Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 31-51.DOI: 10.13745/j.esf.sf.2024.7.9
Previous Articles Next Articles
KANG Fengxin1,2(), ZHANG Baojian3,*(
), CUI Yang4, YAO Song4, SHI Meng5, QIN Peng6, SUI Haibo4, ZHENG Tingting1,2, LI Jialong1,2, YANG Haitao1,2, LI Chuanlei4, LIU Chunwei4
Received:
2024-02-25
Revised:
2024-08-16
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China[J]. Earth Science Frontiers, 2024, 31(6): 31-51.
Fig.1 The diagram shows the geodynamic processes underlying the destruction of the NCC, the thinning of the crust and lithosphere,and the distribution of the three high-temperature geothermal reservoirs in the study area. Modified after [37⇓-39].
[1] | BERGFELD D, LOWENSTERN J, HUNTA, et al. Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming[R]. U.S. Geological Survey: Reston, 2011. |
[2] | LOWENSTERN J B, BERGFELD D, EVANS W C, et al. Generation and evolution of hydrothermal fluids at Yellowstone: insights from the Heart Lake Geyser Basin[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1): Q01017. |
[3] | FOURNIER R O. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system[J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 13-53. |
[4] | CHRISTIANSEN R L, FOULGER G R, EVANS J R. Upper-mantle origin of the Yellowstone hotspot[J]. Geological Society of America Bulletin, 2002, 114(10): 1245-1256. |
[5] | EVANS W C, BERGFELD D, VAN SOEST M C, et al. Geochemistry of low-temperature springs northwest of Yellowstone caldera: seeking the link between seismicity, deformation, and fluidflow[J]. Journal of Volcanology and Geothermal Research, 2006, 154(3/4): 169-180. |
[6] | BALL JW, NORDSTROM D, CUNNINGHAM K M, et al. Water-chemistry and on-site sulfur-speciation data for selected springs in Yellowstone National Park, Wyoming, 1994-1995[R]. U.S. Geological Survey: Reston, 1998. |
[7] | ALAM M T, DHALI F, AMIN A. Present scenario of worldwide geothermal power generation[J]. Journal of Electrical and Power System Engineering, 2020, 6(3): 21-30. |
[8] | MOORE J N, SIMMONS S F. More power from below[J]. Science, 2013, 340(6135): 933-934. |
[9] | LIMBERGER J, BOXEM T, PLUYMAEKERS M, et al. Geothermal energy in deep aquifers: a global assessment of the resource base for direct heat utilization[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 961-975. |
[10] | AXELSSON G. The physics of geothermal energy[M]//Comprehensive Renewable Energy. Amsterdam: Elsevier, 2012: 3-50. |
[11] | AXELSSON G, ARNALDSSON A, BERTHET J C C. 2015. Renewability assessment of the Reykjanes geothermal system, SW-Iceland[C]// Proceedings World Geothermal Congress 2015, Melbourne, Australia, 2015: 19-25. |
[12] | KAMILA Z, KAYA E, ZARROUK S J. Reinjection in geothermal fields: an updated worldwide review 2020[J]. Geothermics, 2021, 89: 101970. |
[13] | ALLIS R, MOORE J N, BLACKETT B, et al. The potential for basin-centered geothermal resources in the Great Basin[J]. Transactions - Geothermal Resources Council, 2011, 35: 683-688. |
[14] | ALLIS R, BLACKETT R, GWYNN M, et al. Stratigraphic reservoirs in the Great Basin: the bridge to development of enhanced geothermal systems in the U.S. transactions[J]. Geothermal Resources Council, 2012, 36: 351-357. |
[15] | ALLIS R, LARSEN G. Performance of air-cooled binary plants: an analysis using the Pacificorp Blundell unit near Milford, Utah[M]. Washington, D. C.: United States Department of Energy, 2013. |
[16] | DEO M, ROEHNER R, ALLIS R, et al. Modeling of geothermal energy production from stratigraphic reservoirs in the Great Basin[J]. Geothermics, 2014, 51: 38-45. |
[17] | OH H, AKAR S, BECKERS K, et al. Techno-economic feasibility of geothermal energy production using inactive oil and gas wells for district heating and cooling systems in Tuttle, Oklahoma[J]. Energy Conversion and Management, 2024, 308: 118390. |
[18] | CASTILLO C, KERVÉVAN C, THIÉRY D. Geochemical and reactive transport modeling of the injection of cooled Triassic brines into the Dogger aquifer (Paris basin, France)[J]. Geothermics, 2015, 53: 446-463. |
[19] | HJULER M L, OLIVARIUS M, BOLDREEL L O, et al. Multidisciplinary approach to assess geothermal potential, Tønder area, North German Basin[J]. Geothermics, 2019, 78: 211-223. |
[20] | 郑克棪, 潘小平. 中国地热发电开发现状与前景[J]. 中外能源, 2009, 14(2): 45-48. |
[21] | 多吉. 典型高温地热系统: 羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. |
[22] | 孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学(北京), 2015. |
[23] | 周总瑛, 罗璐, 靳迪. 藏南高温地热水锂资源及其提取利用技术经济性探讨[J]. 矿产综合利用, 2024, 45(1): 85-91. |
[24] | 张森琦, 吴海东, 张杨, 等. 青海省贵德县热水泉干热岩体地质—地热地质特征[J]. 地质学报, 2020, 94(5): 1591-1605. |
[25] | 张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087-1102. |
[26] | LIN W J, WANG G L, ZHANG S S, et al. Heat aggregation mechanisms of hot dryrocks resources in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 2021, 95(6): 1793-1804. |
[27] |
张保建, 雷玉德, 赵振, 等. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401.
