Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 384-400.DOI: 10.13745/j.esf.sf.2021.10.4
Previous Articles Next Articles
ZHANG Weifeng1()(
), CHEN Huayong2,3,*(
), DENG Xin1, JIN Xinbiao1, LIU Shuzhan1, TAN Juanjuan1
Received:
2021-04-13
Revised:
2021-07-21
Online:
2023-03-25
Published:
2023-01-05
Contact:
CHEN Huayong
CLC Number:
ZHANG Weifeng, CHEN Huayong, DENG Xin, JIN Xinbiao, LIU Shuzhan, TAN Juanjuan. Discriminating characteristics of hydrothermal fluids using epidote mineral chemistry and strontium isotopes: A case study of the Duotoushan Fe-Cu deposit, eastern Tianshan[J]. Earth Science Frontiers, 2023, 30(2): 384-400.
Fig.8 Chondrite-normalized REE patterns of the Duotoushan epidote. Insert: plot of REE partition coefficient between epidote-group minerals and fluids.
样品 | 点位 | 87Sr/86Sr | 1 SE | 85Rb/86Sr | wB/10-6 | 年龄/Ma | 87Rb/86Sr | (87Sr/86Sr )i | |
---|---|---|---|---|---|---|---|---|---|
Rb | Sr | ||||||||
DT-018-01 | 1 | 0.704 95 | 0.000 04 | 0.004 70 | 0.102 | 843 | 307 | 0.001 81 | 0.704 95 |
DT-018-01 | 2 | 0.704 77 | 0.000 04 | 0.000 92 | 0.000 | 1 380 | 307 | 0.000 35 | 0.704 77 |
DT-018-01 | 3 | 0.704 82 | 0.000 05 | 0.002 72 | 0.000 | 1 504 | 307 | 0.001 05 | 0.704 81 |
DT-018-01 | 4 | 0.704 69 | 0.000 05 | 0.001 05 | 0.020 | 978 | 307 | 0.000 40 | 0.704 69 |
DT-018-01 | 5 | 0.704 63 | 0.000 04 | 0.000 60 | 0.215 | 1 313 | 307 | 0.000 23 | 0.704 63 |
DT-018-02 | 6 | 0.704 62 | 0.000 04 | 0.000 79 | 0.000 | 1 130 | 307 | 0.000 31 | 0.704 62 |
DT-018-02 | 7 | 0.704 76 | 0.000 04 | 0.000 53 | 0.000 | 1 171 | 307 | 0.000 20 | 0.704 76 |
DT-018-02 | 8 | 0.704 72 | 0.000 04 | 0.000 81 | 0.030 | 1 298 | 307 | 0.000 31 | 0.704 71 |
DT-018-02 | 9 | 0.704 64 | 0.000 05 | 0.002 53 | 0.235 | 1 094 | 307 | 0.000 98 | 0.704 64 |
DT-018-02 | 10 | 0.704 63 | 0.000 03 | 0.000 13 | 0.000 | 1 591 | 307 | 0.000 05 | 0.704 63 |
Table 3 In situ Sr isotopic data for Duotoushan epidote samples
样品 | 点位 | 87Sr/86Sr | 1 SE | 85Rb/86Sr | wB/10-6 | 年龄/Ma | 87Rb/86Sr | (87Sr/86Sr )i | |
---|---|---|---|---|---|---|---|---|---|
Rb | Sr | ||||||||
DT-018-01 | 1 | 0.704 95 | 0.000 04 | 0.004 70 | 0.102 | 843 | 307 | 0.001 81 | 0.704 95 |
DT-018-01 | 2 | 0.704 77 | 0.000 04 | 0.000 92 | 0.000 | 1 380 | 307 | 0.000 35 | 0.704 77 |
DT-018-01 | 3 | 0.704 82 | 0.000 05 | 0.002 72 | 0.000 | 1 504 | 307 | 0.001 05 | 0.704 81 |
DT-018-01 | 4 | 0.704 69 | 0.000 05 | 0.001 05 | 0.020 | 978 | 307 | 0.000 40 | 0.704 69 |
DT-018-01 | 5 | 0.704 63 | 0.000 04 | 0.000 60 | 0.215 | 1 313 | 307 | 0.000 23 | 0.704 63 |
DT-018-02 | 6 | 0.704 62 | 0.000 04 | 0.000 79 | 0.000 | 1 130 | 307 | 0.000 31 | 0.704 62 |
DT-018-02 | 7 | 0.704 76 | 0.000 04 | 0.000 53 | 0.000 | 1 171 | 307 | 0.000 20 | 0.704 76 |
DT-018-02 | 8 | 0.704 72 | 0.000 04 | 0.000 81 | 0.030 | 1 298 | 307 | 0.000 31 | 0.704 71 |
DT-018-02 | 9 | 0.704 64 | 0.000 05 | 0.002 53 | 0.235 | 1 094 | 307 | 0.000 98 | 0.704 64 |
DT-018-02 | 10 | 0.704 63 | 0.000 03 | 0.000 13 | 0.000 | 1 591 | 307 | 0.000 05 | 0.704 63 |
Fig.12 Simulated Sr isotopic values for the Duotoushan epidote base on (a) water-rock interaction model and (b) magmatic fluid-seawater mixing calculation
[1] |
FREI D, LIEBSCHER A, FRANZ G, et al. Trace element geochemistry of epidote minerals[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 553-605.
