Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 183-214.DOI: 10.13745/j.esf.sf.2022.2.83
Previous Articles Next Articles
WANG Wenlu1,4(), LI Xiaowei1,4,*(
), ZHANG Zeming2,4, TIAN Zuolin2,4, LI Zengsheng3, SUN Yuqin3, LIU Qiang3, DING Huixia1, HAO Zhaoge1
Received:
2022-04-22
Revised:
2022-05-24
Online:
2023-03-25
Published:
2023-01-05
Contact:
LI Xiaowei
CLC Number:
WANG Wenlu, LI Xiaowei, ZHANG Zeming, TIAN Zuolin, LI Zengsheng, SUN Yuqin, LIU Qiang, DING Huixia, HAO Zhaoge. Genetic mineralogy of Late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, southern Tibet—construction of a trans-crustal magma system[J]. Earth Science Frontiers, 2023, 30(2): 183-214.
Fig.1 (a) Simplified geological map and tectonic units of the Tibetan Plateau and Gangdese and (b) geological map of the Langxian to Linzhi region. Modified after [41].
样品号 | 岩性 | 采样位置 | 主要矿物组成 | 坐标 |
---|---|---|---|---|
ML20-52 | 含单斜辉石石英闪长岩 | 里龙乡东侧 | 斜长石+单斜辉石+角闪石+黑云母+石英 | 29°08'01.088″N 93°54'22.434″E |
LL20-17 LL20-18 | 含单斜辉石石英闪长岩 | 里龙乡 | 斜长石+单斜辉石+角闪石+黑云母+石英 | 29°07'06.120″N 93°52'12.523″E |
LL20-12 LL20-13 | 黑云母闪长岩 | 义当村 | 斜长石+角闪石+黑云母+石英 | 29°05'42.800″N 93°52'20.612″E |
LL20-14 LL20-15 | 黑云母闪长岩 | 义当村 | 斜长石+角闪石+黑云母+石英 | 29°05'45.476″N 93°52'20.000″E |
Table 1 Basic data for intermediate rock samples from eastern Gangdese, southern Tibet
样品号 | 岩性 | 采样位置 | 主要矿物组成 | 坐标 |
---|---|---|---|---|
ML20-52 | 含单斜辉石石英闪长岩 | 里龙乡东侧 | 斜长石+单斜辉石+角闪石+黑云母+石英 | 29°08'01.088″N 93°54'22.434″E |
LL20-17 LL20-18 | 含单斜辉石石英闪长岩 | 里龙乡 | 斜长石+单斜辉石+角闪石+黑云母+石英 | 29°07'06.120″N 93°52'12.523″E |
LL20-12 LL20-13 | 黑云母闪长岩 | 义当村 | 斜长石+角闪石+黑云母+石英 | 29°05'42.800″N 93°52'20.612″E |
LL20-14 LL20-15 | 黑云母闪长岩 | 义当村 | 斜长石+角闪石+黑云母+石英 | 29°05'45.476″N 93°52'20.000″E |
Fig.2 Photomicrographs and BSE images of Lilong intermediate rocks (a) Coronitic textures in amphibole surrounding clinopyroxene in clinopyroxene-bearing quartz diorite. (b) Coronitic textures in amphibole. (c) BSE image of Fig.2b. (d) Poikilitic textures in clinopyroxene and amphibole in clinopyroxene-bearing quartz diorite. (e) BSE image showing coronitic textures in clinopyroxene and amphibole and spongy structure of amphibole. (f) Sieve structure of amphibole in clinopyroxene-bearing quartz diorite. (g) Plagioclase and quartz in the spongy structure shown in Fig.2e. (h) Clinopyroxene in clinopyroxene-bearing quartz diorite with no contact with amphibole. (i) Poikilitic textures in clinopyroxene and broken amphibole. (j) Amphibole and plagioclase in biotite diorite. (k) Poikilitic textures in amphibole and biotite in biotite diorite. (l) Spongy structure of amphibole and titanite in biotite diorite. Pl: plagioclase; Amp: amphibole; Bt: biotite; Cpx: clinopyroxene; Q: quartz; Ttn: titanite. Mineral abbreviations after [46].
Fig.4 Whole rock chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for Lilong intermediate rocks. Normalized values from [51].
探针点号 | 类型 | wB/% | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | NiO | BaO | Cr2O3 | Total | |||||||||||||||||||||
ML20-52 | 1.2 | Ⅰ型单斜 辉石 | 52.4 | 0.16 | 1.99 | 10.7 | 0.62 | 12.6 | 21.6 | 0.62 | 0.01 | 0 | 0 | 0 | 100.7 | ||||||||||||||||||
ML20-52 | 1.4 | 52.1 | 0.12 | 2.12 | 10.9 | 0.68 | 12.9 | 20.7 | 0.48 | 0.02 | 0.05 | 0 | 0.03 | 100.1 | |||||||||||||||||||
ML20-52 | 1.6 | 52.6 | 0.18 | 1.68 | 11.3 | 0.66 | 13 | 20.9 | 0.49 | 0.01 | 0.02 | 0.03 | 0.01 | 100.8 | |||||||||||||||||||
ML20-52 | 1.7 | 52.6 | 0.14 | 1.76 | 10.8 | 0.6 | 12.7 | 21.2 | 0.46 | 0 | 0 | 0 | 0 | 100.3 | |||||||||||||||||||
ML20-52 | 2.2 | 52.1 | 0.15 | 1.6 | 10.9 | 0.62 | 13 | 20.7 | 0.55 | 0.03 | 0 | 0 | 0 | 99.7 | |||||||||||||||||||
ML20-52 | 2.3 | 52.4 | 0.13 | 1.62 | 10.1 | 0.65 | 12.8 | 21.4 | 0.54 | 0 | 0.07 | 0 | 0.01 | 99.7 | |||||||||||||||||||
ML20-52 | 3.1 | 52 | 0.13 | 2 | 9.91 | 0.63 | 12.5 | 22 | 0.42 | 0 | 0 | 0.01 | 0.01 | 99.6 | |||||||||||||||||||
ML20-52 | 3.6 | 52.5 | 0.12 | 1.66 | 10.8 | 0.64 | 12.8 | 21.4 | 0.39 | 0 | 0 | 0 | 0.03 | 100.3 | |||||||||||||||||||
