Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 42-53.DOI: 10.13745/j.esf.sf.2023.12.32
Previous Articles Next Articles
LIU Qixin1,2(), GU Xingfa1,2,3, WANG Chunmei1, YANG Jian1, ZHAN Yulin1,*(
)
Received:
2023-12-13
Revised:
2024-01-02
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales[J]. Earth Science Frontiers, 2024, 31(2): 42-53.
站网名称 | 站点数量 | 日平均土壤含水量 观测值总数 |
---|---|---|
ARM | 14 | 25 |
COSMOS | 15 | 28 |
FLUXNET-AMERIFLUX | 5 | 29 |
iRON | 7 | 19 |
PBO_H2O | 104 | 270 |
RISMA | 17 | 54 |
SCAN | 143 | 454 |
SNOTEL | 357 | 1 135 |
SOILSCAPE | 15 | 26 |
USCRN | 83 | 266 |
Table 1 The numbers of monitoring sites and values of daily averaged soil moisture observation in each soil moisture network
站网名称 | 站点数量 | 日平均土壤含水量 观测值总数 |
---|---|---|
ARM | 14 | 25 |
COSMOS | 15 | 28 |
FLUXNET-AMERIFLUX | 5 | 29 |
iRON | 7 | 19 |
PBO_H2O | 104 | 270 |
RISMA | 17 | 54 |
SCAN | 143 | 454 |
SNOTEL | 357 | 1 135 |
SOILSCAPE | 15 | 26 |
USCRN | 83 | 266 |
MODIS LC图层分类方案 | 重分类方案 |
---|---|
Evergreen Needleleaf Forests(常绿针叶林) | 森林 |
Evergreen Broadleaf Forests(常绿阔叶林) | |
Deciduous Needleleaf Forests(落叶针叶林) | |
Deciduous Broadleaf Forests(落叶阔叶林) | |
Mixed Forests(混交林) | |
Closed Shrublands(封闭灌丛) | 灌木 |
Open Shrublands(开放灌丛) | |
Woody Savannas(热带稀树草原) | 草地 |
Savannas(热带草原) | |
Grasslands(草地) | |
Croplands(农田) | 农田 |
Cropland/Natural Vegetation Mosaics (农田/自然植被) | |
Barren(裸土) | 裸土 |
Permanent Wetlands(永久湿地,去除) | 其他(去除) |
Urban and Built-up Lands(城市与建筑物,去除) | |
Water Bodies(水体,去除) | |
Permanent Snow and Ice(永久冰雪,去除) |
Table 2 Comparison between MODIS land cover classification scheme and the reclassification scheme
MODIS LC图层分类方案 | 重分类方案 |
---|---|
Evergreen Needleleaf Forests(常绿针叶林) | 森林 |
Evergreen Broadleaf Forests(常绿阔叶林) | |
Deciduous Needleleaf Forests(落叶针叶林) | |
Deciduous Broadleaf Forests(落叶阔叶林) | |
Mixed Forests(混交林) | |
Closed Shrublands(封闭灌丛) | 灌木 |
Open Shrublands(开放灌丛) | |
Woody Savannas(热带稀树草原) | 草地 |
Savannas(热带草原) | |
Grasslands(草地) | |
Croplands(农田) | 农田 |
Cropland/Natural Vegetation Mosaics (农田/自然植被) | |
Barren(裸土) | 裸土 |
Permanent Wetlands(永久湿地,去除) | 其他(去除) |
Urban and Built-up Lands(城市与建筑物,去除) | |
Water Bodies(水体,去除) | |
Permanent Snow and Ice(永久冰雪,去除) |
数据尺度 | 输入变量 | 输出变量 |
---|---|---|
主动微波尺度 | σVH/VV,θ,NDVI,LST,elevation,slope,DOY | ISMN实测数据 |
被动微波尺度 | TbH/V,Perc_X,NDVI_X,LST,elevation,slope,DOY | ERA5-Land模拟数据 |
Table 3 Input and output parameters initially selected in two different microwave data scale
数据尺度 | 输入变量 | 输出变量 |
---|---|---|
主动微波尺度 | σVH/VV,θ,NDVI,LST,elevation,slope,DOY | ISMN实测数据 |
被动微波尺度 | TbH/V,Perc_X,NDVI_X,LST,elevation,slope,DOY | ERA5-Land模拟数据 |
排序 | 输入变量 |
---|---|
1 | slope |
2 | elevation |
3 | NDVI |
4 | LST |
5 | |
6 | |
7 | DOY |
8 | θ |
Table 4 Ranking of the importance of input parameters in active microwave data scale
排序 | 输入变量 |
---|---|
1 | slope |
2 | elevation |
3 | NDVI |
4 | LST |
5 | |
6 | |
7 | DOY |
8 | θ |
排序 | 输入变量 |
---|---|
1 | elevation |
2 | DOY |
3 | LST |
4 | NDVI_G |
5 | TbH |
6 | TbV |
7 | Perc_F |
8 | slope |
9 | Perc_G |
10 | NDVI_F |
11 | Perc_C |
12 | NDVI_S |
13 | Perc_S |
14 | NDVI_B |
15 | NDVI_C |
16 | Perc_B |
