Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4): 26-36.DOI: 10.13745/j.esf.sf.2024.5.3
Previous Articles Next Articles
WANG Chengbin1,3(), WANG Mingguo1,2, WANG Bo1, CHEN Jianguo1,3, MA Xiaogang4, JIANG Shu3
Received:
2023-09-01
Revised:
2024-02-29
Online:
2024-07-25
Published:
2024-07-10
CLC Number:
WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting[J]. Earth Science Frontiers, 2024, 31(4): 26-36.
[1] | 陈建平, 李靖, 谢帅, 等. 中国地质大数据研究现状[J]. 地质学刊, 2017, 41(3): 353-366. |
[2] | 周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2): 327-331, 344. |
[3] | 周永章, 陈川, 张旗, 等. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 2020, 44(2): 173-182. |
[4] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
[5] | 翟明国, 杨树锋, 陈宁华, 等. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 2018, 33(8): 825-831. |
[6] | QIU Q J, MA K, LV H R, et al. Construction and application of a knowledge graph for iron deposits using text mining analytics and a deep learning algorithm[J]. Mathematical Geosciences, 2023, 55(3): 423-456. |
[7] | QIU Q J, XIE Z, MA K, et al. BERTCWS: unsupervised multi-granular Chinese word segmentation based on a BERT method for the geoscience domain[J]. Annals of GIS, 2023, 29(3): 387-399. |
[8] | WANG C B, LI Y J, CHEN J G. Text mining and knowledge graph construction from geoscience literature legacy: a review[R]// MA X, MOOKERJEE M, HSU L, et al. Recent advancement in geoinformatics and data science. Boulder, Colorado: Geological Society of America, 2023: 11-28. |
[9] | WANG C B, MA X G, CHEN J G, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers and Geosciences, 2018, 112: 112-120. |
[10] | WANG C B, LI Y J, CHEN J G, et al. Named entity annotation schema for geological literature mining in the domain of porphyry copper deposits[J]. Ore Geology Reviews, 2023, 152: 105243. |
[11] | HART P E, DUDA R O, EINAUDI M T. Prospector: a computer-based consultation system for mineral exploration[J]. Journal of the International Association for Mathematical Geology, 1978, 10(5): 589-610. |
[12] | 张东晓. 科学机器学习中的知识嵌入与知识发现[R/OL]. (2023-01-28)[2024-01-15]. https://www.jiqizhixin.com/articles/2023-01-28-2. |
[13] | 吴飞. 数据驱动与知识引导相互结合的智能计算[J]. 智能系统学报, 2022, 17(1): 217-219. |
[14] | SINGHAL A. Official Google Blog: introducing the knowledge graph: things, not strings[R/OL]. (2015-01-02)[2023-12-04]. https://www.mendeley.com/catalogue/ca10852b-1f48-3172-9b4f-8b521878b39d/. |
[15] | BRODARIC B, GAHEGAN M. Representing geoscientific knowledge in cyberinfrastructure: some challenges, approaches, and implementations[M]//Geoinformatics: data to knowledge. Boulder, Colorado: Geological Society of America, 2006. |
[16] | BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323. |
[17] | 周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学: 地球科学, 2021, 51(7): 1070-1079. |
[18] | GIL Y, PIERCE S A, BABAIE H, et al. Intelligent systems for geosciences[J]. Communications of the ACM, 2018, 62(1): 76-84. |
[19] | NORMILE D. Earth scientists plan a ‘geological Google’[J]. Science, 2019, 363(6430): 917. |
[20] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[21] | PETERS S E, ZHANG C, LIVNY M, et al. A machine reading system for assembling synthetic paleontological databases[J]. PLoS One, 2014, 9(12): e113523. |
[22] | HUSSON J M, PETERS S E, ROSS I, et al. Macrostrat and GeoDeepDive: a platform for geological data integration and deep-time research[C/OL]// Proceedings of the AGU fall meeting 2016 abstracts. San Francisco: American Geophysical Union, 2016[2023-09-01]. https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/187029. |
[23] | ZHANG C. DeepDive: a data management system for automatic knowledge base construction[D]. Madison, WI: The University of Wisconsin-Madison, 2015. |
[24] | KOSKELA R, RAMAMURTHY M, PEARLMAN J, et al. Earthcube: a community-driven cyberinfrastructure for the geosciences[C/OL]// Proceedings of 19th EGU general assembly conference abstracts. Vienna, Austria: European Geosciences Union, 2017: 5884[2023-06-15]. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-5884-1.pdf. |
[25] | 成秋明. 深时数字地球: 全球古地理重建与深时大数据[J]. 国际学术动态, 2019(6): 28-29. |
[26] | WANG C S, HAZEN R M, CHENG Q M, et al. The Deep-Time Digital Earth program: data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): nwab027. |
[27] | STEPHENSON M H, CHENG Q M, WANG C S, et al. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme[J]. Episodes, 2020, 43(4): 1057-1062. |