DOI URL |
[2] |
SCHMIDT M W, POLI S. Magmatic epidote[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 399-430.
DOI URL |
[3] | GUO S, YE K, YANG Y H, et al. In situ Sr isotopic analyses of epidote: tracing the sources of multi-stage fluids in ultrahigh-pressure eclogite (Ganghe, Dabie terrane)[J]. Contributions to Mineralogy and Petrology, 2014, 167(2): 1-23. |
[4] | 唐盼, 郭顺. 绿帘石记录俯冲带变质流体活动[J]. 岩石学报, 2019, 35(7):2045-2060. |
[5] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[J]. Economic Geology, 2005, 100: 299-336. |
[6] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[7] |
CHEN H Y, KYSER T K, CLARK A H. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú[J]. Mineralium Deposita, 2011, 46: 677-706.
DOI URL |
[8] | BARTON M D. Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 515-541. |
[9] | 张招崇, 柴凤梅, 谢秋红. 热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成[J]. 中国地质, 2016, 43(2): 367-379. |
[10] |
FRANZ G, LIEBSCHER A. Physical and chemical properties of the epidote minerals: an introduction[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 1-81.
DOI URL |
[11] |
ANENBURG M, KATZIR Y, RHEDE D, et al. Rare earth element evolution and migration in plagiogranites: a record preserved in epidote and allanite of the Troodos ophiolite[J]. Contributions to Mineralogy and Petrology, 2015, 169(3): 25.
DOI URL |
[12] |
AHMED A D, FISHER L, PEARCE M, et al. A microscale analysis of hydrothermal epidote: implications for the use of laser ablation-inductively coupled plasma-mass spectrometry mineral chemistry in complex alteration environments[J]. Economic Geology, 2020, 115(4): 793-811.
DOI URL |
[13] |
BAKER M J, WILKINSON J J, WILKINSON C C, et al. Epidote trace element chemistry as an exploration tool in the Collahuasi district, northern Chile[J]. Economic Geology, 2020, 115(4): 749-770.
DOI URL |
[14] |
PACEY A, WILKINSON J J, COOKE D R. Chlorite and epidote mineral chemistry in porphyry ore systems: a case study of the North Parkes district, New South Wales, Australia[J]. Economic Geology, 2020, 115(4): 701-727.
DOI URL |
[15] | COOKE D R, BAKER M, HOLLINGS P, et al. New advances in detecting the distal geochemical footprints of porphyry systems: epidote mineral chemistry as a tool for vectoring and fertility assessments[M]//Building exploration capability for the 21st century. Colorado: Society of Economic Geologists, 2014: 127-152. |
[16] | 张维. 安徽罗河铁矿床绿泥石和绿帘石微量元素特征研究[D]. 合肥: 合肥工业大学, 2017: 1-101. |
[17] |
MORRISON J. Stable and radiogenic isotope systematics in epidote group minerals[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 607-628.
DOI URL |
[18] |
PEVERELLI V, EWING T, RUBATTO D, et al. U-Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation[J]. Geochronology, 2021, 3(1): 123-147.
