Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 515-528.DOI: 10.13745/j.esf.sf.2022.12.60
Previous Articles Next Articles
HE Chaofei1,2(), LUO Chengyan3, CHEN Fulong1,2,*(
), LONG Aihua1,4, TANG Hao1,2
Received:
2022-10-18
Revised:
2023-01-10
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
HE Chaofei, LUO Chengyan, CHEN Fulong, LONG Aihua, TANG Hao. CMIP6 multi-model prediction of future climate change in the Hotan River Basin[J]. Earth Science Frontiers, 2023, 30(3): 515-528.
数据类型 | 数据名称 | 数据描述 | 来源 |
---|---|---|---|
观测数据 | 中国地面降水/气温日值 0.5°×0.5°格点数据集(V2.0) | 时间长度为1971—2014年 | 国家气象科学数据中心 |
CMIP6模式数据 | 历史数据 | 时间长度为1971—2014年 | 美国能源部劳伦斯利 弗莫尔国家实验室 |
SSP5-8.5 | 未来情景数据:高强迫情景, 2100年辐射强迫稳定在8.5 W/m2 | ||
SSP2-4.5 | 未来情景数据:中等强迫情景, 2100年辐射强迫稳定在4.5 W/m2 | ||
SSP1-2.6 | 未来情景数据:低强迫情景, 2100年辐射强迫稳定在2.6 W/m2 |
Table 1 Details of observed data
数据类型 | 数据名称 | 数据描述 | 来源 |
---|---|---|---|
观测数据 | 中国地面降水/气温日值 0.5°×0.5°格点数据集(V2.0) | 时间长度为1971—2014年 | 国家气象科学数据中心 |
CMIP6模式数据 | 历史数据 | 时间长度为1971—2014年 | 美国能源部劳伦斯利 弗莫尔国家实验室 |
SSP5-8.5 | 未来情景数据:高强迫情景, 2100年辐射强迫稳定在8.5 W/m2 | ||
SSP2-4.5 | 未来情景数据:中等强迫情景, 2100年辐射强迫稳定在4.5 W/m2 | ||
SSP1-2.6 | 未来情景数据:低强迫情景, 2100年辐射强迫稳定在2.6 W/m2 |
模式名称 | 所属国家及研究机构 | 原始分辨率 |
---|---|---|
ACCESS-CM2 | 澳大利亚,英联邦科学和工业研究组织-气候系统科学卓越中心 | 192×144 |
BCC-CSM2-MR | 中国,北京气候中心 | 288×192 |
CanESM5 | 加拿大,气候模拟与分析中心 | 128×64 |
EC-Earth3 | 欧洲,EC-地球联盟 | 320×160 |
IPSL-CM6A-LR | 法国,法国拉普拉斯学院 | 144×143 |
MPI-ESM1-2-LR | 德国,马克斯普朗克气象研究所 | 192×96 |
Table 2 Introduction to each mode
模式名称 | 所属国家及研究机构 | 原始分辨率 |
---|---|---|
ACCESS-CM2 | 澳大利亚,英联邦科学和工业研究组织-气候系统科学卓越中心 | 192×144 |
BCC-CSM2-MR | 中国,北京气候中心 | 288×192 |
CanESM5 | 加拿大,气候模拟与分析中心 | 128×64 |
EC-Earth3 | 欧洲,EC-地球联盟 | 320×160 |
IPSL-CM6A-LR | 法国,法国拉普拉斯学院 | 144×143 |
MPI-ESM1-2-LR | 德国,马克斯普朗克气象研究所 | 192×96 |
Fig.7 Future maximum/minimum temperature changes relative to the historical period (1971—2000) in the Hotan River Basin under different SSP-RCP scenarios
Fig.10 Relative rate of change of future precipitation relative to the historical period (1971—2000) in the Hotan River Basin under different SSP-RCP scenarios
[1] | Change Intergovernmental Panel on Climate. Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014. |
[2] | 李春晖, 杨志峰. 气候变化对黄河流域水资源系统影响研究进展[J]. 地学前缘, 2002, 9(1): 34. |
[3] | 左其亭, 张修宇. 气候变化下水资源动态承载力研究[J]. 水利学报, 2015, 46(4): 387-395. |
[4] | 赵宗慈, 罗勇, 黄建斌. CMIP6的设计[J]. 气候变化研究进展, 2016, 12(3): 258-260. |
[5] | 王磊, 包庆, 何编. CMIP6高分辨率模式比较计划(HighResMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 498-502. |
[6] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. |
[7] | 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. |
[8] | 辛晓歌, 吴统文, 张洁, 等. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 2019, 15(5): 533-539. |
[9] | 周天军, 陈晓龙. 气候敏感度、气候反馈过程与2 ℃升温阈值的不确定性问题[J]. 气象学报, 2015, 73(4): 624-634. |
[10] |
CANNON A J, SOBIE S R, MURDOCK T Q. Bias coreaction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?[J]. Journal of Climate, 2015, 28(17): 6938-6959.