DOI |
[28] | 上官志冠. 腾冲热海地热田热储结构与岩浆热源的温度[J]. 岩石学报, 2000, 16(1): 83-90. |
[29] | GUO Q H, LIU M L, LI J X, et al. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): formed via magmatic fluid absorption or geothermal steam heating?[J]. Bulletin of Volcanology, 2014, 76(10): 868. |
[30] | 张保建, 李燕燕, 高俊, 等. 河北省马头营干热岩的成因机制及其示范意义[J]. 地质学报, 2020, 94(7): 2036-2051. |
[31] | 王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21. |
[32] | 鲁辉. 苏北盆地东台坳陷碳酸盐岩热储层特征研究与评价[J]. 中国煤炭地质, 2022, 34(4): 32-38. |
[33] | 康凤新, 赵季初, 黄迅, 等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学, 2023, 48(3): 1080-1092. |
[34] | 谭志容, 康凤新. 山东省临清坳陷区岩溶热储地热能潜力分析[J]. 中国地质调查, 2018, 5(1):10-15 |
[35] | ZHAO J C, KANG F X, TAN Z R. Power generation capacity of karst geothermal reservoirs in meso-cenozoic depression basins: a case study of East Linqing depression in North China[J]. Acta Geologica Sinica (English Edition), 2019, 93 (supp.2): 382-383. |
[36] | 赵季初, 康凤新. 山东孤岛潜山凸起区裂隙岩溶热储资源综合评价与发电潜力研究[J]. 中国地质调查, 2019, 6(1): 10-16. |
[37] | 徐小兵, 赵亮, 王坤, 等. 华北克拉通地区有限频体波层析成像: 克拉通破坏的空间非均匀性[J]. 中国科学: 地球科学, 2018, 48(9): 1223-1247. |
[38] | ZHU R X, CHEN L, WU F Y, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 2011, 54(6): 789-797. |
[39] | KUSKY T M, WINDLEY B F, WANG L, et al. Flat slab subduction, trench suction, and craton destruction: comparison of the North China, Wyoming, and Brazilian cratons[J]. Tectonophysics, 630: 208-221. |
[40] | 王惠卿, 谭成轩, 丰成君, 等. 京津冀协同发展区活动构造与地壳稳定性[J]. 地质通报, 2022, 41(8): 1322-1341. |
[41] | 张岳桥, 施炜, 董树文. 华北新构造: 印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用[J]. 地质学报, 2019, 93(5): 971-1001. |
[42] | 江娃利, 张英礼. 河北磁县北西西向南山村—岔口活动断裂带活动特征与1830年磁县地震[J]. 地震地质, 1996, 18(4): 349-357. |
[43] | 江娃利, 张英礼. 华北平原周边北西向强震地表地震断层及全新世断裂活动特征[J]. 中国地震, 1997, 13(3): 263-270. |
[44] | 李西双, 刘保华, 华清峰, 等. 张家口-蓬莱断裂带渤海段晚第四纪活动特征[J]. 海洋科学进展, 2009, 27(3): 332-341. |
[45] | 李西双, 裴彦良, 刘保华, 等. 1969年渤海MS7.4地震发震断层的声学探测[J]. 地球物理学报, 2009, 52(9): 2291-2301. |
[46] | 陈国光, 徐杰, 马宗晋, 等. 渤海盆地现代构造应力场与强震活动[J]. 地震学报, 2004, 26(4): 396-403, 456. |
[47] | 窦立婷, 姚华建, 房立华, 等. 山西断陷带地区高分辨率地壳速度结构及其构造演化意义[J]. 中国科学: 地球科学, 2021, 51(5): 709-724. |
[48] | 陈美君. 基于沉积记录的大同盆地火山活动历史与古环境研究[D]. 上海: 上海师范大学, 2017. |
[49] |
胡小猛, 周天航, 蔡顺, 等. 大同火山活动在区域沉积中的记录和阶段性历史研究[J]. 地理学报, 2017, 72(9): 1669-1679.