[28] | MA X G, MA C, WANG C B. A new structure for representing and tracking version information in a deep time knowledge graph[J]. Computers and Geosciences, 2020, 145: 104620. |
[29] | RASKIN R G, PAN M J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Computers and Geosciences, 2005, 31(9): 1119-1125. |
[30] | COX S J D, RICHARD S M. A geologic timescale ontology and service[J]. Earth Science Informatics, 2015, 8(1): 5-19. |
[31] | WANG C B, MA X G, CHEN J G. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information[J]. Computers and Geosciences, 2018, 115: 12-19. |
[32] | MENTES H. Design and development of a mineral exploration ontology[D]. Atlanta, GA: Georgia State University, 2012. |
[33] | WANG C B, TAN L Q, LI Y J, et al. Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits[J]. Earth Science Informatics, 2024: 1-12. https://doi.org/10.1007/s12145-024-01307-5. |
[34] | 李国和, 杨新颖, 叶婷, 等. 海相油气地质的概念本体知识系统设计与实现[J]. 计算机应用, 2010, 30(2): 532-536. |
[35] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
DOI |
[36] | BABAIE H A, OLDOW J S, BABAEI A, et al. Designing a modular architecture for the structural geology ontology[M]//Geoinformatics: data to knowledge. Boulder, Colorado: Geological Society of America, 2006. 2006. |
[37] | ZHONG J, AYDINA A, MCGUINNESS D L. Ontology of fractures[J]. Journal of Structural Geology, 2009, 31(3): 251-259. |
[38] | MANTOVANI A, PIANA F, LOMBARDO V. Ontology-driven representation of knowledge for geological maps[J]. Computers and Geosciences, 2020, 139: 104446. |
[39] | LIU G, WANG Y N, WU C L. Research and application of geological hazard domain ontology[C/OL]// 2010 18th international conference on geoinformatics. Beijing: IEEE, 2010: 1-6[2011-06-16]. https://www.doi.org/10.1109/GEOINFORMATICS.2010.5567498. |
[40] | RUEDA C, BERMUDEZ L, FREDERICKS J. The MMI ontology registry and repository: a portal for marine metadata interoperability[C/OL]// Oceans 2009. Biloxi: IEEE, 2009: 1-6[2010-09-01]. https://www.doi.org/10.23919/OCEANS.2009.5422206. |
[41] | 黄刚. 知识图谱构建方法及其在油气勘探开发领域应用研究[D]. 大庆: 东北石油大学, 2019. |
[42] | QIU Q J, XIE Z, WU L, et al. BiLSTM-CRF for geological named entity recognition from the geoscience literature[J]. Earth Science Informatics, 2019, 12(4): 565-579. |
[43] | QIU Q J, XIE Z, WU L, et al. GNER: a generative model for geological named entity recognition without labeled data using deep learning[J]. Earth and Space Science, 2019, 6(6): 931-946. |
[44] | QIU Q J, XIE Z, WU L. A cyclic self-learning Chinese word segmentation for the geoscience domain[J]. Geomatica, 2018, 72(1): 16-26. |
[45] | HUANG L, DU Y F, CHEN G Y. GeoSegmenter: a statistically learned Chinese word segmenter for the geoscience domain[J]. Computers and Geosciences, 2015, 76: 11-17. |
[46] | LI S, CHEN J P, XIANG J. Prospecting information extraction by text mining based on convolutional neural networks: a case study of the lala copper deposit, China[J]. IEEE Access, 2018, 6: 52286-52297. |
[47] | ZHU Y Q, ZHOU W W, XU Y, et al. Intelligent learning for knowledge graph towards geological data[J]. Scientific Programming, 2017, 2017: 5072427. |
[48] | 王永志, 金樑, 朱月琴, 等. 基于大数据技术的地学文档关键词提取算法研发[J]. 地球物理学进展, 2018, 33(3): 1274-1281. |
[49] | QIU Q J, XIE Z, WU L, et al. Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques[J]. Earth Science Informatics, 2020, 13(4): 1393-1410. |
[50] | ZHOU X G, GONG R B, SHI F G, et al. PetroKG: construction and application of knowledge graph in upstream area of PetroChina[J]. Journal of Computer Science and Technology, 2020, 35(2): 368-378. |
[51] | HOLDEN E J, LIU W, HORROCKS T, et al. GeoDocA-Fast analysis of geological content in mineral exploration reports: a text mining approach[J]. Ore Geology Reviews, 2019, 111: 102919. |
[52] | PETERS S E, HUSSON J M, WILCOTS J. The rise and fall of stromatolites in shallow marine environments[J]. Geology, 2017, 45(6): 487-490. |
[53] | MOORE E K, HAO J H, PRABHU A, et al. Geological and chemical factors that impacted the biological utilization of cobalt in the Archean eon[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(3): 743-759. |
[54] | 赵鹏大. “三联式” 资源定量预测与评价: 数字找矿理论与实践探讨[J]. 地球科学, 2002, 27(5): 482-489. |
[55] | 赵鹏大. 关于数字地质[C]// 中国地质学会. 第十届全国数学地质与地学信息学术研讨会论文集. 武汉: 中国地质大学出版社, 2011. |
[56] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573. |
[57] |
左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘, 2021, 28(3): 49-55.