DOI URL |
[19] | TAYLOR H P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits[M]//BARNES H L. Geochemistry of hydrothermal ore deposits. New York, Berlin, Heidelberg: Springer, 1997: 229-302. |
[20] | 郑永飞, 徐宝龙, 周根陶. 矿物稳定同位素地球化学研究[M]. 北京: 科学出版社, 2000: 1-316. |
[21] |
OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578.
DOI URL |
[22] | ZHENG Y F. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2[J]. Mineralium Deposita, 1990, 25(4): 246-250. |
[23] | ZHENG Y F, HOEFS J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J]. Mineralium Deposita, 1993, 28(2): 79-89. |
[24] | SLACK J F. Tourmaline associations with hydrothermal ore deposits[J]. Reviews in Mineralogy, 1996, 33: 558-643. |
[25] |
SEAL R R. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 633-677.
DOI URL |
[26] | FAURE G, POWELL J L. Strontium isotope geology[M]. Berlin, Heidelberg: Springer, 1972. |
[27] |
PASS H E, COOKE D R, DAVIDSON G, et al. Isotope geochemistry of the northeast zone, Mount Polley alkalic Cu-Au-Ag porphyry deposit, British Columbia: a case for carbonate assimilation[J]. Economic Geology, 2014, 109(4): 859-890.
DOI URL |
[28] |
OROVAN E A, COOKE D R, HARRIS A C, et al. Geology and isotope geochemistry of the Wainaulo Cu-Au porphyry deposit, Namosi district, Fiji[J]. Economic Geology, 2018, 113(1): 133-161.
DOI URL |
[29] |
CAO M J, HOLLINGS P, EVANS N J, et al. In situ elemental and Sr isotope characteristics of magmatic to hydrothermal minerals from the Black Mountain porphyry deposit, Baguio district, Philippines[J]. Economic Geology, 2020, 115(4): 927-944.
DOI URL |
[30] |
PACEY A, WILKINSON J J, BOYCE A J, et al. Magmatic fluids implicated in the formation of propylitic alteration: oxygen, hydrogen, and strontium isotope constraints from the North Parkes porphyry Cu-Au district, New South Wales, Australia[J]. Economic Geology, 2020, 115(4): 729-748.
DOI URL |
[31] |
MAO J W, GOLDFARB R J, WANG Y T, et al. Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: characteristics and geodynamic setting[J]. Episodes, 2005, 28(1): 23-36.
DOI URL |
[32] |
HAN C M, XIAO W J, ZHAO G C, et al. Late Paleozoic metallogenesis and evolution of the East Tianshan orogenic belt (NW China, central Asia orogenic belt)[J]. Geology of Ore Deposits, 2014, 56(6): 493-512.
DOI URL |
[33] |
HAN J S, CHEN H Y, JIANG H J, et al. Genesis of the Paleozoic Aqishan-Yamansu arc-basin system and Fe (-Cu) mineralization in the eastern Tianshan, NW China[J]. Ore Geology Reviews, 2019, 105: 55-70.
DOI URL |
[34] |
LI H M, LI L X, DING J H, et al. Occurrence of the iron-rich melt in the Heijianshan iron deposit, eastern Tianshan, NW China: insights into the origin of volcanic rock-hosted iron deposits[J]. Acta Geologica Sinica (English Edition), 2018, 92(2): 666-681.
DOI URL |
[35] |
ZHANG W F, CHEN H Y, PENG L H, et al. Ore genesis of the Duotoushan Fe-Cu deposit, eastern Tianshan, NW China: constraints from ore geology, mineral geochemistry, fluid inclusion and stable isotopes[J]. Ore Geology Reviews, 2018, 100: 401-421.
DOI URL |
[36] |
GIERÉ R, SORENSEN S S. Allanite and other REE-rich epidote-group minerals[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 431-493.
DOI URL |
[37] |
ARMBRUSTER T, BONAZZI P, AKASAKA M, et al. Recommended nomenclature of epidote-group minerals[J]. European Journal of Mineralogy, 2006, 18(5): 551-567.
DOI URL |
[38] |
MILLS S J, HATERT F, NICKEL E H, et al. The standardisation of mineral group hierarchies: application to recent nomenclature proposals[J]. European Journal of Mineralogy, 2009, 21(5): 1073-1080.
DOI URL |
[39] |
ZHENG J H. A synthesis of iron deposits in the eastern Tianshan, NW China[J]. Geoscience Frontiers, 2020, 11(4): 1271-1287.