DOI |
[50] | 王平, 师鹏峰. 大同地区干热岩勘查高温高压自喷井综合治理工艺[J]. 钻探工程, 2021, 48(增刊1): 258-263. |
[51] | 周文龙. 大同盆地东北部地热区电性结构探测研究[D]. 武汉: 中国地质大学(武汉), 2021. |
[52] | WANG J Y, HU S B, PANG Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 2012, 30(32): 25-31. |
[53] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[54] | XU Y G, LI H Y, HONG L B, et al. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia[J]. Science China Earth Sciences, 2018, 61(7): 869-886. |
[55] | 朱守彪, 石耀霖. 中国大陆及邻区构造应力场成因的研究[J]. 中国科学 D辑: 地球科学, 2006, 36(12): 1077-1083. |
[56] | 牛之俊, 王敏, 孙汉荣, 等. 中国大陆现今地壳运动速度场的最新观测结果[J]. 科学通报, 2005, 50(8): 839-840. |
[57] | 岑敏. 鄂尔多斯东北缘大同盆地新生代构造演化[D]. 合肥: 合肥工业大学, 2015. |
[58] | 吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174. |
[59] | 王涛, 郑亚东, 张进江, 等. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J]. 地质通报, 2007, 26(9): 1154-1166. |
[60] | 朱日祥. “华北克拉通破坏” 重大研究计划结题综述[J]. 中国科学基金, 2018, 32(3): 282-290. |
[61] | 邓晋福, 魏文博, 邱瑞照. 中国华北地区岩石圈三维结构及演化[M]. 北京: 地质出版社, 2007. |
[62] | 王贵玲, 张薇, 蔺文静, 等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 2017, 44(6): 1074-1085. |
[63] | 李凤英. 接收函数方法研究大同火山地壳精细结构[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
[64] | 左银辉, 邱楠生, 常健, 等. 渤海湾盆地中、新生代岩石圈热结构研究[J]. 地质学报, 2013, 87(2): 145-153. |
[65] |
熊盛青, 杨海, 丁燕云, 等. 中国陆域居里等温面深度特征[J]. 地球物理学报, 2016, 59(10): 3604-3617.
DOI |
[66] | 张安琪, 郭震, 徐义贤, 等. 岩石圈和上地幔的热: 化学结构概率反演: 以LitMod1D为例[J]. 地质论评, 2018, 64(4): 993-1004. |
[67] | 朱光, 刘程, 顾承串, 等. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J]. 中国科学: 地球科学, 2018, 48(4): 415-435. |
[68] | 方颖, 江在森, 张晶, 等. 张家口-渤海断裂带现今运动状态分析[J]. 大地测量与地球动力学, 2008, 28(1): 11-15. |
[69] | XU J, HAN Z J, WANG C H, et al. Preliminary study on two newly-generated seismotectonic zones in north and southwest China[J]. Earthquake Reserch in China, 1996, 10(4): 393-401. |
[70] | 江娃利, 龚复华. 鄂尔多斯地块周边断陷系6-6 3/4级地震时空分布特征及与活动构造的关系[J]. 地壳构造与地壳应力文集, 2003(1): 13-22. |
[71] | 夏庆龙, 田立新, 周心怀, 等. 渤海海域构造形成演化与变形机制[M]. 北京: 石油工业出版社, 2012. |
[72] | 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988. |
[73] | LI S L, GUO Z, CHEN Y J, et al. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6940-6957. |
[74] | 马金龙, 徐义刚. 河北阳原和山西大同新生代玄武岩的岩石地球化学特征: 华北克拉通西部深部地质过程初探[J]. 地球化学, 2004, 33(1): 75-88. |
[75] |
KAWAKATSU H, KUMAR P, TAKEI Y, et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates[J]. Science, 2009, 324(5926): 499-502.
