Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 435-446.DOI: 10.13745/j.esf.sf.2023.2.50
Previous Articles Next Articles
WANG Pengshou1,2(), XU Min1,2,3,*(
), HAN Haidong2,3, LI Zhenzhong1,2, SONG Xuanyu1,2, ZHOU Weiyong2,4
Received:
2022-11-17
Revised:
2023-02-20
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan[J]. Earth Science Frontiers, 2024, 31(2): 435-446.
月份 | 降水梯度/(mm·hm-1) |
---|---|
1 | 0.29 |
2 | 0.35 |
3 | 0.75 |
4 | 0.75 |
5 | 2.33 |
6 | 4.59 |
7 | 4.81 |
8 | 4.35 |
9 | 0.37 |
10 | 0.77 |
11 | 0.20 |
12 | 0.42 |
Table 1 Monthly precipitation gradient in Aksu River Basin
月份 | 降水梯度/(mm·hm-1) |
---|---|
1 | 0.29 |
2 | 0.35 |
3 | 0.75 |
4 | 0.75 |
5 | 2.33 |
6 | 4.59 |
7 | 4.81 |
8 | 4.35 |
9 | 0.37 |
10 | 0.77 |
11 | 0.20 |
12 | 0.42 |
月份 | 气温递减率/(℃·hm-1) |
---|---|
1 | 0.29 |
2 | 0.30 |
3 | 0.48 |
4 | 0.58 |
6 | 0.63 |
7 | 0.59 |
8 | 0.56 |
9 | 0.53 |
10 | 0.47 |
11 | 0.43 |
12 | 0.31 |
Table 2 Monthly temperature lapse rate in Aksu River Basin
月份 | 气温递减率/(℃·hm-1) |
---|---|
1 | 0.29 |
2 | 0.30 |
3 | 0.48 |
4 | 0.58 |
6 | 0.63 |
7 | 0.59 |
8 | 0.56 |
9 | 0.53 |
10 | 0.47 |
11 | 0.43 |
12 | 0.31 |
模型参数 | 参数值 |
---|---|
冰度日因子/(mm·d-1·℃-1) | 2.5 |
雪度日因子/(mm·d-1·℃-1) | 1.4 |
液态降水临界气温/℃ | 2 |
固态降水临界气温/℃ | -0.5 |
液态校正系数 | 1.1 |
固态校正系数 | 1.3 |
融水渗浸冻结率 | 0.1 |
高程分带间隔/m | 100 |
Table 3 Model parameters
模型参数 | 参数值 |
---|---|
冰度日因子/(mm·d-1·℃-1) | 2.5 |
雪度日因子/(mm·d-1·℃-1) | 1.4 |
液态降水临界气温/℃ | 2 |
固态降水临界气温/℃ | -0.5 |
液态校正系数 | 1.1 |
固态校正系数 | 1.3 |
融水渗浸冻结率 | 0.1 |
高程分带间隔/m | 100 |
Fig.5 Variation of annual positive accumulated temperature, days of positive accumulated temperature, precipitation and snowfall/precipitation in the glacier
时段及对比项 | 降水/mm | 温度/℃ | 物质平衡/mm | 融水径流深/mm | 融水总径流量/(108 m3) |
---|---|---|---|---|---|
1957—1990 | 858.0 | -8.6 | -83.2 | 1 198.8 | 49.99 |
1991—2017 | 937.1 | -7.8 | -108.9 | 1 323.3 | 57.04 |
变化量 | 79.1 | 0.8 | 25.7 | 124.5 | 7.05 |
变化率/% | 9.2 | 10.3 | 14.1 |
Table 4 Comparison of mean annual precipitation, temperature, glacier mass balance and meltwater runoff changes before and after climate transition in Aksu River Basin
时段及对比项 | 降水/mm | 温度/℃ | 物质平衡/mm | 融水径流深/mm | 融水总径流量/(108 m3) |
---|---|---|---|---|---|
1957—1990 | 858.0 | -8.6 | -83.2 | 1 198.8 | 49.99 |
1991—2017 | 937.1 | -7.8 | -108.9 | 1 323.3 | 57.04 |
变化量 | 79.1 | 0.8 | 25.7 | 124.5 | 7.05 |
变化率/% | 9.2 | 10.3 | 14.1 |
[1] | YAO T D, WU G J, XU B Q, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 2019, 34(11): 1203-1209. |
[2] | 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8. |
[3] | 丁永建, 叶佰生, 刘时银. 祁连山中部地区40 a来气候变化及其对径流的影响[J]. 冰川冻土, 2000, 22(3): 193-199. |
[4] | IPCC. Climate Change 2007:The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2007. 356-360. |
[5] | JANSSON P, HOCK R, SCHNEIDER T. The concept of glacier storage: a review[J]. Journal of Hydrology, 2003, 282(1/2/3/4): 116-129. |
[6] | YAO T D, WANG Y Q, LIU S Y, et al. Recent glacial retreat in high Asia in China and its impact on water resource in Northwest China[J]. Science in China Series D: Earth Sciences, 2004, 47(12): 1065-1075. |