DOI URL |
[40] |
ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307.
DOI URL |
[41] |
XIAO W J, ZHANG L C, QIN K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304(4): 370-395.
DOI URL |
[42] |
CHEN Y J, PIRAJNO F, WU G, et al. Epithermal deposits in North Xinjiang, NW China[J]. International Journal of Earth Sciences, 2012, 101(4): 889-917.
DOI URL |
[43] | 张增杰, 孙敬博, 胡明月, 等. 东天山红云滩铁矿稳定同位素地质特征及其对成矿作用过程的指示[J]. 地球学报, 2012, 33(6): 918-924. |
[44] |
HOU T, ZHANG Z C, SANTOSH M, et al. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, eastern Tianshan Mountains, NW China: constraints on the metallogenesis[J]. Ore Geology Reviews, 2014, 56: 487-502.
DOI URL |
[45] |
JIANG H J, HAN J S, CHEN H Y, et al. Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe-Cu deposit, eastern Tianshan:implications for deposit type and metallogenesis[J]. Ore Geology Reviews, 2018, 100: 385-400.
DOI URL |
[46] |
ZHAO L D, CHEN H Y, ZHANG L, et al. Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in eastern Tianshan: metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geology Reviews, 2018, 100: 422-440.
DOI URL |
[47] | 张雄华, 黄兴, 陈继平, 等. 东天山觉罗塔格地区石炭纪火山-沉积岩地层序列及地质时代[J]. 地球科学:中国地质大学学报, 2012, 37(6): 1305-1405. |
[48] |
ZHANG W F, CHEN H Y, HAN J S, et al. Geochronology and geochemistry of igneous rocks in the Bailingshan area: implications for the tectonic setting of Late Paleozoic magmatism and iron skarn mineralization in the eastern Tianshan, NW China[J]. Gondwana Research, 2016, 38: 40-59.
DOI URL |
[49] | 张雷. 东天山觉罗塔格构造带石炭纪沉积盆地分析[D]. 西安: 长安大学, 2008: 1-69. |
[50] |
LUO T, LIAO Q N, ZHANG X H, et al. Geochronology and geochemistry of Carboniferous metabasalts in eastern Tianshan, Central Asia: evidence of a back-arc basin[J]. International Geology Review, 2016, 58(6): 756-772.
DOI URL |
[51] | 吴昌志, 张遵忠, ZAW K, 等. 东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义[J]. 岩石学报, 2006, 22(5): 1121-1134. |
[52] | 周涛发, 袁峰, 张达玉, 等. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究[J]. 岩石学报, 2010, 26(2): 478-502. |
[53] | 雷如雄, 吴昌志, 张遵忠, 等. 东天山雅满苏北岩体的年代学、地球化学及其构造意义[J]. 岩石学报, 2013, 29(8): 2653-2664. |
[54] |
WANG Y H, XUE C J, LIU J J, et al. Early Carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: slab melting and implications for porphyry copper mineralization[J]. Journal of Asian Earth Sciences, 2015, 103: 332-349.
DOI URL |
[55] |
ZHAO L D, CHEN H Y, HOLLINGS P, et al. Tectonic transition in the Aqishan-Yamansu belt, eastern Tianshan: constraints from the geochronology and geochemistry of Carboniferous and Triassic igneous rocks[J]. Lithos, 2019, 344/345: 247-264.
DOI URL |
[56] | 贾国章, 赵德怀. 新疆多头山铁矿床地质特征及成因模式[J]. 新疆有色金属, 2017, 40(3): 48-51. |
[57] | 张维峰, 陈华勇, 王云峰, 等. 东天山地区多头山铁铜矿床磁铁矿化学成分及其对成矿流体演化的指示[J]. 地球科学, 2018, 43(9): 2987-3000. |
[58] |
LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[59] |
YANG Y H, WU F Y, YANG J H, et al. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology[J]. Chemical Geology, 2014, 385: 35-55.
DOI URL |
[60] |
BANKS D A, YARDLEY B W D, CAMPBELL A R, et al. REE composition of an aqueous magmatic fluid: a fluid inclusion study from the Capitan pluton, New Mexico, USA[J]. Chemical Geology, 1994, 113(3/4): 259-272.