ML20-52 | 4.1 | 52.6 | 0.1 | 1.74 | 11.7 | 0.8 | 13.1 | 20.6 | 0.45 | 0.02 | 0.04 | 0 | 0 | 101.1 | |||||||||||||||||||
ML20-52 | 4.2 | 52.4 | 0.11 | 2.12 | 11.3 | 0.78 | 12.9 | 21 | 0.45 | 0 | 0 | 0.01 | 0 | 101 | |||||||||||||||||||
LL20-17 | 1.4 | 54.6 | 0.11 | 1.31 | 8.28 | 0.76 | 13.5 | 21.5 | 0.41 | 0.01 | 0 | 0.02 | 0.05 | 100.5 | |||||||||||||||||||
LL20-17 | 1.7 | 52.1 | 0.13 | 1.31 | 8.86 | 0.69 | 13.8 | 22.3 | 0.51 | 0.02 | 0 | 0 | 0.03 | 99.8 | |||||||||||||||||||
LL20-17 | 4.2 | 52.4 | 0.09 | 1.05 | 8.41 | 0.75 | 13.8 | 22.5 | 0.44 | 0 | 0.07 | 0.02 | 0 | 99.5 | |||||||||||||||||||
LL20-17 | 4.1 | 52.3 | 0.08 | 0.97 | 8.51 | 0.82 | 13.8 | 22.4 | 0.49 | 0.01 | 0 | 0 | 0.03 | 99.4 | |||||||||||||||||||
LL20-18 | 1.2 | Ⅱ型单 斜辉石 | 51.6 | 0.13 | 1.79 | 10.6 | 0.91 | 13.2 | 20.9 | 0.44 | 0 | 0 | 0.02 | 0.01 | 99.6 | ||||||||||||||||||
LL20-18 | 1.4 | 51.9 | 0.16 | 1.74 | 10.5 | 1.03 | 13.3 | 21.1 | 0.43 | 0 | 0 | 0 | 0.04 | 100.3 | |||||||||||||||||||
LL20-18 | 1.5 | 51.9 | 0.11 | 1.77 | 9.48 | 0.96 | 13.4 | 21.7 | 0.48 | 0.01 | 0.04 | 0 | 0 | 99.8 | |||||||||||||||||||
探针点号 | 类型 | 以6个氧原子和4个阳离子为基准计算的阳离子数 | |||||||||||||||||||||||||||||||
Si | AlⅣ | AlⅥ | Ti | Fe3+ | Fe2+ | Mn | Mg | Ca | Na | K | |||||||||||||||||||||||
ML20-52 | 1.2 | Ⅰ型单斜 辉石 | 1.96 | 0.04 | 0.05 | 0 | 0.05 | 0.28 | 0.02 | 0.7 | 0.87 | 0.04 | 0 | ||||||||||||||||||||
ML20-52 | 1.4 | 1.96 | 0.04 | 0.05 | 0 | 0.03 | 0.31 | 0.02 | 0.72 | 0.83 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 1.6 | 1.96 | 0.04 | 0.04 | 0 | 0.04 | 0.32 | 0.02 | 0.72 | 0.84 | 0.04 | 0 | |||||||||||||||||||||
ML20-52 | 1.7 | 1.97 | 0.03 | 0.05 | 0 | 0.01 | 0.33 | 0.02 | 0.71 | 0.85 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 2.2 | 1.97 | 0.03 | 0.04 | 0 | 0.04 | 0.3 | 0.02 | 0.73 | 0.84 | 0.04 | 0 | |||||||||||||||||||||
ML20-52 | 2.3 | 1.97 | 0.03 | 0.04 | 0 | 0.02 | 0.29 | 0.02 | 0.72 | 0.86 | 0.04 | 0 | |||||||||||||||||||||
ML20-52 | 3.1 | 1.96 | 0.04 | 0.05 | 0 | 0.02 | 0.29 | 0.02 | 0.7 | 0.89 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 3.6 | 1.97 | 0.03 | 0.04 | 0 | 0.02 | 0.32 | 0.02 | 0.72 | 0.86 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 4.1 | 1.96 | 0.04 | 0.04 | 0 | 0.04 | 0.32 | 0.03 | 0.73 | 0.82 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 4.2 | 1.95 | 0.05 | 0.05 | 0 | 0.04 | 0.31 | 0.02 | 0.72 | 0.84 | 0.03 | 0 | |||||||||||||||||||||
LL20-17 | 1.4 | 2.01 | 0 | 0.06 | 0 | 0 | 0.26 | 0.02 | 0.74 | 0.85 | 0.03 | 0 | |||||||||||||||||||||
LL20-17 | 1.7 | 1.96 | 0.04 | 0.01 | 0 | 0.09 | 0.19 | 0.02 | 0.77 | 0.9 | 0.04 | 0 | |||||||||||||||||||||
LL20-17 | 4.2 | 1.97 | 0.03 | 0.02 | 0 | 0.06 | 0.2 | 0.02 | 0.78 | 0.91 | 0.03 | 0 | |||||||||||||||||||||
LL20-17 | 4.1 | 1.97 | 0.03 | 0.01 | 0 | 0.07 | 0.19 | 0.03 | 0.77 | 0.9 | 0.04 | 0 | |||||||||||||||||||||
LL20-18 | 1.2 | Ⅱ型单 斜辉石 | 1.95 | 0.05 | 0.03 | 0 | 0.07 | 0.27 | 0.03 | 0.75 | 0.85 | 0.03 | 0 | ||||||||||||||||||||
LL20-18 | 1.4 | 1.95 | 0.05 | 0.03 | 0 | 0.06 | 0.26 | 0.03 | 0.75 | 0.85 | 0.03 | 0 | |||||||||||||||||||||
LL20-18 | 1.5 | 1.95 | 0.05 | 0.03 | 0 | 0.07 | 0.23 | 0.03 | 0.75 | 0.87 | 0.04 | 0 | |||||||||||||||||||||
探针点号 | 类型 | Wo | En | Fs | Mg# | M | 温度/℃ | 压力/MPa | 深度/km | 水含量melt/% | |||||||||||||||||||||||
ML20-52 | 1.2 | Ⅰ型单斜 辉石 | 44.1 | 35.7 | 18 | 71 | 40 | 1 175 | 714 | 26 | 3.2 | ||||||||||||||||||||||
ML20-52 | 1.4 | 42.7 | 36.9 | 18.6 | 70 | 39 | 1 173 | 799 | 28.7 | 2.8 | |||||||||||||||||||||||
ML20-52 | 1.6 | 42.5 | 36.7 | 18.9 | 70 | 39 | 1 170 | 699 | 25.6 | 2.8 | |||||||||||||||||||||||
ML20-52 | 1.7 | 43.7 | 36.4 | 18.2 | 69 | 38 | 1 164 | 737 | 26.8 | 3 | |||||||||||||||||||||||
ML20-52 | 2.2 | 42.5 | 37 | 18.4 | 71 | 40 | 1 172 | 721 | 26.3 | 2.8 | |||||||||||||||||||||||
ML20-52 | 2.3 | 44 | 36.7 | 17.3 | 71 | 40 | 1 166 | 711 | 25.9 | 3.2 | |||||||||||||||||||||||
ML20-52 | 3.1 | 45.4 | 36 | 17 | 71 | 40 | 1 159 | 655 | 24.2 | 3.4 | |||||||||||||||||||||||
ML20-52 | 3.6 | 43.8 | 36.5 | 18.3 | 69 | 38 | 1 166 | 637 | 23.6 | 3 | |||||||||||||||||||||||
ML20-52 | 4.1 | 41.9 | 36.9 | 19.7 | 69 | 38 | 1 174 | 702 | 25.7 | 2.6 | |||||||||||||||||||||||
