synthesis[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3): n/a-n/a. |
[78] | 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院广州地球化学研究所, 2018. |
[79] | WANG P, LI Q. The South China Sea: Paleoceanography and sedimentology[M]. Dordrecht: Springer, 2009. |
[80] | 陈子归, 姜涛, 匡增桂, 等. 琼东南盆地天然气水合物与浅层气共生体系成藏特征[J]. 地球科学, 2022, 47(5): 1619-1634. |
[81] | REN J, ZHANG D, TONG D, et al. Characterising the nature, evolution and origin of detachment fault in central depression belt, Qiongdongnan Basin of South China Sea: evidence from seismic reflection data[J]. Acta Oceanologica Sinica, 2014, 33(12): 118-126. |
[82] | 张树林. 中国海域天然气水合物勘探研究新进展[J]. 天然气工业, 2008(1): 154-158. |
[83] | 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007(9): 1-6+125. |
[84] | 王力锋, 赵克斌, 黄欣. 南海北部陆坡热流与天然气水合物赋藏研究[J]. 石油实验地质, 2009, 31(1): 58-62+67. |
[85] | 李亚敏, 罗贤虎, 徐行, 等. 南海北部陆坡深水区的海底原位热流测量[J]. 地球物理学报, 2010, 53(9): 2161-2170. |
[86] | 梁金强, 王宏斌, 苏新, 付少英, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7): 128-135. |
[87] | 付少英, 陆敬安. 神狐海域天然气水合物的特征及其气源[J]. 海洋地质动态, 2010, 26(9): 6-10. |
[88] | ZHU Y, HUANG X, FU S, et al. Gas sources of natural gas hydrates in the Shenhu Drilling Area, South China Sea: geochemical evidence and geological analysis[J]. Acta Geologica Sinica - English Edition, 2013, 87(3): 767-776. |
[89] | 黄霞, 祝有海, 卢振权, 等. 南海北部天然气水合物钻探区烃类气体成因类型研究[J]. 现代地质, 2010, 24(3): 576-580. |
[90] | 何家雄, 颜文, 祝有海, 等. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏[J]. 天然气工业, 2013, 33(6): 121-134. |
[91] | SU M, YANG R, WANG H, et al. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gas-hydrate petroleum system[J]. Geologica Acta, 2016, 14(2): 79-100. |
[92] | JIN J, WANG X, GUO Y, et al. Geological controls on the occurrence of recently formed highly concentrated gas hydrate accumulations in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2020, 116: 104294. |
[93] | 张树林. 珠江口盆地白云凹陷天然气水合物成藏条件及资源量前景[J]. 中国石油勘探, 2007(6): 23-27+75-76. |
[94] | 吴时国, 姚根顺, 董冬冬, 等. 南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J]. 石油学报, 2008(3): 318-326. |
[95] | 苏明, 杨睿, 吴能友, 等. 南海北部陆坡区神狐海域构造特征及对水合物的控制[J]. 地质学报, 2014, 88(3): 318-326. |
[96] | 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680. |
[97] | SU M, LUO K, FANG Y, et al. Grain-size characteristics of fine-grained sediments and association with gas hydrate saturation in Shenhu Area, northern South China Sea[J]. Ore Geology Reviews, 2021, 129: 103889. |
[98] | 陈芳, 周洋, 苏新, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5): 95-100. |
[99] | 王真真, 王秀娟, 郭依群, 等. 白云凹陷陆坡峡谷沉积与迁移特征及其对天然气水合物成藏的影响[J]. 海洋地质与第四纪地质, 2014, 34(3): 105-113. |
[100] | WANG X J, LEE M, COLLETT T, et al. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu Area, South China Sea[J]. Marine and Petroleum Geology, 2014, 51: 298-306. |
[101] | HUI G, LI S, GUO L, et al. Source and accumulation of gas hydrate in the northern margin of the South China Sea[J]. Marine and Petroleum Geology, 2016, 69: 127-145. |
[102] | 何玉林, 梁金强, 石万忠, 等. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式[J]. 地球科学, 2022, 47(5): 1711-1727. |
[103] | 王秀娟, 靳佳澎, 郭依群, 等. 南海北部天然气水合物富集特征及定量评价[J]. 地球科学, 2021, 46(3): 1038-1057. |