Table 5 Ranking of the importance of input parameters in passive microwave data scale
排序 | 输入变量 |
---|---|
1 | elevation |
2 | DOY |
3 | LST |
4 | NDVI_G |
5 | TbH |
6 | TbV |
7 | Perc_F |
8 | slope |
9 | Perc_G |
10 | NDVI_F |
11 | Perc_C |
12 | NDVI_S |
13 | Perc_S |
14 | NDVI_B |
15 | NDVI_C |
16 | Perc_B |
Fig.4 Statistical metrics of soil moisture retrieval by adding parameters into the random forest model according to the importance ranking of active microwave data scale
Fig.5 Statistical metrics of soil moisture retrieval by adding parameters into the random forest model according to the importance ranking of passive microwave data scale
数据尺度 | 优选输入变量 |
---|---|
主动微波尺度 | slope,elevation,NDVI,LST,σVH,σVV,DOY |
被动微波尺度 | elevation,DOY,LST,NDVI_G,TbH,TbV,Perc_F,slope,Perc_G,NDVI_F |
Table 6 Optimized input parameters for joint retrieval of soil moisture on two microwave data scale
数据尺度 | 优选输入变量 |
---|---|
主动微波尺度 | slope,elevation,NDVI,LST,σVH,σVV,DOY |
被动微波尺度 | elevation,DOY,LST,NDVI_G,TbH,TbV,Perc_F,slope,Perc_G,NDVI_F |
数据尺度 | 输入变量组合 | r | RMSE/(cm3·cm-3) |
---|---|---|---|
主动微波尺度 | slope,elevation,NDVI,LST,σVH,σVV,DOY | 0.691 | 0.084 8 |
主动微波尺度 | slope,elevation,NDVI,LST,σVH,σVV,DOY,TbH/V | 0.744 | 0.079 6 |
被动微波尺度 | elevation,DOY,LST,NDVI_G,TbH,TbV,Perc_F,slope,Perc_G,NDVI_F | 0.944 | 0.043 5 |
被动微波尺度 | elevation,DOY,LST,NDVI_G,TbH,TbV,Perc_F,slope,Perc_G,NDVI_F,σVH/VV | 0.939 | 0.045 1 |
Table 7 Comparison of statistical metrics of joint retrieval of soil moisture using both active and passive microwave data and statistical metrics of soil moisture retrieval respectively using active/passive microwave data
数据尺度 | 输入变量组合 | r | RMSE/(cm3·cm-3) |
---|---|---|---|
主动微波尺度 | slope,elevation,NDVI,LST,σVH,σVV,DOY | 0.691 | 0.084 8 |
主动微波尺度 | slope,elevation,NDVI,LST,σVH,σVV,DOY,TbH/V | 0.744 | 0.079 6 |
被动微波尺度 | elevation,DOY,LST,NDVI_G,TbH,TbV,Perc_F,slope,Perc_G,NDVI_F | 0.944 | 0.043 5 |
被动微波尺度 | elevation,DOY,LST,NDVI_G,TbH,TbV,Perc_F,slope,Perc_G,NDVI_F,σVH/VV | 0.939 | 0.045 1 |
数据尺度 | 输入变量组合 | r | RMSE/(cm3·cm-3) |
---|---|---|---|
被动微波尺度 | elevation,DOY,LST,TbH,TbV,slope | 0.929 | 0.048 3 |
被动微波尺度 | elevation,DOY,LST,TbH,TbV,slope,σVH/VV | 0.926 | 0.049 3 |
Table 8 Statistical metrics of joint retrieval of soil moisture using both active and passive microwave data and statistical metrics of soil moisture retrieval using passive microwave data after removing the new parameters from the inputs
数据尺度 | 输入变量组合 | r | RMSE/(cm3·cm-3) |
---|---|---|---|
被动微波尺度 | elevation,DOY,LST,TbH,TbV,slope | 0.929 | 0.048 3 |
被动微波尺度 | elevation,DOY,LST,TbH,TbV,slope,σVH/VV | 0.926 | 0.049 3 |
[1] | DAI A G, TRENBERTH K E, QIAN T T. A global dataset of palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming[J]. Journal of Hydrometeorology, 2004, 5(6): 1117-1130. |
[2] | LOEW A, STACKE T, DORIGO W, et al. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies[J]. Hydrology and Earth System Sciences, 2013, 17(9): 3523-3542. |
[3] | PETROPOULOS G P, IRELAND G, SRIVASTAVA P K, et al. An appraisal of the accuracy of operational soil moisture estimates from SMOS MIRAS using validated in situ observations acquired in a Mediterranean environment[J]. International Journal of Remote Sensing, 2014, 35(13): 5239-5250. |