ML20-52 | 4.2 | 42.8 | 36.5 | 19.1 | 70 | 39 | 1 172 | 754 | 27.3 | 2.9 | |||||||||||||||||||||||
LL20-17 | 1.4 | 44.7 | 39 | 14.8 | 74 | 44 | 1 167 | 665 | 24.5 | 2.5 | |||||||||||||||||||||||
LL20-17 | 1.7 | 44.8 | 38.5 | 14.9 | 80 | 53 | 1 174 | ||||||||||||||||||||||||||
LL20-17 | 4.2 | 45.3 | 38.8 | 14.3 | 79 | 51 | 1 171 | ||||||||||||||||||||||||||
LL20-17 | 4.1 | 45 | 38.6 | 14.6 | 80 | 52 | 1 172 | ||||||||||||||||||||||||||
LL20-18 | 1.2 | Ⅱ型单 斜辉石 | 42.7 | 37.5 | 18.2 | 74 | 44 | 1 181 | 524 | 20.1 | 2.6 | ||||||||||||||||||||||
LL20-18 | 1.4 | 42.7 | 37.5 | 18.2 | 74 | 44 | 1 181 | 482 | 18.7 | 2.4 | |||||||||||||||||||||||
LL20-18 | 1.5 | 44 | 37.7 | 16.5 | 77 | 47 | 1 180 | 495 | 19.1 | 2.8 |
Table 3 Major element composition of clinopyroxenes by electron probe microanalysis
探针点号 | 类型 | wB/% | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | NiO | BaO | Cr2O3 | Total | |||||||||||||||||||||
ML20-52 | 1.2 | Ⅰ型单斜 辉石 | 52.4 | 0.16 | 1.99 | 10.7 | 0.62 | 12.6 | 21.6 | 0.62 | 0.01 | 0 | 0 | 0 | 100.7 | ||||||||||||||||||
ML20-52 | 1.4 | 52.1 | 0.12 | 2.12 | 10.9 | 0.68 | 12.9 | 20.7 | 0.48 | 0.02 | 0.05 | 0 | 0.03 | 100.1 | |||||||||||||||||||
ML20-52 | 1.6 | 52.6 | 0.18 | 1.68 | 11.3 | 0.66 | 13 | 20.9 | 0.49 | 0.01 | 0.02 | 0.03 | 0.01 | 100.8 | |||||||||||||||||||
ML20-52 | 1.7 | 52.6 | 0.14 | 1.76 | 10.8 | 0.6 | 12.7 | 21.2 | 0.46 | 0 | 0 | 0 | 0 | 100.3 | |||||||||||||||||||
ML20-52 | 2.2 | 52.1 | 0.15 | 1.6 | 10.9 | 0.62 | 13 | 20.7 | 0.55 | 0.03 | 0 | 0 | 0 | 99.7 | |||||||||||||||||||
ML20-52 | 2.3 | 52.4 | 0.13 | 1.62 | 10.1 | 0.65 | 12.8 | 21.4 | 0.54 | 0 | 0.07 | 0 | 0.01 | 99.7 | |||||||||||||||||||
ML20-52 | 3.1 | 52 | 0.13 | 2 | 9.91 | 0.63 | 12.5 | 22 | 0.42 | 0 | 0 | 0.01 | 0.01 | 99.6 | |||||||||||||||||||
ML20-52 | 3.6 | 52.5 | 0.12 | 1.66 | 10.8 | 0.64 | 12.8 | 21.4 | 0.39 | 0 | 0 | 0 | 0.03 | 100.3 | |||||||||||||||||||
ML20-52 | 4.1 | 52.6 | 0.1 | 1.74 | 11.7 | 0.8 | 13.1 | 20.6 | 0.45 | 0.02 | 0.04 | 0 | 0 | 101.1 | |||||||||||||||||||
ML20-52 | 4.2 | 52.4 | 0.11 | 2.12 | 11.3 | 0.78 | 12.9 | 21 | 0.45 | 0 | 0 | 0.01 | 0 | 101 | |||||||||||||||||||
LL20-17 | 1.4 | 54.6 | 0.11 | 1.31 | 8.28 | 0.76 | 13.5 | 21.5 | 0.41 | 0.01 | 0 | 0.02 | 0.05 | 100.5 | |||||||||||||||||||
LL20-17 | 1.7 | 52.1 | 0.13 | 1.31 | 8.86 | 0.69 | 13.8 | 22.3 | 0.51 | 0.02 | 0 | 0 | 0.03 | 99.8 | |||||||||||||||||||
LL20-17 | 4.2 | 52.4 | 0.09 | 1.05 | 8.41 | 0.75 | 13.8 | 22.5 | 0.44 | 0 | 0.07 | 0.02 | 0 | 99.5 | |||||||||||||||||||
LL20-17 | 4.1 | 52.3 | 0.08 | 0.97 | 8.51 | 0.82 | 13.8 | 22.4 | 0.49 | 0.01 | 0 | 0 | 0.03 | 99.4 | |||||||||||||||||||
LL20-18 | 1.2 | Ⅱ型单 斜辉石 | 51.6 | 0.13 | 1.79 | 10.6 | 0.91 | 13.2 | 20.9 | 0.44 | 0 | 0 | 0.02 | 0.01 | 99.6 | ||||||||||||||||||
LL20-18 | 1.4 | 51.9 | 0.16 | 1.74 | 10.5 | 1.03 | 13.3 | 21.1 | 0.43 | 0 | 0 | 0 | 0.04 | 100.3 | |||||||||||||||||||
LL20-18 | 1.5 | 51.9 | 0.11 | 1.77 | 9.48 | 0.96 | 13.4 | 21.7 | 0.48 | 0.01 | 0.04 | 0 | 0 | 99.8 | |||||||||||||||||||
探针点号 | 类型 | 以6个氧原子和4个阳离子为基准计算的阳离子数 | |||||||||||||||||||||||||||||||
Si | AlⅣ | AlⅥ | Ti | Fe3+ | Fe2+ | Mn | Mg | Ca | Na | K | |||||||||||||||||||||||
ML20-52 | 1.2 | Ⅰ型单斜 辉石 | 1.96 | 0.04 | 0.05 | 0 | 0.05 | 0.28 | 0.02 | 0.7 | 0.87 | 0.04 | 0 | ||||||||||||||||||||
ML20-52 | 1.4 | 1.96 | 0.04 | 0.05 | 0 | 0.03 | 0.31 | 0.02 | 0.72 | 0.83 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 1.6 | 1.96 | 0.04 | 0.04 | 0 | 0.04 | 0.32 | 0.02 | 0.72 | 0.84 | 0.04 | 0 | |||||||||||||||||||||
ML20-52 | 1.7 | 1.97 | 0.03 | 0.05 | 0 | 0.01 | 0.33 | 0.02 | 0.71 | 0.85 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 2.2 | 1.97 | 0.03 | 0.04 | 0 | 0.04 | 0.3 | 0.02 | 0.73 | 0.84 | 0.04 | 0 | |||||||||||||||||||||
ML20-52 | 2.3 | 1.97 | 0.03 | 0.04 | 0 | 0.02 | 0.29 | 0.02 | 0.72 | 0.86 | 0.04 | 0 | |||||||||||||||||||||
ML20-52 | 3.1 | 1.96 | 0.04 | 0.05 | 0 | 0.02 | 0.29 | 0.02 | 0.7 | 0.89 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 3.6 | 1.97 | 0.03 | 0.04 | 0 | 0.02 | 0.32 | 0.02 | 0.72 | 0.86 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 4.1 | 1.96 | 0.04 | 0.04 | 0 | 0.04 | 0.32 | 0.03 | 0.73 | 0.82 | 0.03 | 0 | |||||||||||||||||||||