DOI |
[58] | 左仁广, 彭勇, 李童, 等. 基于深度学习的地质找矿大数据挖掘与集成的挑战[J]. 地球科学, 2021(1): 350-358. |
[59] | 赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7): 1255-1259. |
[60] | 张金川, 陈世敬, 李中明, 等. 页岩气资源智能评价[J]. 油气藏评价与开发, 2021, 11(4): 476-486. |
[61] | 肖克炎, 孙莉, 李楠, 等. 大数据思维下的矿产资源评价[J]. 地质通报, 2015, 34(7): 1266-1272. |
[62] | WÓJCIK S, OSMAN T, ZAWADA P. Semanticapproach for prospectivity analysis of mineral deposits[C]// Proceedings of the 2nd international conference on geographical information systems theory, applications and management. Rome, Italy: Science and Technology Press, 2016: 180-189. |
[63] | MCGREGOR J, SMYTH C, POOLE D. Ontology-based reasoning applications for mineral exploration and hazard mapping[C/OL]// Proceedings of 21th EGU general assembly conference abstracts, Vienna, Austria: European Geosciences Union, 2019: 11552[2020-02-16]. https://ui.adsabs.harvard.edu/abs/2019EGUGA..2111552M/abstract. |
[64] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI |
[65] | 杨明莉, 薛林福, 冉祥金, 等. 智能矿产地质调查方法: 以甘肃大桥-崖湾地区为例[J]. 岩石学报, 2021, 37(12): 3880-3892. |
[66] | LI S, CHEN J P, LIU C. Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data[J]. Minerals, 2022, 12(5): 616. |
[67] | LI S, LIU C, CHEN J. Mineral prospecting prediction via transfer learning based on geological big data: a case study of Huayuan, Hunan, China[J]. Minerals, 2023, 13(4): 504. |
[68] | 吴永亮, 贾志杰, 陈建平, 等. 基于大数据智能的找矿模型构建与预测[J]. 中国矿业, 2017, 26(9): 79-84. |
[69] | LAWLEY C J M, GADD M G, PARSA M, et al. Applications of natural language processing to geoscience text data and prospectivity modeling[J]. Natural Resources Research, 2023, 32(4): 1503-1527. |
[70] | 罗转霞. 云南省锡矿领域语义关系抽取及知识图谱构建[D]. 武汉: 中国地质大学(武汉), 2023. |
[1] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
[2] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[3] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[4] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[5] | JI Xiaohui, DONG Yuhang, YANG Zhongji, YANG Mei, HE Mingyue, WANG Yuzhu. Mineral question-answering system in Chinese based on multi-hop reasoning in knowledge graphs [J]. Earth Science Frontiers, 2024, 31(4): 37-46. |
[6] | YE Yuxin, LIU Jiawen, ZENG Wanxin, YE Shuisheng. Ontology-guided knowledge graph construction for mineral prediction [J]. Earth Science Frontiers, 2024, 31(4): 16-25. |
[7] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[8] | ZHOU Yongzhang, ZHANG Qianlong, HUANG Yongjian, YANG Wei, XIAO Fan, JI Junjie, HAN Feng, TANG Lei, OUYANG Chong, SHEN Wenjie. Constructing knowledge graph for the porphyry copper deposit in the Qingzhou-Hangzhou Bay area: Insight into knowledge graph based mineral resource prediction and evaluation [J]. Earth Science Frontiers, 2021, 28(3): 67-75. |
[9] | LIU Xinyi,ZHOU Yongzhang. Application of association rule algorithm in studying abnormal elemental associations in the Pangxidong area in western Guangdong Province, China [J]. Earth Science Frontiers, 2019, 26(4): 125-130. |
[10] | ZHAO Pengda. Characteristics and rational utilization of geological big data [J]. Earth Science Frontiers, 2019, 26(4): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||