DOI PMID |
[76] | EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates[J]. Nature, 2005, 437(7056): 249-252. |
[77] | NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495(7441): 356-359. |
[78] | 黄翔, 丁志峰, 宁杰远, 等. 基于背景噪声和地震面波联合反演华北克拉通中部岩石圈结构[J]. 地震学报, 2022, 44(4): 539-554. |
[79] |
杨歧焱, 吴庆举, 盛艳蕊, 等. 张渤地震带及邻区近震体波成像及孕震环境分析[J]. 地球物理学报, 2018, 61(8): 3251-3262.
DOI |
[80] |
吴萍萍, 丁志峰, 谭捍东, 等. 基于vP/vS波速比模型约束的张渤地震带深部电性结构研究[J]. 地球物理学报, 2021, 64(8): 2716-2732.
DOI |
[81] | 孙嘉祥, 李霓, 张雯倩. 大同第四纪玄武岩成因: 主微量元素及Sr-Nd-Pb-Hf同位素研究[J]. 岩石学报, 2020, 36(11): 3331-3345. |
[82] | 张炜斌. 京西北盆岭构造区温泉流体地球化学[D]. 北京: 中国地震局地震预测研究所, 2013. |
[83] | 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J]. 地球科学:中国地质大学学报, 2002, 27(6): 659-665. |
[84] | 陆克政, 漆家福, 戴俊生. 渤海湾新生代含油气盆地构造模式[M]. 北京: 地质出版社, 1997. |
[85] | 戴金星. 中国含油气盆地的无机成因气及其气藏[J]. 天然气工业, 1995, (3): 22-27, 106. |
[86] | 金之钧, 胡文瑄, 张刘平, 等. 深部流体活动及油气成藏效应[M]. 北京: 科学出版社, 2007. |
[87] | 赵利, 李理. 渤海湾盆地晚中生代以来伸展模式及动力学机制[J]. 中国地质, 2016, 43(2): 470-485. |
[88] | XU C F. Lithospheric structure, basin structure and hydrocarbon migration in Chinese mainland[J]. Earth Science Frontiers, 2003, 10(3): 115-127. |
[89] | 杨文采. 全球流体通道网[J]. 地球物理学报, 1998, 41(5): 621-633. |
[90] | 杜乐天. 地壳流体与地幔流体间的关系[J]. 地学前缘, 1996, 3(4): 172-180. |
[91] | 徐锡伟, 白鸾曦, 魏雷鸣, 等. 华北克拉通破坏区最新构造运动起始时间讨论[J]. 地球科学, 2019, 44(5): 1647-1660. |
[92] | 杨巍然, 曾佐勋, 李德威, 等. 板内地震过程的三层次构造模式[J]. 地学前缘, 2009, 16(1): 206-217. |
[93] | QI J F, YANG Q. Cenozoic structural deformation and dynamic processes of the Bohai Bay Basin Province, China[J]. Marine and Petroleum Geology, 2010, 27(4): 757-771. |
[94] | 陶明信, 徐永昌, 史宝光, 等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学D辑:地球科学, 2005(5): 441-451. |
[95] | 熊亮萍, 高维安. 隆起与拗陷地区地温场的特点[J]. 地球物理学报, 1982, 25(5): 448-456. |
[96] | 赵贤正, 金凤鸣, 王权, 等. 中国东部超深超高温碳酸盐岩潜山油气藏的发现及关键技术: 以渤海湾盆地冀中坳陷牛东1潜山油气藏为例[J]. 海相油气地质, 2011, 16(4): 1-10. |
[97] |
张英, 冯建赟, 罗军, 等. 渤海湾盆地中南部干热岩选区方向[J]. 地学前缘, 2020, 27(1): 35-47.
DOI |
[98] | 魏刚, 薛永安, 柴永波, 等. 秦南凹陷油气勘探思路创新与突破[J]. 中国海上油气, 2012, 24(3): 7-11. |
[99] | 牛耀龄. 玄武岩浆起源和演化的一些基本概念以及对中国东部中—新生代基性火山岩成因的新思路[J]. 高校地质学报, 2005, 11(1): 9-46. |
[100] | 陈俊侠. 济阳坳陷桩西潜山构造演化及其对储层的影响[D]. 焦作: 河南理工大学, 2011. |
[1] | ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project [J]. Earth Science Frontiers, 2021, 28(5): 230-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||