ML20-52 | 4.2 | 1.95 | 0.05 | 0.05 | 0 | 0.04 | 0.31 | 0.02 | 0.72 | 0.84 | 0.03 | 0 | |||||||||||||||||||||
LL20-17 | 1.4 | 2.01 | 0 | 0.06 | 0 | 0 | 0.26 | 0.02 | 0.74 | 0.85 | 0.03 | 0 | |||||||||||||||||||||
LL20-17 | 1.7 | 1.96 | 0.04 | 0.01 | 0 | 0.09 | 0.19 | 0.02 | 0.77 | 0.9 | 0.04 | 0 | |||||||||||||||||||||
LL20-17 | 4.2 | 1.97 | 0.03 | 0.02 | 0 | 0.06 | 0.2 | 0.02 | 0.78 | 0.91 | 0.03 | 0 | |||||||||||||||||||||
LL20-17 | 4.1 | 1.97 | 0.03 | 0.01 | 0 | 0.07 | 0.19 | 0.03 | 0.77 | 0.9 | 0.04 | 0 | |||||||||||||||||||||
LL20-18 | 1.2 | Ⅱ型单 斜辉石 | 1.95 | 0.05 | 0.03 | 0 | 0.07 | 0.27 | 0.03 | 0.75 | 0.85 | 0.03 | 0 | ||||||||||||||||||||
LL20-18 | 1.4 | 1.95 | 0.05 | 0.03 | 0 | 0.06 | 0.26 | 0.03 | 0.75 | 0.85 | 0.03 | 0 | |||||||||||||||||||||
LL20-18 | 1.5 | 1.95 | 0.05 | 0.03 | 0 | 0.07 | 0.23 | 0.03 | 0.75 | 0.87 | 0.04 | 0 | |||||||||||||||||||||
探针点号 | 类型 | Wo | En | Fs | Mg# | M | 温度/℃ | 压力/MPa | 深度/km | 水含量melt/% | |||||||||||||||||||||||
ML20-52 | 1.2 | Ⅰ型单斜 辉石 | 44.1 | 35.7 | 18 | 71 | 40 | 1 175 | 714 | 26 | 3.2 | ||||||||||||||||||||||
ML20-52 | 1.4 | 42.7 | 36.9 | 18.6 | 70 | 39 | 1 173 | 799 | 28.7 | 2.8 | |||||||||||||||||||||||
ML20-52 | 1.6 | 42.5 | 36.7 | 18.9 | 70 | 39 | 1 170 | 699 | 25.6 | 2.8 | |||||||||||||||||||||||
ML20-52 | 1.7 | 43.7 | 36.4 | 18.2 | 69 | 38 | 1 164 | 737 | 26.8 | 3 | |||||||||||||||||||||||
ML20-52 | 2.2 | 42.5 | 37 | 18.4 | 71 | 40 | 1 172 | 721 | 26.3 | 2.8 | |||||||||||||||||||||||
ML20-52 | 2.3 | 44 | 36.7 | 17.3 | 71 | 40 | 1 166 | 711 | 25.9 | 3.2 | |||||||||||||||||||||||
ML20-52 | 3.1 | 45.4 | 36 | 17 | 71 | 40 | 1 159 | 655 | 24.2 | 3.4 | |||||||||||||||||||||||
ML20-52 | 3.6 | 43.8 | 36.5 | 18.3 | 69 | 38 | 1 166 | 637 | 23.6 | 3 | |||||||||||||||||||||||
ML20-52 | 4.1 | 41.9 | 36.9 | 19.7 | 69 | 38 | 1 174 | 702 | 25.7 | 2.6 | |||||||||||||||||||||||
ML20-52 | 4.2 | 42.8 | 36.5 | 19.1 | 70 | 39 | 1 172 | 754 | 27.3 | 2.9 | |||||||||||||||||||||||
LL20-17 | 1.4 | 44.7 | 39 | 14.8 | 74 | 44 | 1 167 | 665 | 24.5 | 2.5 | |||||||||||||||||||||||
LL20-17 | 1.7 | 44.8 | 38.5 | 14.9 | 80 | 53 | 1 174 | ||||||||||||||||||||||||||
LL20-17 | 4.2 | 45.3 | 38.8 | 14.3 | 79 | 51 | 1 171 | ||||||||||||||||||||||||||
LL20-17 | 4.1 | 45 | 38.6 | 14.6 | 80 | 52 | 1 172 | ||||||||||||||||||||||||||
LL20-18 | 1.2 | Ⅱ型单 斜辉石 | 42.7 | 37.5 | 18.2 | 74 | 44 | 1 181 | 524 | 20.1 | 2.6 | ||||||||||||||||||||||
LL20-18 | 1.4 | 42.7 | 37.5 | 18.2 | 74 | 44 | 1 181 | 482 | 18.7 | 2.4 | |||||||||||||||||||||||
LL20-18 | 1.5 | 44 | 37.7 | 16.5 | 77 | 47 | 1 180 | 495 | 19.1 | 2.8 |
Fig.5 Classification diagrams for Lilong intermediate rocks. (a) Pyroxenes (after [57]). (b) Calcic amphiboles (after [58]). (c) Plagioclases (after [59]). (d) Biotite (after [59]).
Fig.6 Chondrite-normalized REE distribution patterns (a, c, e) and primitive mantle-normalized trace element distribution patterns (b, d, f) for different types of clinopyroxenes and amphiboles from Lilong intermediate rocks. Normalized values from [51].
Fig.7 BSE images and quantitative major and trace element mapping by LA-ICP-MS of spongy amphibole wrapping around clinopyroxene in clinopyroxene-bearing diorite. In BSE image, red circle indicates clinopyroxene core with amphibole on the peripheral; orange line indicates profiling line AB. Color scheme for element maps is based on probability density of element to accentuate distribution characteristics.
Fig.9 Temperature (a, after [56,62]) and pressure (b, after [56,62]) contrast diagrams, and plots of temperature vs. SiO2 contents in melt at equilibrium (c) and temperature vs. magmatic water content in melt (d) for amphibole
Fig.10 Chondrite-normalized REE distribution patterns for clinopyroxenes (a) and amphibole (b, c) from Lilong intermediate rock melts at equilibrium. Normalized values from [51]; whole rock REE value for each element averaged over all samples.