DOI URL |
[61] |
MARTIN L A J, WOOD B J, TURNER S, et al. Experimental measurements of trace element partitioning between lawsonite, zoisite and fluid and their implication for the composition of arc magmas[J]. Journal of Petrology, 2011, 52(6): 1049-1075.
DOI URL |
[62] |
BRUNSMANN A, FRANZ G, ERZINGER J. REE mobilization during small-scale high-pressure fluid-rock interaction and zoisite/fluid partitioning of La to Eu[J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 559-570.
DOI URL |
[63] |
STEIGER R H, JÄGER E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359-362.
DOI URL |
[64] |
ROLLINSON H R. A terrane interpretation of the Archaean Limpopo belt[J]. Geological Magazine, 1993, 130(6): 755-765.
DOI URL |
[65] |
ITO E, WHITE W M, GÖPEL C. The O, Sr, Nd and Pb isotope geochemistry of morb[J]. Chemical Geology, 1987, 62(3/4): 157-176.
DOI URL |
[66] |
VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88.
DOI URL |
[67] |
BAU M, MÖLLER P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology, 1992, 45(3/4): 231-246.
DOI URL |
[68] |
DEBRUYNE D, HULSBOSCH N, MUCHEZ P. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source-sink system[J]. Ore Geology Reviews, 2016, 72: 232-252.
DOI URL |
[69] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.
DOI URL |
[70] |
BAU M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(3/4): 219-230.
DOI URL |
[71] |
HAAS J R, SHOCK E L, SASSANI D C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350.
DOI URL |
[72] |
ALLEN D E, SEYFRIED W E Jr. REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 675-683.
DOI URL |
[73] |
MCINTIRE W L. Trace element partition coefficients: a review of theory and applications to geology[J]. Geochimica et Cosmochimica Acta, 1963, 27(12): 1209-1264.
DOI URL |
[74] |
GERMAN C R, HOLLIDAY B P, ELDERFIELD H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558.
DOI URL |
[75] |
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
DOI URL |
[76] |
LIU H, ZARTMAN R E, IRELAND T R, et al. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18854-18859.
DOI PMID |
[77] | WONES D R. Significance of the assemblage titanite+magnetite+quartz in granitic rocks[J]. American Mineralogist, 1989, 74: 744-749. |
[78] |
XIROUCHAKIS D, LINDSLEY D H, ANDERSEN D J. Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: part I. Theory[J]. American Mineralogist, 2001, 86(3): 247-253.
DOI URL |
[79] |
XIROUCHAKIS D, LINDSLEY D H, FROST B R. Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: part II. Application[J]. American Mineralogist, 2001, 86(3): 254-264.
DOI URL |
[80] |
CAO M J, QIN K Z, LI G M, et al. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, western Junggar, NW China[J]. Ore Geology Reviews, 2015, 65: 940-954.
DOI URL |
[81] |
KOHN M J. Titanite petrochronology[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 419-441.
DOI URL |
[82] |
XIAO X, ZHOU T F, WHITE N C, et al. Multiple generations of titanites and their geochemical characteristics record the magmatic-hydrothermal processes and timing of the Dongguashan porphyry-skarn Cu-Au system, Tongling district, eastern China[J]. Mineralium Deposita, 2021, 56(2): 363-380.
DOI URL |
[83] |
MYERS J, EUGSTER H P. The system Fe-Si-O:oxygen buffer calibrations to 1500 K[J]. Contributions to Mineralogy and Petrology, 1983, 82(1): 75-90.
DOI URL |
[84] | ROBIE R A, HEMINGWAY B S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures[M]. Denver: US Government Printing Office, 1995: 1-469. |
[85] | MCNUTT R H. Strontium isotopes[M]// Environmental tracers in subsurface hydrology. Boston: Springer, 2000: 233-260. |
[86] |
FROST C D, TONER R N. Strontium isotopic identification of water-rock interaction and ground water mixing[J]. Ground Water, 2004, 42(3): 418-432.
PMID |
[87] | DAVIDSON J. Strontium in igneous rocks[M]//MARSHALL C P, FAIRBRIDGE R W. Encyclopedia of Earth science. Amsterdam:Springer, 1999: 599-600. |
[88] |
BURKE W H, DENISON R E, HETHERINGTON E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10(10): 516.
DOI URL |
[89] | COOGAN L A. Altered oceanic crust as an inorganic record of paleoseawater Sr concentration[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(4): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||