[7] | 高惠芸, 杨青, 梁岩鸿. 新疆阿克苏河流域降水的时空分布[J]. 干旱区研究, 2008, 25(1): 70-74. |
[8] | 王宁练, 张祥松. 近百年来山地冰川波动与气候变化[J]. 冰川冻土, 1992, 14(3): 242-250. |
[9] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、 影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226. |
[10] | 姚旭阳, 张明军, 张宇, 等. 中国西北地区气候转型的新认识[J]. 干旱区地理, 2022, 45(3): 671-683. |
[11] | GLIMS. Global Land Ice Measurements from Space (GLIMS): using the world’s glaciers to monitor climate change[R]. Flagstaff: US Geological Survey, 2000. http://www.flog.wr.usgs.gov/GLIMS/glimshome.html. |
[12] | ZHAO Q D, ZHANG S Q, DING Y J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma like river catchment, Central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16(6): 2383-2402. |
[13] | SORG A, BOLCH T, STOFFEL M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731. |
[14] | DUETHMANN D, MENZ C, JIANG T, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024. |
[15] | WANG G Q, ZHANG J Y, LIU J F, et al. Quantitative assessment for climate change and human activities impact on river runoff[J]. China Water Resources, 2008, 2: 55-58. |
[16] | DING C F, ZHANG H F, GAO Y Q, et al. Quantitative analysis of hydrological response to forest change in the middle of the Tianshan Mountains: a case study of the Urumqi River basin[J]. Journal of Natural Resources, 2016, 31(12): 2034-2046. |
[17] | 沈永平, 刘时银, 丁永建, 等. 天山南坡台兰河流域冰川物质平衡变化及其对径流的影响[J]. 冰川冻土, 2003, 25(2): 124-129. |
[18] | 沈永平, 刘时银, 甄丽丽, 等. 祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响[J]. 冰川冻土, 2001, 23(3): 244-250. |
[19] | 沈永平, 王国亚, 丁永建, 等. 1957—2006年天山萨雷扎兹库玛拉克河流域冰川物质平衡变化及其对河流水资源的影响[J]. 冰川冻土, 2009, 31(5): 792-800. |
[20] | 张勇, 刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, 28(1): 101-107. |
[21] | 刘时银, 丁永建, 张勇, 等. 塔里木河流域冰川变化及其对水资源影响[J]. 地理学报, 2006, 61(5): 482-490. |
[22] | ZHANG S Q, YE B S, LIU S Y, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: model development[J]. Hydrological Processes, 2012, 26(11): 1686-1696. |
[23] | ZHANG S Q, GAO X, YE B S, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part II: application[J]. Hydrological Processes, 2012, 26(11): 1697-1706. |
[24] | 高鑫, 叶柏生, 张世强, 等. 1961—2006年塔里木河流域冰川融水变化及其对径流的影响[J]. 中国科学: 地球科学, 2010, 40(5): 654-665. |
[25] | 高鑫, 张世强, 叶柏生, 等. 1961—2006年叶尔羌河上游流域冰川融水变化及其对径流的影响[J]. 冰川冻土, 2010, 32(3): 445-453. |
[26] | 王利辉, 秦翔, 陈记祖, 等. 1961—2013年祁连山区冰川年物质平衡重建[J]. 干旱区研究, 2021, 38(6): 1524-1533. |
[27] | ZHOU Y C. Hydrology and water resource of Xinjiang river[M]. Ürümqi: Xinjiang Science and Sanitation Press, 1999: 389-400. |
[28] | WU L Z, LI X. The first glacier inventory dataset of China[DB]. Lanzhou: Cold and Arid Regions Scientific Data Center, 2004. DOI: 10.3972/westdc.011.2013.db. |
[29] | HE D M, TANG Q C. International rivers in China[M]. Beijing: Science Press, 2000: 107-119. |
[30] | LONG D J, WEI G H, ZHANG L C. Land scape change and driving force analysis of Aksu River Basin, Xinjiang during 2005-2015[J]. Journal of Zhejiang University of Water Resource and Electric Power, 2018, 30(5): 28-33. |
[31] | ZHOU D C, LUO G P, XU W Q, et al. Dynamics of ecosystem services value in Aksu River watershed in 1960-2008[J]. The Journal of Applied Ecology, 2010, 21(2): 399-408. |