标号 | 类型 | wB/% | Mg# | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | FeO | MgO | CaO | K2O | Al2O3 | ||||
ML20-52 | 1.3 | ⅠA型角 闪石 | 76.8 | 0.21 | 1.87 | 0.44 | 2.73 | 4.06 | 15.5 | 30 |
ML20-52 | 1.J1 | 78.2 | 0.17 | 2.07 | 0.57 | 3.26 | 3.27 | 15.4 | 33 | |
ML20-52 | 1.J2 | 75.2 | 0.22 | 2.26 | 0.48 | 2.81 | 4.39 | 16.1 | 27 | |
ML20-52 | 1.J5 | 77.3 | 0.21 | 1.83 | 0.46 | 3.17 | 3.56 | 15.4 | 31 | |
LL20-17 | 4.4 | ⅠB型角 闪石 | 80.5 | 0.16 | 1.03 | 0.26 | 2.23 | 3.93 | 14.1 | 31 |
LL20-17 | 4.6 | 79.7 | 0.17 | 1.1 | 0.27 | 2.38 | 3.95 | 14.4 | 31 | |
LL20-18 | 2.4 | 74.3 | 0.29 | 1.97 | 0.45 | 2.85 | 4.22 | 15.6 | 29 | |
LL20-18 | 2.5 | 74.6 | 0.3 | 1.94 | 0.45 | 2.88 | 4.17 | 15.4 | 29 | |
LL20-18 | 4.3 | 75.4 | 0.26 | 1.79 | 0.37 | 2.55 | 4.24 | 15.2 | 27 | |
LL20-18 | 4.4 | 75.5 | 0.25 | 1.77 | 0.39 | 2.6 | 4.28 | 15.3 | 28 | |
LL20-18 | 4.5 | 75.9 | 0.24 | 1.92 | 0.44 | 2.67 | 4.22 | 15.5 | 29 | |
LL20-18 | 4.6 | 75.4 | 0.26 | 1.85 | 0.42 | 2.67 | 4.2 | 15.5 | 29 | |
LL20-12 | 1.3 | Ⅱ型角 闪石 | 76.7 | 0.26 | 1.91 | 0.46 | 2.77 | 3.47 | 14.9 | 30 |
LL20-12 | 1.4 | 76.7 | 0.24 | 1.93 | 0.44 | 2.65 | 3.43 | 14.8 | 29 | |
LL20-12 | 1.8 | 76.8 | 0.26 | 1.9 | 0.48 | 2.9 | 3.52 | 15 | 31 | |
LL20-12 | 2.2 | 75.5 | 0.3 | 2.25 | 0.54 | 2.98 | 3.46 | 15.2 | 30 | |
LL20-13 | 1.2 | 75.8 | 0.3 | 2.01 | 0.46 | 2.74 | 3.73 | 14.9 | 29 | |
LL20-13 | 1.3 | 75.4 | 0.29 | 2.15 | 0.47 | 2.74 | 3.59 | 15.1 | 28 | |
LL20-13 | 2.1 | 77.4 | 0.25 | 1.8 | 0.43 | 2.64 | 3.71 | 14.8 | 30 | |
LL20-13 | 2.3 | 74.4 | 0.28 | 3.09 | 0.75 | 3.04 | 3.6 | 15.5 | 30 | |
LL20-13 | 2.5 | 76.2 | 0.29 | 2.11 | 0.48 | 2.78 | 3.84 | 15.1 | 29 | |
LL20-15 | 4.3 | 78.2 | 0.21 | 1.38 | 0.3 | 2.44 | 4.14 | 15 | 28 | |
LL20-15 | 4.4 | 78.1 | 0.21 | 1.49 | 0.34 | 2.62 | 4.11 | 15.5 | 29 |
Table 10 Major element composition of calculated equilibrated melts with amphibole
标号 | 类型 | wB/% | Mg# | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | FeO | MgO | CaO | K2O | Al2O3 | ||||
ML20-52 | 1.3 | ⅠA型角 闪石 | 76.8 | 0.21 | 1.87 | 0.44 | 2.73 | 4.06 | 15.5 | 30 |
ML20-52 | 1.J1 | 78.2 | 0.17 | 2.07 | 0.57 | 3.26 | 3.27 | 15.4 | 33 | |
ML20-52 | 1.J2 | 75.2 | 0.22 | 2.26 | 0.48 | 2.81 | 4.39 | 16.1 | 27 | |
ML20-52 | 1.J5 | 77.3 | 0.21 | 1.83 | 0.46 | 3.17 | 3.56 | 15.4 | 31 | |
LL20-17 | 4.4 | ⅠB型角 闪石 | 80.5 | 0.16 | 1.03 | 0.26 | 2.23 | 3.93 | 14.1 | 31 |
LL20-17 | 4.6 | 79.7 | 0.17 | 1.1 | 0.27 | 2.38 | 3.95 | 14.4 | 31 | |
LL20-18 | 2.4 | 74.3 | 0.29 | 1.97 | 0.45 | 2.85 | 4.22 | 15.6 | 29 | |
LL20-18 | 2.5 | 74.6 | 0.3 | 1.94 | 0.45 | 2.88 | 4.17 | 15.4 | 29 | |
LL20-18 | 4.3 | 75.4 | 0.26 | 1.79 | 0.37 | 2.55 | 4.24 | 15.2 | 27 | |
LL20-18 | 4.4 | 75.5 | 0.25 | 1.77 | 0.39 | 2.6 | 4.28 | 15.3 | 28 | |
LL20-18 | 4.5 | 75.9 | 0.24 | 1.92 | 0.44 | 2.67 | 4.22 | 15.5 | 29 | |
LL20-18 | 4.6 | 75.4 | 0.26 | 1.85 | 0.42 | 2.67 | 4.2 | 15.5 | 29 | |
LL20-12 | 1.3 | Ⅱ型角 闪石 | 76.7 | 0.26 | 1.91 | 0.46 | 2.77 | 3.47 | 14.9 | 30 |
LL20-12 | 1.4 | 76.7 | 0.24 | 1.93 | 0.44 | 2.65 | 3.43 | 14.8 | 29 | |
LL20-12 | 1.8 | 76.8 | 0.26 | 1.9 | 0.48 | 2.9 | 3.52 | 15 | 31 | |
LL20-12 | 2.2 | 75.5 | 0.3 | 2.25 | 0.54 | 2.98 | 3.46 | 15.2 | 30 | |
LL20-13 | 1.2 | 75.8 | 0.3 | 2.01 | 0.46 | 2.74 | 3.73 | 14.9 | 29 | |
LL20-13 | 1.3 | 75.4 | 0.29 | 2.15 | 0.47 | 2.74 | 3.59 | 15.1 | 28 | |
LL20-13 | 2.1 | 77.4 | 0.25 | 1.8 | 0.43 | 2.64 | 3.71 | 14.8 | 30 | |
LL20-13 | 2.3 | 74.4 | 0.28 | 3.09 | 0.75 | 3.04 | 3.6 | 15.5 | 30 | |
LL20-13 | 2.5 | 76.2 | 0.29 | 2.11 | 0.48 | 2.78 | 3.84 | 15.1 | 29 | |
LL20-15 | 4.3 | 78.2 | 0.21 | 1.38 | 0.3 | 2.44 | 4.14 | 15 | 28 | |
LL20-15 | 4.4 | 78.1 | 0.21 | 1.49 | 0.34 | 2.62 | 4.11 | 15.5 | 29 |
Fig.11 Equilibrium tests between clinopyroxenes (a) and amphibole (b) and their host rocks of Lilong intermediate rocks. The dotted curves after reference [75] represent the range of equilibrium compositions between mineral and melt using an Fe-Mg distribution coefficient of 0.28±0.08 for clinopyroxene (after reference [53]) and 0.28±0.11 for amphibole (after reference [62]).