[4] | HIRSCHI M, SENEVIRATNE S I, SCH\AR C. Seasonal variations in terrestrial water storage for major midlatitude river basins[J]. Journal of Hydrometeorology, 2006, 7(1): 39. |
[5] | ROBINSON D A, CAMPBELL C S, HOPMANS J W, et al. Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review[J]. Vadose Zone Journal, 2008, 7(1): 358-389. |
[6] | 逄春浩. 土壤水分测定方法的新进展: TDR测定仪[J]. 干旱区资源与环境, 1994, 8(2): 69-76. |
[7] | REYNOLDS S G. The gravimetric method of soil moisture determination Part I: a study of equipment, and methodological problems[J]. Journal of Hydrology, 1970, 11(3): 258-273. |
[8] | JACKSON T J, BINDLISH R, COSH M H, et al. Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1530-1543. |
[9] | SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3): 125-161. |
[10] | 雷志斌, 孟庆岩, 田淑芳, 等. 基于GF-3和Landsat8遥感数据的土壤水分反演研究[J]. 地球信息科学学报, 2019, 21(12): 1965-1976. |
[11] | DE JEU R A M, WAGNER W, HOLMES T R H, et al. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers[J]. Surveys in Geophysics, 2008, 29(4): 399-420. |
[42] | MOHANTY B P, SKAGGS T H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation[J]. Advances in Water Resources, 2001, 24(9): 1051-1067. |
[43] | JOSHI C, MOHANTY B P, JACOBS J M, et al. Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions[J]. Water Resources Research, 2011, 47(1): W01508. |
[44] | LIN H, BOUMA J, WILDING L P, et al. Advances in hydropedology[J]. Advances in Agronomy, 2005, 85: 1-89. |
[45] | 宋沛林. 基于AMSR被动微波辐射计的地表土壤含水量估算方法改进及应用研究[D]. 杭州: 浙江大学, 2019. |
[46] | 李占杰, 陈基培, 刘艳民, 等. 土壤水分遥感反演研究进展[J]. 北京师范大学学报(自然科学版), 2020, 56(3): 474-481. |
[12] | MOHANTY B P, COSH M H, LAKSHMI V, et al. Soil moisture remote sensing: state-of-the-science[J]. Vadose Zone Journal, 2017, 16(1): 1-9. |
[13] | 陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203. |
[14] | COLLIANDER A, JACKSON T J, BINDLISH R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191: 215-231. |
[15] | 张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011, 34(4): 671-678. |
[16] | FUNG A K, PAN G W. A scattering model for perfectly conducting random surfaces I. Model development[J]. International Journal of Remote Sensing, 1987, 8(11): 1579-1593. |
[17] | PAN G W, FUNG A K. A scattering model for perfectly conducting random surfaces II. Range of validity[J]. International Journal of Remote Sensing, 1987, 8(11): 1595-1605. |
[18] | CHEN K S, WU T D, TSANG L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 90-101. |
[19] | OH Y, SARABANDI K, ULABY F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 370-381. |
[20] | OH Y, SARABANDI K, ULABY F T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1348-1355. |
[21] | DUBOIS P C, VAN ZYL J, ENGMAN T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915-926. |
[22] | SHI J C, WANG J, HSU A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254-1266. |
[23] | BAGHDADI N, EL HAJJ M, ZRIBI M. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 10-15, 2016, Beijing. IEEE, 2016: 3551-3554. |
[24] | EL HAJJ M, BAGHDADI N, ZRIBI M, et al. Soil moisture retrieval over irrigated grassland using X-band SAR data[J]. Remote Sensing of Environment, 2016, 176: 202-218. |