[32] | 张勇, 刘时银, 上官冬辉, 等. 天山南坡科其卡尔巴契冰川度日因子变化特征研究[J]. 冰川冻土, 2005, 27(3): 337-343. |
[33] | 刘时银, 丁永建, 叶佰生, 等. 度日因子用于乌鲁木齐河源1号冰川物质平衡计算的研究[C]// 第五届全国冰川冻土学大会论文集(上册). 兰州: 甘肃文化出版社, 1996: 197-204. |
[34] | 康尔泗, 程国栋, 蓝永超, 等. 西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J]. 中国科学D辑: 地球科学, 1999, 29(增刊1): 47-54. |
[35] | 杨大庆, 姜彤, 张寅生, 等. 天山乌鲁木齐河源降水观测误差分析及其改正[J]. 冰川冻土, 1988, 10(4): 384-399, 464. |
[36] | 朱凯. 新疆阿克苏河流域径流演变规律及预测研究[D]. 杭州: 浙江工业大学, 2012. |
[37] | 张霞. 阿克苏河流域径流变化及其对气候变化的响应研究[D]. 乌鲁木齐: 新疆农业大学, 2010. |
[38] | 王妍. 塔里木河三源流径流及其组分变化研究[D]. 西安: 西安理工大学, 2021. |
[39] | WANG X L, LUO Y, SUN Y, et al. Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100845. |
[1] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[2] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[3] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[4] | HE Chaofei, LUO Chengyan, CHEN Fulong, LONG Aihua, TANG Hao. CMIP6 multi-model prediction of future climate change in the Hotan River Basin [J]. Earth Science Frontiers, 2023, 30(3): 515-528. |
[5] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[6] | HU Zhaobin, WEI Jiangong, XIE Zhiyuan, ZHANG Huodai, ZHONG Guangfa. Research progress in global sea level change: A critical review on international ocean drilling [J]. Earth Science Frontiers, 2022, 29(4): 10-24. |
[7] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[8] | NI Yanhua, LI Minghui, FANG Xiaomin, MENG Fanwei, YAN Maodu, LIU Yingxin. Paleotemperature during the Mid-Pleistocene Transition in western Qaidam Basin: Evidence from fluid inclusions in halite from drill hole SG-1 [J]. Earth Science Frontiers, 2021, 28(6): 115-124. |
[9] | S.K.KRIVONOGOV, T.I.KENSHINBAY, R.Kh.KURMANBAEV, B.S.KARIMOVA. The key question of the Aral Sea evolution important for understanding its economic, social and ecological values [J]. Earth Science Frontiers, 2021, 28(6): 196-204. |
[10] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[11] | GUAN Kaiping,TIAN Li,AN Zhihui,YE Qin,,HU Jun,TONG Jinnan. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation. [J]. Earth Science Frontiers, 2016, 23(6): 236-245. |
[12] | YAN Li-Juan, ZHENG Mian-Beng, WEI Le-Jun. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years. [J]. Earth Science Frontiers, 2016, 23(4): 310-323. |
[13] | TU Chao, YANG Zhong-Fang, HOU Jing-Xie, JIA Hua-Ji, ZONG Sai-Feng, LI Biao. Distribution and influencing factors of paddy soil organic carbon content in Chinas major farming areas. [J]. Earth Science Frontiers, 2011, 18(6): 11-19. |
[14] | DAI Shuang, HUANG Yong-Bei, DIAO Jie, SHU Jiang, LIU Dun-Wei, KONG Li, ZHANG Meng-Shen, HU Hong-Fei. The climate change during 1281111905 Ma recorded by the susceptibility of the sediments of Liupanshan Group. [J]. Earth Science Frontiers, 2010, 17(3): 242-249. |
[15] | CHENG Zun-Lan, TIAN Jin-Chang, ZHANG Zheng-Bei, JIANG Ba. Debris flow induced by glaciallake break in Southeast Tibet. [J]. Earth Science Frontiers, 2009, 16(6): 207-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||