DOI URL |
[11] | 向竣文, 张利平, 邓瑶, 等. 基于CMIP6的中国主要地区极端气温降水模拟能力评估及未来情景预估[J]. 武汉大学学报(工学版), 2021, 54(1): 46-57, 81. |
[12] |
ZHANG Q, SHEN ZX, XU C Y, et al. A new statistical downscaling approach for global evaluation of the CMIP5 precipitation outputs: model development and application[J]. Science of the total Environment, 2019, 690(10): 1048-1067.
DOI URL |
[13] |
王林, 陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.
DOI |
[14] | 智协飞, 吕游. 基于频率匹配法的中国降水多模式预报订正研究[J]. 大气科学学报, 2019, 42(6): 814-823. |
[15] | 李俊, 杜钧, 陈超君. 降水偏差订正的频率(或面积)匹配方法介绍和分析[J]. 气象, 2014, 40(5): 580-588. |
[16] | 尹家波, 郭生练, 王俊, 等. 基于贝叶斯模式平均方法融合多源数据的水文模拟研究[J]. 水利学报, 2020, 51(11): 1335-1346. |
[17] |
CHEN J, BRISSETTE F P, CHAUMONT D, et al. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American River Basins[J]. Journal of Hydrology, 2013, 479: 200-214.
DOI URL |
[18] |
赵梦霞, 苏布达, 姜彤, 等. CMIP6模式对黄河上游降水的模拟及预估[J]. 高原气象, 2021, 40(3): 547-558.
DOI |
[19] |
李晓菲, 徐长春, 李路, 等. CMIP5模式对西北干旱区典型流域气温模拟能力评估: 以开都-孔雀河为例[J]. 资源科学, 2019, 41(6): 1141-1153.
DOI |
[20] | 顾磊, 陈杰, 尹家波, 等. 气候变化下中国主要流域气象水文干旱潜在风险传播[J]. 水科学进展, 2021, 32(3): 321-333. |
[21] |
XU L L, WANG A H. Application of the bias correction and spatial downscaling algorithm on the temperature extremes from CMIP5 multimodel ensembles in China[J]. Earth and Space Science, 2019, 6(12): 2508-2524.
DOI URL |
[22] | 张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89. |
[23] | 阿依努尔·买买提, 邱玉宝. 近20年和田绿洲水资源变化及其驱动力分析[J]. 干旱区资源与环境, 2013, 27(4): 117-122. |
[24] | 黄星, 陈伏龙, 赵琪, 等. 新疆和田河径流丰枯评价及组合分析[J]. 干旱区研究, 2021, 38(6): 1570-1578. |
[25] |
MPELASOKA F S, CHIEW F H S. Influence of rainfall scenario construction methods on runoff projections[J]. Journal of Hydrometeorology, 2009, 10(5): 1168-1183.
DOI URL |
[26] |
SCHMIDLI J, FREI C, VIDALE P L. Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods[J]. International Journal of Climatology, 2006, 26(5): 679-689.
DOI URL |
[27] |
TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192.
DOI URL |
[28] |
O’NEILL B C, TEBALDI C, VAN VUUREN D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3461-3482.
