Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 73-87.DOI: 10.13745/j.esf.sf.2021.9.20
Previous Articles Next Articles
ZHENG Cheng1(), SUN Chengjun2,3, JIN Hong4, HUANG Yuhuan1, YUE Xin'an1, YANG Guipeng1,2, DING Haibing1,2,*(
)
Received:
2020-07-05
Revised:
2020-12-01
Online:
2022-09-25
Published:
2022-08-24
Contact:
DING Haibing
CLC Number:
ZHENG Cheng, SUN Chengjun, JIN Hong, HUANG Yuhuan, YUE Xin'an, YANG Guipeng, DING Haibing. Compositions, sources and formation processes of abyssal and hadal sediments in the northern Yap Trench[J]. Earth Science Frontiers, 2022, 29(5): 73-87.
站位 | 经度/°E | 纬度/°N | 采样深度/m | 沉积物柱长度/cm | 在海沟中的位置 | 水深区域 |
---|---|---|---|---|---|---|
D109 | 138.386 2 | 9.898 7 | 4 435 | 8 | 西侧崖壁 | 深渊 |
D111 | 138.515 7 | 9.867 7 | 6 779 | 7 | 西侧崖壁 | 超深渊 |
S01 | 138.681 0 | 9.661 2 | 5 058 | 8 | 东侧崖壁 | 深渊 |
D113 | 138.656 8 | 9.865 5 | 6 578 | 8 | 东侧崖壁 | 超深渊 |
S02 | 138.820 8 | 9.645 0 | 4 568 | 8 | 东侧崖壁 | 深渊 |
Table 1 Latitude, longitude and water depths of the sampling stations
站位 | 经度/°E | 纬度/°N | 采样深度/m | 沉积物柱长度/cm | 在海沟中的位置 | 水深区域 |
---|---|---|---|---|---|---|
D109 | 138.386 2 | 9.898 7 | 4 435 | 8 | 西侧崖壁 | 深渊 |
D111 | 138.515 7 | 9.867 7 | 6 779 | 7 | 西侧崖壁 | 超深渊 |
S01 | 138.681 0 | 9.661 2 | 5 058 | 8 | 东侧崖壁 | 深渊 |
D113 | 138.656 8 | 9.865 5 | 6 578 | 8 | 东侧崖壁 | 超深渊 |
S02 | 138.820 8 | 9.645 0 | 4 568 | 8 | 东侧崖壁 | 深渊 |
Fig.2 Vertical variations of the concentration of TOC, water percentage and manganese nodule content in the sediment samples from different stations(the data of S02 and D113 station obtained from [13], the data of D111 station obtained from [14])
沉积层深度/cm | D109 | S02 | S01 | D113 | D111 |
---|---|---|---|---|---|
0~<1 | 钛铁矿 | 重晶石 | 长石 | ||
1~<2 | 方解石 | 钛铁矿 | |||
2~<3 | 纤维蛇纹石 | 钛铁矿 | |||
3~<4 | 钛铁矿 | 石英 | |||
4~<5 | |||||
5~<6 | 纤维蛇纹石 | ||||
6~<7 | 辉石 | 重晶石 | |||
7~8 | 纤维蛇纹石 |
Table 2 Some typical minerals found in the sediments from abyss and hadal zone of the northern Yap Trench
沉积层深度/cm | D109 | S02 | S01 | D113 | D111 |
---|---|---|---|---|---|
0~<1 | 钛铁矿 | 重晶石 | 长石 | ||
1~<2 | 方解石 | 钛铁矿 | |||
2~<3 | 纤维蛇纹石 | 钛铁矿 | |||
3~<4 | 钛铁矿 | 石英 | |||
4~<5 | |||||
5~<6 | 纤维蛇纹石 | ||||
6~<7 | 辉石 | 重晶石 | |||
7~8 | 纤维蛇纹石 |
Fig.6 Vertical variations of concentrations of major elements in the core sediment from the northern Yap Trench (the data of S02 and D113 station obtained from [13], the data of D111 station obtained from [14])