[104] | WEI J, WU T, ZHU L, et al. Mixed gas sources induced co-existence of sI and sII gas hydrates in the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 105024. |
[105] | 程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4): 30-40. |
[106] | CHEN H, HARFF J, QIU Y, et al. Last Glacial Cycle and seismic stratigraphic sequences offshore western Hainan Island, NW South China Sea[J]. Geological Society, London, Special Publications, 2016, 429(1): 99-121. |
[107] | YE X, XU Y, WANG A J, et al. Vsristions in sediment source and marine environment characteristics during the late holocene on the continental shelf off southeastern hainan island[J]. Quaternary Sciences, 2016, 36(1): 19-30. |
[108] | AITKEN M J. Physics applied to archaeology I. Dating[J]. Reports on Progress in Physics, 1970, 33(3): 941-1000. |
[109] | 张克旗, 吴中海, 吕同艳, 等. 光释光测年法——综述及进展[J]. 地质通报, 2015, 34(1): 183-203. |
[110] | LAI Z, OU XIANJIAO. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geophy, 2013, 32(5): 683-693. |
[111] | ZHANG K. A feasibility study on TT-OSL dating for the eolian sediments from northern slope of Kunlun Mountains, XinJiang[J]. Journal of Geomechanics, 2012, 18(4): 425-432. |
[112] | QIN J T, ZHOU L P. Optically stimulated luminescence dating of upper part of a thick loess section at caoxian near the northern desert of china[J]. Quaternary Sciences, 2007, 27: 4. |
[113] | 王旭龙, 卢演俦, 李晓妮. 黄土细颗粒单测片再生法光释光测年的进展[J]. 核技术, 2005, 28(5): 383-387. |
[114] | MURRAY A S, WINTLE A G. The single aliquot regenerative dose protocol: potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4/5): 377-381. |
[115] | MURRAY A S, WINTLE A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73. |
[116] | PRESCOTT J R, HUTTON J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2/3): 497-500. |
[117] | 张家富, 莫多闻, 夏正楷, 等. 沉积物的光释光测年和对沉积过程的指示意义[J]. 第四纪研究, 2009, 29(1): 23-33. |
[118] | REIMER P J, BARD E, BAYLISS A, et al. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) Criteria[J]. Radiocarbon, 2013, 55(4): 1923-1945. |
[119] | SOUTHON J, KASHGARIAN M, FONTUGNE M, et al. Marine Reservoir Corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1): 167-180. |
[120] | TALMA A S, VOGEL J C. A Simplified Approach to Calibrating 14C Dates[J]. Radiocarbon, 1993, 35(2): 317-322. |
[121] | 李平原, 路剑飞, 夏真, 等. 南海北部陆坡30 ka以来的沉积环境演变[J]. 海洋地质与第四纪地质, 2020, 40(6): 14-21. |
[122] | 姜龙杰, 孙志鹏, 翟世奎, 刘新宇, 尤丽. 琼东南盆地深水区钻井岩屑稀土元素地球化学特征及其对沉积物源和环境的指示[J]. 海洋科学, 2018, 42(4): 89-100. |
[123] | LIU X, ZHANG D, ZHAI S, et al. A heavy mineral viewpoint on sediment provenance and environment in the Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2015, 34(4): 41-55. |
[124] | 曹立成, 姜涛, 王振峰, 等. 琼东南盆地新近系重矿物分布特征及其物源指示意义[J]. 中南大学学报(自然科学版), 2013, 44(5): 1971-1981. |
[125] | 张江勇, 赵利, 李波, 等. 南海与台湾岛东部海域浅地层碳酸盐旋回[J]. 中国地质, 2020, 47(5): 1486-1500. |
[126] | DING X, FANG N. The monsoon and El Niño events during the last glaciation as recorded in core MD98-2182 from the western equatorial Pacific Ocean[J]. Science China Earth Sciences, 2012, 55(10): 1706-1715. |
[1] | YANG Xiao-Beng CHEN Li-Chun LI An DU Long DENG Qi-Dong. The uplifting of Artux anticline by stages in the Late Quaternary, Southwest Tianshan [J]. Earth Science Frontiers, 2009, 16(3): 160-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||