DOI URL |
[29] |
VAN VUUREN D P, RIAHI K, MOSS R, et al. A proposal for a new scenario framework to support research and assessment in different climate research communities[J]. Global Environmental Change, 2012, 22(1): 21-35.
DOI URL |
[30] |
MOSS R H, EDMONDS J A, HIBBARD K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7282): 747-756.
DOI |
[31] |
STOUFFER R J, EYRING V, MEEHL G A, et al. CMIP5 scientific gaps and recommendations for CMIP6[J]. Bulletin of the American Meteorological Society, 2017, 98(1): 95-105.
DOI |
[32] | 靳光强. 海水温度相似预报方法研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
[33] | 苏翔. 定量降水预报的可预报性与偏差订正方法研究[D]. 南京: 南京大学, 2015. |
[34] | 陶辉, 白云岗, 毛炜峄. CMIP3气候模式对北疆气候变化模拟评估及未来情景预估[J]. 地理研究, 2012, 31(4): 589-596. |
[35] | 周天军, 张文霞, 陈德亮, 等. 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学[J]. 中国科学: 地球科学, 2022, 52(4): 579-594. |
[36] | 王政琪, 高学杰, 童尧, 等. 新疆地区未来气候变化的区域气候模式集合预估[J]. 大气科学, 2021, 45(2): 407-423. |
[37] | 穆振侠, 姜卉芳. 基于统计降尺度方法的高寒山区未来气候变化预估[J]. 干旱区研究, 2015, 32(2): 290-296. |
[38] | 刘绿柳, 魏麟骁, 徐影, 等. 气候变化对黄河流域生态径流影响预估[J]. 水科学进展, 2021, 32(6): 824-833. |
[39] | 姜彤, 吕嫣冉, 黄金龙, 等. CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用[J]. 气象科技进展, 2020, 10(5): 102-109. |
[1] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[2] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[3] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[4] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[5] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[6] | HU Zhaobin, WEI Jiangong, XIE Zhiyuan, ZHANG Huodai, ZHONG Guangfa. Research progress in global sea level change: A critical review on international ocean drilling [J]. Earth Science Frontiers, 2022, 29(4): 10-24. |
[7] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[8] | NI Yanhua, LI Minghui, FANG Xiaomin, MENG Fanwei, YAN Maodu, LIU Yingxin. Paleotemperature during the Mid-Pleistocene Transition in western Qaidam Basin: Evidence from fluid inclusions in halite from drill hole SG-1 [J]. Earth Science Frontiers, 2021, 28(6): 115-124. |
[9] | S.K.KRIVONOGOV, T.I.KENSHINBAY, R.Kh.KURMANBAEV, B.S.KARIMOVA. The key question of the Aral Sea evolution important for understanding its economic, social and ecological values [J]. Earth Science Frontiers, 2021, 28(6): 196-204. |
[10] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[11] | LI Fuxing, CHEN Fulong, CAI Wenjing, HE Chaofei, LONG Aihua. Multiscale runoff prediction based on the EMD combined model [J]. Earth Science Frontiers, 2021, 28(1): 428-437. |
[12] | GUAN Kaiping,TIAN Li,AN Zhihui,YE Qin,,HU Jun,TONG Jinnan. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation. [J]. Earth Science Frontiers, 2016, 23(6): 236-245. |
[13] | YAN Li-Juan, ZHENG Mian-Beng, WEI Le-Jun. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years. [J]. Earth Science Frontiers, 2016, 23(4): 310-323. |
[14] | TU Chao, YANG Zhong-Fang, HOU Jing-Xie, JIA Hua-Ji, ZONG Sai-Feng, LI Biao. Distribution and influencing factors of paddy soil organic carbon content in Chinas major farming areas. [J]. Earth Science Frontiers, 2011, 18(6): 11-19. |
[15] | DAI Shuang, HUANG Yong-Bei, DIAO Jie, SHU Jiang, LIU Dun-Wei, KONG Li, ZHANG Meng-Shen, HU Hong-Fei. The climate change during 1281111905 Ma recorded by the susceptibility of the sediments of Liupanshan Group. [J]. Earth Science Frontiers, 2010, 17(3): 242-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||