岩性 | 矿物 | Mg# | M | An | Nb/Ta | Nb/Ta 平衡熔体 | Sr/Y | Sr/Y平衡熔体 | ∑REE含量/ 10-6 | 深度/km |
---|---|---|---|---|---|---|---|---|---|---|
含单斜辉石 石英闪长岩 | Ⅰ型单斜 辉石 | 69~80 | 38~53 | 0.18~0.48 | 0.59~1.55 | 76.1~185.2 | 23.6~28.7 | |||
含单斜辉石 石英闪长岩 | Ⅱ型单斜 辉石 | 74~77 | 44~47 | 0.80~0.91 | 2.57~2.91 | 51.5~58.8 | 18.7~20.1 | |||
含单斜辉石 石英闪长岩 | ⅠA型角 闪石 | 62~63 | 27~33 | 13.4~14.9 | 12.6~14.0 | 0.23~0.28 | 4.59~6.53 | 471.2~530.2 | 12.2~16.4 | |
含单斜辉石 石英闪长岩 | ⅠB型角 闪石 | 61~67 | 27~31 | 12.3~22.2 | 11.6~20.9 | 0.70~0.85 | 10.7~18.29 | 104.7~196.2 | 7.7~15.1 | |
黑云母闪 长岩 | Ⅱ型角 闪石 | 59~66 | 29~36 | 13.3~22.2 | 12.5~20.9 | 0.56~1.61 | 9.53~30.7 | 129.6~200 | 9.5~12.6 | |
两种岩性 都存在 | 斜长石 | 35~48 | ||||||||
含单斜辉石 石英闪长岩 | 黑云母 | 12.1~21.7 | 3.63~6.50 | 6.22~7.44 | ||||||
黑云母闪 长岩 | 黑云母 | 9.40~12.0 | 2.83~3.59 | 6.76~7.24 |
Table 12 Main features of some rock-forming minerals in intermediate rocks from the Lilong area
岩性 | 矿物 | Mg# | M | An | Nb/Ta | Nb/Ta 平衡熔体 | Sr/Y | Sr/Y平衡熔体 | ∑REE含量/ 10-6 | 深度/km |
---|---|---|---|---|---|---|---|---|---|---|
含单斜辉石 石英闪长岩 | Ⅰ型单斜 辉石 | 69~80 | 38~53 | 0.18~0.48 | 0.59~1.55 | 76.1~185.2 | 23.6~28.7 | |||
含单斜辉石 石英闪长岩 | Ⅱ型单斜 辉石 | 74~77 | 44~47 | 0.80~0.91 | 2.57~2.91 | 51.5~58.8 | 18.7~20.1 | |||
含单斜辉石 石英闪长岩 | ⅠA型角 闪石 | 62~63 | 27~33 | 13.4~14.9 | 12.6~14.0 | 0.23~0.28 | 4.59~6.53 | 471.2~530.2 | 12.2~16.4 | |
含单斜辉石 石英闪长岩 | ⅠB型角 闪石 | 61~67 | 27~31 | 12.3~22.2 | 11.6~20.9 | 0.70~0.85 | 10.7~18.29 | 104.7~196.2 | 7.7~15.1 | |
黑云母闪 长岩 | Ⅱ型角 闪石 | 59~66 | 29~36 | 13.3~22.2 | 12.5~20.9 | 0.56~1.61 | 9.53~30.7 | 129.6~200 | 9.5~12.6 | |
两种岩性 都存在 | 斜长石 | 35~48 | ||||||||
含单斜辉石 石英闪长岩 | 黑云母 | 12.1~21.7 | 3.63~6.50 | 6.22~7.44 | ||||||
黑云母闪 长岩 | 黑云母 | 9.40~12.0 | 2.83~3.59 | 6.76~7.24 |
[1] |
HU J Q, LI X W, XU J F, et al. Generation of coeval metaluminous and muscovite-bearing peraluminous granitoids in the same composite pluton in West Qinling, NE Tibetan Plateau[J]. Lithos, 2019, 344/345: 374-392.
DOI URL |
[2] | WANG D, WANG X L, BINDEMAN I N, et al. Ephemeral magma reservoirs during the incremental growth of the Neoproterozoic Jiuling composite batholith in South China[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2021JB022758. |
[3] |
JAHN I, CLARK C, REDDY S, et al. Zircon U-Pb geochronology and Hf-O isotope characteristics of granitoids from the Capricorn orogen, western Australia[J]. Journal of Petrology, 2021, 62(11): egab083.
DOI URL |
[4] |
YANG J H, WU F Y, WILDE S A, et al. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology, 2007, 153 (2): 177-190.
DOI URL |
[5] |
STEVENS G, VILLAROS A, MOYEN J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology, 2007, 35(1): 9-12.
DOI URL |
[6] |
CLEMENS J D, STEVENS G, FARINA F. The enigmatic sources of I-type granites: the peritectic connexion[J]. Lithos, 2011, 126(3/4): 174-181.
DOI URL |
[7] |
ZHU Y, LAI S C, QIN J F, et al. Peritectic assemblage entrainment (PAE) model for the petrogenesis of Neoproterozoic high-maficity I-type granitoids in the western Yangtze Block, South China[J]. Lithos, 2021, 402/403: 106247.
DOI URL |
[8] | 王日香, 李小伟, 管琪, 等. 源区组成与转熔矿物组合的选择性带入对花岗岩成分变化的影响:以南秦岭宁陕花岗岩体群为例[J]. 岩石学报, 2021, 37(12): 3815-3848. |
[9] |
DUCEA M N, SALEEBY J B, BERGANTZ G. The architecture, chemistry, and evolution of continental magmatic arcs[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 299-331.
DOI URL |
[10] |
JAGOUTZ O, KELEMEN P B. Role of arc processes in the formation of continental crust[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 363-404.
DOI URL |
[11] | 马昌前, 李艳青. 花岗岩体的累积生长与高结晶度岩浆的分异[J]. 岩石学报, 2017, 33(5): 1479-1488. |
[12] | 王孝磊. 花岗岩研究的若干新进展与主要科学问题[J]. 岩石学报, 2017, 33(5): 1445-1458. |
[13] |
WEINBERG R F, VERNON R H, SCHMELING H. Processes in mushes and their role in the differentiation of granitic rocks[J]. Earth-Science Reviews, 2021, 220: 103665.
DOI URL |
[14] |
COLLINS W J, MURPHY J B, JOHNSON T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13(5): 331-338.
DOI URL |
[15] | CASHMAN K V, SPARKS R S J, BLUNDY J D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes[J]. Science, 2017, 355(6331): eaag3055. |
[16] |
MAGEE C, STEVENSON C T E, EBMEIER S K, et al. Magma plumbing systems: a geophysical perspective[J]. Journal of Petrology, 2018, 59(6): 1217-1251.
DOI URL |
[17] |
JACKSON M D, BLUNDY J, SPARKS R S J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust[J]. Nature, 2018, 564(7736): 405-409.
DOI URL |
[18] | 周瑶琪, 周腾飞, 马昌前, 等. 山东东部早白垩世青山期穿地壳岩浆系统与热隆滑脱成盆[J]. 地球科学, 2018, 43(10): 3373-3390. |
[19] | 马昌前, 王连训, 邹博文, 等. 长英质岩浆系统晶粥再活化与岩浆混合过程[C]// 中国矿物岩石地球化学学会第 17 届学术年会论文摘要集. 贵阳: 中国矿物岩石地球化学学会, 2019: 346-347. |
[20] |
ZHOU J S, YANG Z S, WANG Q, et al. Extraction of high-silica granites from an upper crustal magma reservoir: insights from the Narusongduo magmatic system, Gangdese arc[J]. American Mineralogist, 2020, 105(10): 1572-1584.
DOI URL |
[21] | 谢元惠, 单伟, 于学峰, 等. 胶东白垩纪煌斑岩中单斜辉石再循环晶的识别及其地质意义[J]. 岩石学报, 2021, 37(7): 2203-2233. |
[22] | SPARKS R S J, ANNEN C, BLUNDY J D, et al. Formation and dynamics of magma reservoirs[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2139, 377(2139): 20180019. |
[23] |
JERRAM D A, MARTIN V M. Understanding crystal populations and their significance through the magma plumbing system[J]. Geological Society, London, Special Publications, 2008, 304(1): 133-148.