[25] | YAO P P, SHI J C, ZHAO T J, et al. Rebuilding long time series global soil moisture products using the neural network adopting the microwave vegetation index[J]. Remote Sensing, 2017, 9(1): 35. |
[26] | LU Z, CHAI L N, LIU S M, et al. Estimating time series soil moisture by applying recurrent nonlinear autoregressive neural networks to passive microwave data over the Heihe River Basin, China[J]. Remote Sensing, 2017, 9(6): 574. |
[27] | 赵天杰, 张立新, 蒋玲梅, 等. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009, 24(7): 769-775. |
[28] | RODRÍGUEZ-FERNÁNDEZ N, AIRES F, RICHAUME P, et al. Soil moisture retrieval using neural networks: application to SMOS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 5991-6007. |
[29] | GE L L, HANG R L, LIU Y, et al. Comparing the performance of neural network and deep convolutional neural network in estimating soil moisture from satellite observations[J]. Remote Sensing, 2018, 10(9): 1327. |
[30] | SANTI E, PALOSCIA S, PETTINATO S, et al. On the synergy of SMAP, AMSR2 and SENTINEL-1 for retrieving soil moisture[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 65: 114-123. |
[31] | BAI X J, ZENG J Y, CHEN K S, et al. Parameter optimization of a discrete scattering model by integration of global sensitivity analysis using SMAP active and passive observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1084-1099. |
[32] | ZENG J Y, SHI P F, CHEN K S, et al. On the relationship between radar backscatter and radiometer brightness temperature from SMAP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3115140. |
[33] | ZHANG L, ZHANG Z X, XUE Z H, et al. Sensitive feature evaluation for soil moisture retrieval based on multi-source remote sensing data with few in-situ measurements: a case study of the continental U.S[J]. Water, 2021, 13(15): 2003. |
[34] | KOLASSA J, GENTINE P, PRIGENT C, et al. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: product evaluation[J]. Remote Sensing of Environment, 2017, 195: 202-217. |
[35] | 唐豪, 王晓云, 陈伏龙, 等. 基于ERA5-Land数据集的玛纳斯河径流模拟研究[J]. 地学前缘, 2022, 29(3): 271-283. |
[36] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[37] | MIN M, LI J, WANG F, et al. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms[J]. Remote Sensing of Environment, 2020, 239: 111616. |
[38] | 王思楠. 融合多源遥感和机器学习算法的土壤水分反演和干旱监测及植被响应研究[D]. 呼和浩特: 内蒙古农业大学, 2022. |
[39] | LIU Q X, GU X F, CHEN X R, et al. Soil moisture content retrieval from remote sensing data by artificial neural network based on sample optimization[J]. Sensors, 2022, 22(4): 1611. |
[40] | 梁鸿, 魏倩, 孙运雷. 基于改进的RReliefF算法的超参数重要性分析[J]. 计算机与数字工程, 2020, 48(8): 1840-1845, 2045. |
[41] | KIRA K, RENDELL L A. The feature selection problem: traditional methods and a new algorithm[C]// Proceedings of the tenth national conference on artificial intelligence. July 12-16, 1992, San Jose, California. ACM, 1992: 129-134. |
[1] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[2] | HONG Shuang, ZUO Renguang, HU Hao, XIONG Yihui, WANG Ziye. Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 87-96. |
[3] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||