Fig.7 Vertical variations of concentrations of trace elements in the core sediment from the northern Yap Trench (the data of S02 and D113 station obtained from [13], the data of D111 station obtained from [14])
站位 | 深度/cm | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0~<1 | 1~<2 | 2~<3 | 3~<4 | 4~<5 | 5~<6 | 6~<7 | 7~8 | ||||||||||
D109 | Fe/Al | 1.08 | 1.06 | 1.03 | 0.99 | 1.14 | 1.16 | 1.03 | 0.98 | ||||||||
Ti/Al | 0.12 | 0.12 | 0.11 | 0.09 | 0.15 | 0.12 | 0.12 | 0.11 | |||||||||
S01 | Fe/Al | 0.74 | 1.46 | 0.90 | 0.86 | 0.87 | 0.84 | 0.83 | 0.81 | ||||||||
Ti/Al | 0.09 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.07 | |||||||||
S02 | Fe/Al | 0.78 | 0.74 | 0.72 | 0.71 | 0.71 | 0.70 | 0.73 | 0.74 | ||||||||
Ti/Al | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | |||||||||
D113 | Fe/Al | 0.92 | 0.88 | 0.90 | 0.88 | 0.88 | 0.90 | 0.91 | 0.91 | ||||||||
Ti/Al | 0.07 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | |||||||||
D111 | Fe/Al | 1.01 | 1.18 | 1.42 | 1.08 | 0.91 | 0.90 | 0.91 | |||||||||
Ti/Al | 0.11 | 0.17 | 0.21 | 0.11 | 0.09 | 0.09 | 0.09 |
Table 3 Comparisons of the values of Fe/Al and Ti/Al in the sediment samples (the data of S02 and D113 station obtained from [13], the data of D111 station obtained from [14])
站位 | 深度/cm | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0~<1 | 1~<2 | 2~<3 | 3~<4 | 4~<5 | 5~<6 | 6~<7 | 7~8 | ||||||||||
D109 | Fe/Al | 1.08 | 1.06 | 1.03 | 0.99 | 1.14 | 1.16 | 1.03 | 0.98 | ||||||||
Ti/Al | 0.12 | 0.12 | 0.11 | 0.09 | 0.15 | 0.12 | 0.12 | 0.11 | |||||||||
S01 | Fe/Al | 0.74 | 1.46 | 0.90 | 0.86 | 0.87 | 0.84 | 0.83 | 0.81 | ||||||||
Ti/Al | 0.09 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.07 | |||||||||
S02 | Fe/Al | 0.78 | 0.74 | 0.72 | 0.71 | 0.71 | 0.70 | 0.73 | 0.74 | ||||||||
Ti/Al | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | |||||||||
D113 | Fe/Al | 0.92 | 0.88 | 0.90 | 0.88 | 0.88 | 0.90 | 0.91 | 0.91 | ||||||||
Ti/Al | 0.07 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | |||||||||
D111 | Fe/Al | 1.01 | 1.18 | 1.42 | 1.08 | 0.91 | 0.90 | 0.91 | |||||||||
Ti/Al | 0.11 | 0.17 | 0.21 | 0.11 | 0.09 | 0.09 | 0.09 |
[1] | 瞿洪宝, 郑彦鹏, 刘晨光, 等. 晚始新世以来雅浦海沟-岛弧构造演化模式[J]. 海洋科学进展, 2017, 35(2): 249-257. |
[2] |
DING H, SUN C. Towards the understanding from sea surface to hadal zone: a multidisciplinary study of the Yap Trench[J]. Journal of Oceanology and Limnology, 2020, 38(3): 591-592.
DOI URL |
[3] |
KOBAYASHI K. Origin of the Palau and Yap Trench-arc systems[J]. Geophysical Journal International, 2004, 157(3): 1303-1315.