DOI URL |
[24] | 罗照华, 杨宗锋, 代耕, 等. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1): 176-181. |
[25] | 马昌前, 邹博文, 高珂, 等. 晶粥储存、侵入体累积组装与花岗岩成因[J]. 地球科学, 2020, 45(12): 4332-4351. |
[26] |
BROWNE B L, EICHELBERGER J C, PATINO L C, et al. Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan[J]. Journal of Volcanology and Geothermal Research, 2006, 154(1/2): 103-116.
DOI URL |
[27] |
HUMPHREYS M C S, BLUNDY J D, SPARKS R S J. Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning[J]. Journal of Petrology, 2006, 47(12): 2303-2334.
DOI URL |
[28] |
HIBBARD M J. The magma mixing origin of mantled feldspars[J]. Contributions to Mineralogy and Petrology, 1981, 76(2): 158-170.
DOI URL |
[29] |
BUSSY F. The rapakivi texture of feldspars in a plutonic mixing environment: a dissolution-recrystallization process?[J]. Geological Journal, 1990, 25(3/4): 319-324.
DOI URL |
[30] | 王晓霞, 王涛, 卢欣祥. 环斑花岗岩研究及存在的问题[J]. 地质科技情报, 2001, 20(4): 19-23. |
[31] | 宁亚格, 李小伟, 胡俊强, 等. 西秦岭三叠纪酸性侵入岩中高An值斜长石的成因及其地质意义[J]. 岩石学报, 2021, 37(11): 3527-3547. |
[32] | SPENCER C J, YAKYMCHUK C, KIRKLAND C L, et al. Metasediment-derived melts in subduction-zone magmas and their influence on crustal evolution[J]. Journal of Petrology, 2021, 62(12): egab093. |
[33] | 张泽明, 王金丽, 董昕, 等. 青藏高原冈底斯带南部的紫苏花岗岩: 安第斯型造山作用的证据[J]. 岩石学报, 2009, 25(7): 1707-1720. |
[34] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[35] |
MO X X, DONG G C, ZHAO Z D, et al. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision: zircon SHRIMP U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(1):66-76.
DOI URL |
[36] |
WEN D R, CHUNG S L, SONG B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications[J]. Lithos, 2008, 105(1/2): 1-11.
DOI URL |
[37] | 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. |
[38] |
ZHANG Z M, DING H X, DONG X, et al. The Mesozoic magmatic, metamorphic, and tectonic evolution of the eastern Gangdese magmatic arc, southern Tibet[J]. GSA Bulletin, 2022, 134(7/8): 1721-1740.
DOI URL |
[39] | 莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. |
[40] | 董国臣. 林周盆地林子宗火山岩及其所含的印度-欧亚大陆碰撞信息研究[D]. 北京: 中国地质大学(北京), 2002: 1-150. |
[41] | 管琪, 朱弟成, 赵志丹, 等. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]. 岩石学报, 2010, 26(7): 2165-2179. |
[42] |
GUO L, JAGOUTZ O, SHINEVAR W J, et al. Formation and composition of the Late Cretaceous Gangdese arc lower crust in southern Tibet[J]. Contributions to Mineralogy and Petrology, 2020, 175(6): 58.
DOI URL |
[43] |
XU Z Q, JI S C, CAI Z H, et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: constraints from deformation, fabrics and geochronology[J]. Gondwana Research, 2012, 21(1): 19-36.
DOI URL |
[44] |
ZHANG Z M, DING H X, PALIN R M, et al. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust[J]. Gondwana Research, 2020, 77: 136-146.
DOI URL |
[45] |
ZHANG Z M, ZHAO G C, SANTOSH M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17(4): 615-631.
DOI URL |
[46] | KRETZ R. Symbols for rock-forming minerals[J]. American Mineralogist, 1983, 68(1):277-279. |
[47] |
LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[48] | 汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436. |
[49] |
PECCERILLO A, TAYLOR S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.
DOI URL |
[50] |
MANIER P, PICCOLO P. Tectonic discrimination of granitiods[J]. Geological Society of America Bulletin, 1989, 101 (5): 635-643..
DOI URL |
[51] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[52] | 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. |
[53] |
PUTIRKA K D. Thermometers and barometers for volcanic systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 61-120.
DOI URL |
[54] |
PERINELLI C, MOLLO S, GAETA M, et al. An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms[J]. American Mineralogist, 2016, 101(12): 2774-2777.
DOI URL |
[55] |
LI X Y, ZHANG C, BEHRENS H, et al. Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression[J]. Lithos, 2020, 362/363: 105469.
DOI URL |
[56] |
RIDOLFI F. Amp-TB2: an updated model for calcic amphibole thermobarometry[J]. Minerals, 2021, 11(3): 324.
DOI URL |
[57] | SMITH J V. Feldspar minerals, Vol 2. Chemical and textural properties[M]. Berlin: Springer,1974. |
[58] |
LEAKE B E, WOOLLEY A R, ARPS C E S, et al. Nomenclature of amphiboles report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. European Journal of Mineralogy, 1997, 9(3): 623-651.
DOI URL |
[59] | FOSTER M D. Interpretation of the composition of trioctahedral micas[J]. Geoogical Survey Profession Paper, 1960, 354-B: 11-49. |
[60] |
NEAVE D A, PUTIRKA K D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones[J]. American Mineralogist, 2017, 102(4): 777-794.
DOI URL |
[61] |
NEAVE D A, BALI E, GUDFINNSSON G H, et al. Clinopyroxene-liquid equilibria and geothermobarometry in natural and experimental tholeiites: the 2014-2015 Holuhraun eruption, Iceland[J]. Journal of Petrology, 2019, 60(8): 1653-1680.
DOI URL |
[62] |
PUTIRKA K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes[J]. American Mineralogist, 2016, 101(4): 841-858.
DOI URL |
[63] |
CARTY K, SCHWARTZ J J, WIESENFELD J, et al. The generation of arc andesites and dacites in the lower crust of a cordilleran arc, Fiordland, New Zealand[J]. Journal of Petrology, 2021, 62(9): egab043.
DOI URL |
[64] |
HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90(2/3): 316-328.
DOI URL |
[65] |
UCHIDA E, ENDO S, MAKINO M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J]. Resource Geology, 2007, 57(1): 47-56.
DOI URL |
[66] |
MÜNTENER O, ULMER P. Arc crust formation and differentiation constrained by experimental petrology[J]. American Journal of Science, 2018, 318(1): 64-89.
DOI URL |
[67] |
PICHAVANT M, MACDONALD R. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc[J]. Contributions to Mineralogy and Petrology, 2007, 154(5): 535-558.
DOI URL |
[68] |
BÉDARD J H. Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach[J]. Contributions to Mineralogy and Petrology, 2001, 141(6): 747-771.
DOI URL |
[69] |
ZHANG J, HUMPHREYS M C S, COOPER G F, et al. Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles[J]. American Mineralogist, 2017, 102(6): 1353-1367.
DOI URL |
[70] |
HUMPHREYS M C S, COOPER G F, ZHANG J, et al. Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole[J]. Contributions to Mineralogy and Petrology, 2019, 174: 9.
DOI URL |
[71] |
TIEPOLO M, OBERTI R, ZANETTI A, et al. Trace-element partitioning between amphibole and silicate melt[J]. Reviews in Mineralogy and Geochemistry, 2007, 67(1): 417-452.
DOI URL |
[72] |
SHIMIZU K, LIANG Y, SUN C G, et al. Parameterized lattice strain models for REE partitioning between amphibole and silicate melt[J]. American Mineralogist, 2017, 102(11): 2254-2267.
DOI URL |
[73] |
WOOD B J, BLUNDY J D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt[J]. Contributions to Mineralogy and Petrology, 1997, 129(2/3): 166-181.
DOI URL |
[74] | 牛俊杰. 下地壳埃达克质岩浆房的发现: 来自角闪石循环晶的证据[D]. 北京: 中国地质大学(北京), 2020: 1-92. |
[75] |
RHODES J M, DUNGAN M A, BLANCHARD D P, et al. Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22° N on the Mid-Atlantic Ridge[J]. Tectonophysics, 1979, 55(1/2): 35-61.
DOI URL |
[76] |
UBIDE T, GALÉ C, LARREA P, et al. Antecrysts and their effect on rock compositions: the Cretaceous lamprophyre suite in the Catalonian Coastal Ranges (NE Spain)[J]. Lithos, 2014, 206/207: 214-233.
DOI URL |
[77] |
CHARLIER B L A, WILSON C J N, LOWENSTERN J B, et al. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons[J]. Journal of Petrology, 2004, 46(1): 3-32.
DOI URL |
[78] |
DAVIDSON J P, MORGAN D J, CHARLIER B L A, et al. Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 273-311.
DOI URL |
[79] |
LARREA P, FRANÇA Z, LAGO M, et al. Magmatic processes and the role of antecrysts in the genesis of Corvo island (Azores archipelago, Portugal)[J]. Journal of Petrology, 2012, 54(4): 769-793.
DOI URL |
[80] | UBIDE T, GALÉ C, ARRANZ E, et al. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning[J]. Lithos, 2014, 184/185/186/187: 225-242. |
[81] |
CHANG J, AUDÉTAT A, LI J W. In situ reaction-replacement origin of hornblendites in the Early Cretaceous Laiyuan complex, North China Craton, and implications for its tectono-magmatic evolution[J]. Journal of Petrology, 2021, 62(5): egab030.
DOI URL |
[82] | CHANG J, AUDÉTAT A. Petrogenesis and metal content of hornblende-rich xenoliths from two laramide-age magma systems in southwestern USA: insights into the metal budget of arc magmas[J]. Journal of Petrology, 2018, 59(10): 1869-1898. |
[83] |
SMITH D J. Clinopyroxene precursors to amphibole sponge in arc crust[J]. Nature Communications, 2014, 5: 4329.
DOI PMID |
[84] |
FODEN J D, GREEN D H. Possible role of amphibole in the origin of andesite: some experimental and natural evidence[J]. Contributions to Mineralogy and Petrology, 1992, 109(4): 479-493.
DOI URL |
[85] |
HE P L, HUANG X L, YANG F, et al. Mineralogy constraints on magmatic processes controlling adakitic features of early Permian high-magnesium diorites in the western Tianshan orogenic belt[J]. Journal of Petrology, 2021, 61(11/12): egaa114.
DOI URL |
[86] | GREEN T, ADAM J, SITE S. Proton microprobe determined trace element partition coefficients between pargasite, augite and silicate or carbonatitic melts[J]. EOS (American Geophysical Union Transactions), 1993, 74: 340. |
[87] |
NORMAN M, GARCIA M O, PIETRUSZKA A J. Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawai’i, and petrogenesis of differentiated rift-zone lavas[J]. American Mineralogist, 2005, 90(5/6): 888-899.
DOI URL |
[88] |
CASTILLO P R. Adakite petrogenesis[J]. Lithos, 2012, 134/135: 304-316.
DOI URL |
[89] |
RODRÍGUEZ C, SELLÉS D, DUNGAN M, et al. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S; Andean southern volcanic zone, central Chile)[J]. Journal of Petrology, 2007, 48(11): 2033-2061.
DOI URL |
[90] |
ROONEY T O, FRANCESCHI P, HALL C M. Water-saturated magmas in the Panama canal region: a precursor to adakite-like magma generation?[J]. Contributions to Mineralogy and Petrology, 2011, 161(3): 373-388.
DOI URL |
[91] |
FORNI F, BACHMANN O, MOLLO S, et al. The origin of a zoned ignimbrite: insights into the Campanian ignimbrite magma chamber (Campi Flegrei, Italy)[J]. Earth and Planetary Science Letters, 2016, 449: 259-271.
DOI URL |
[92] |
TECCHIATO V, GAETA M, MOLLO S, et al. Snapshots of primitive arc magma evolution recorded by clinopyroxene textural and compositional variations: the case of hybrid crystal-rich enclaves from Capo Marargiu Volcanic District (Sardinia, Italy)[J]. American Mineralogist, 2018, 103(6): 899-910.
DOI URL |
[93] |
MELEKHOVA E, BLUNDY J, ROBERTSON R, et al. Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles[J]. Journal of Petrology, 2015, 56(1): 161-192.
DOI URL |
[94] |
NASH W P, CRECRAFT H R. Partition coefficients for trace elements in silicic magmas[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2309-2322.
DOI URL |
[1] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
[2] | CUI Xiaoliang, SU Shangguo, ZHANG Yanan, CHEN Xuegen, SI Xiaobo, HUO Xiaoyan. Deep magmatic process of the Fushan complex in the southern section of Taihang Mountain, Hebei Province and its tectonic significance [J]. Earth Science Frontiers, 2022, 29(1): 342-363. |
[3] | ZHANG Juquan, LIANG Xian, YAN Lina, LI Shengrong, SHEN Junfeng, LU Jing, WU Weizhe, LI Qing. The mineralogical records of magmatic process: cases from Mesozoic intrusive rocks in the Handan-Xingtai region [J]. Earth Science Frontiers, 2020, 27(5): 70-87. |
[4] | ZHANG Baoyue,SUN Jiankun,LUO Xiong,JIN Weijun,WANG Long,DU Xueliang,CHEN Wanfeng,DU Jun,ZHANG Qi,ZHU Yueqin. Data analysis of major and trace element of gabbro clinopyroxene from different tectonic setting [J]. Earth Science Frontiers, 2019, 26(4): 33-44. |
[5] | LIU Lulu,SU Shangguo,YANG Ruina,LUO Zhaohua1,CUI Xiaoliang. Characteristics and research significance of matrix minerals in Tanling poly-phenocryst plagioporphyry, Wu'an, Hebei Province [J]. Earth Science Frontiers, 2019, 26(1): 286-299. |
[6] | DU Jingguo, DU Yangsong, CHEN Linjie. Magmatic processes in Jiaochong gold deposit, Tongling, China: Evidence from dioritic porphyrite [J]. Earth Science Frontiers, 2016, 23(3): 221-229. |
[7] | . Petrology and metamorphic temperaturepressure conditions of Xilinhot Group, Inner Mongolia, China. [J]. Earth Science Frontiers, 2012, 19(5): 136-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||