DOI URL |
[4] |
FUJIWARA T, TAMURA C, NISHIZAWA A, et al. Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1/2): 69-86.
DOI URL |
[5] |
SATO T, KASAHARA J, KATAO H, et al. Seismic observations at the Yap Islands and the northern Yap Trench[J]. Tectonophysics, 1997, 271(3/4): 285-294.
DOI URL |
[6] |
KIMURA G, KOGA K, FUJIOKA K. Deformed soft sediments at the junction between the Mariana and Yap Trenches[J]. Journal of Structural Geology, 1989, 11(4): 463-472.
DOI URL |
[7] | BECCALUVA L, SERRI G, DOSTAL J. Geochemistry of volcanicrocks from the Mariana, Yap and Palau Trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system[M]// Developments in Geotectonics. Amsterdam: Elsevier, 1986: 481-508. |
[8] |
YANG Y, WU S, GAO J, et al. Geology of the Yap Trench: new observations from a transect near 10°N from manned submersible Jiaolong[J]. International Geology Review, 2018, 60(16): 1941-1953.
DOI URL |
[9] |
CHEN L, TANG L, LI X, et al. Geochemistry of peridotites from the Yap Trench, western Pacific: implications for subduction zone mantle evolution[J]. International Geology Review, 2019, 61(9): 1037-1051.
DOI URL |
[10] |
LIU Y, LIU X, LV X, et al. Watermass properties and deep currents in the northern Yap Trench observed by the Submersible Jiaolong system[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 139: 27-42.
DOI URL |
[11] |
DONG D, ZHANG Z, BAI Y, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction[J]. Tectonophysics, 2018, 722: 410-421.
DOI URL |
[12] |
XU W, GAO Y H, GONG L F, et al. Fungal diversity in the deep-sea hadal sediments of the Yap Trench by cultivation and high throughput sequencing methods based on ITS rRNA gene[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 145: 125-136.
DOI URL |
[13] | 岳新安, 闫艺心, 丁海兵, 等. 雅浦海沟沉积物的生物地球化学特征及其海洋学意义[J]. 中国海洋大学学报(自然科学版), 2018, 48(3): 88-96. |
[14] |
HUANG Y, SUN C, YANG G, et al. Geochemical characteristics of hadal sediment in the northern Yap Trench[J]. Journal of Oceanology and Limnology, 2020, 38(3): 650-664.
DOI URL |
[15] |
YANG J, CUI Z, DADA O A, et al. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, Northwest Pacific Ocean[J]. Marine Pollution Bulletin, 2018, 135: 1035-1041.
DOI URL |
[16] |
TEN BRINK U S, BARKAN R, ANDREWS B D, et al. Size distributions and failure initiation of submarine and subaerial landslides[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 31-42.
DOI URL |
[17] |
SCHUETH J D, BRALOWER T J. The relationship between environmental change and the extinction of the nanoplankton Discoaster in the early Pleistocene[J]. Paleoceanography, 2015, 30(7): 863-876.
DOI URL |
[18] | 张金鹏, 邓希光, 朱本铎, 等. 西太平洋挑战者深渊海底浅表层的硅藻软泥[J]. 微体古生物学报, 2016, 33(1): 1-8. |
[19] | 熊志方, 李铁刚, 翟滨, 等. 低纬度西太平洋末次冰期Ethmodiscus rex 硅藻席粘土矿物特征及形成机制启示[J]. 地球科学: 中国地质大学报, 2010, 35(4): 551-562. |
[20] | 许东禹, 金庆焕, 梁德华. 太平洋中部多金属结核及其形成环境[M]. 北京: 地质出版社, 1994: 83-85. |
[21] |
LANDING W M, BRULAND K W. Manganese in the north Pacific[J]. Earth and Planetary Science Letters, 1980, 49(1): 45-56.
DOI URL |
[22] |
GOLDBERG E D, ARRHENIUS G O S. Chemistry of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1958, 13(2/3): 153-212.
DOI URL |
[23] |
DENG X, YI L, PATERSON G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the Middle Pleistocene: potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2016, 58(1): 49-57.
DOI URL |
[24] |
MOOREW S, STAKES D. Ages of barite-sulfide chimneys from the Mariana trough[J]. Earth and Planetary Science Letters, 1990, 100(1/2/3): 265-274.
DOI URL |
[25] |
MARTIN E E, MACDOUGALL J D, HERBERT T D, et al. Strontium and neodymium isotopic analyses of marine barite separates[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1353-1361.
DOI URL |
[26] | 杨锐, 李国胜, 张洪瑞. 中太平洋CC区第四系沉积物地球化学特征及物源[J]. 物探与化探, 2007, 31(4): 293-297. |
[27] |
MÜELLER P J, MANGINI A. Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230Th and 231Pa[J]. Earth and Planetary Science Letters 1980, 51(1): 94-114.
DOI URL |
[28] |
ICHINO M C, CLARK M R, DRAZEN J C, et al. The distribution of benthic biomass in hadal trenches:a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 100: 21-33.
DOI URL |
[29] |
SNIDERMAN J M K, HELLSTROM J, WOODHEAD J D, et al. Vegetation and climate change in Southwestern Australia during thelast glacial maximum[J]. Geophysical Research Letters, 2019, 46(3): 1709-1720.
DOI URL |
[30] |
LI D, ZHAO J, YAO P, et al. Spatial heterogeneity of organic carbon cycling in sediments of the northern Yap Trench:implications for organic carbon burial[J]. Marine Chemistry, 2020, 223: 103813.
DOI URL |
[31] |
WRIGHT F F. Sedimentation in the world oceans: Alexander P. Lisitzin. (English edition edited by Kelvin S. Rodolfo.) special publication 17, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla., 218 pp., 181 fig.[J]. Marine Geology, 1975, 18(3): 140-141.
DOI URL |
[32] |
PÄLIKE H, LYLE M W, NISHI H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614.
DOI URL |
[33] |
LUO M, ALGEO T J, TONG H, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 70-82.
DOI URL |
[34] |
JAKOB K A, BOLTON C T, WILSON P A, et al. Glacial-interglacial changes in equatorial Pacific surface-water structure during the Plio-Pleistocene intensification of northern Hemisphere Glaciation[J]. Earth and Planetary Science Letters, 2017, 463: 69-80.
DOI URL |
[35] | MOLLER T, SCHULZ H, HAMANN Y, et al. Sedimentology and geochemistry of an exceptionally preserved last interglacial sapropel S5 in the Levantine Basin (Mediterranean Sea)[J]. Marine Geology, 2012, 291/292/293/294: 34-48. |
[36] |
DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518.
DOI URL |
[37] | HAYES S P. Benthic current observations at DOMES sites A, B, and C in the Tropical North Pacific Ocean[J]. Marine Geology and Oceanography of the Pacific Manganese Nodule Province, 1979, 19: 83-112. |
[38] |
KAWABE M, FUJIO S. PacificOcean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
DOI URL |
[39] | 汪品先. 深海沉积与地球系统[J]. 海洋地质与第四纪地质, 2009, 29(4): 1-11. |
[40] |
THUNELL R C. Seasonal and annual variability in particle fluxes in the Gulf of California:a response to climate forcing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 2059-2083.
DOI URL |
[41] | ZHANG Y, LIU Z, ZHAO Y, et al. Mesoscale eddies transport deep-sea sediments[J]. ScientificReports, 2014, 4: 5937. |
[42] | 田壮才, 郭秀军, 乔路正, 等. 南海北部海底沉积物临界起动流速空间分布特征分析[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4287-4294. |
[1] | WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma [J]. Earth Science Frontiers, 2024, 31(1): 500-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||