Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 310-321.DOI: 10.13745/j.esf.sf.2021.9.58
Previous Articles Next Articles
TAN Ning1,2(), ZHANG Zhongshi3,4,5,*(
), GUO Zhengtang1,6,7, WANG Huijun5,8,9
Received:
2021-08-15
Revised:
2021-09-27
Online:
2022-09-25
Published:
2022-08-24
Contact:
ZHANG Zhongshi
CLC Number:
TAN Ning, ZHANG Zhongshi, GUO Zhengtang, WANG Huijun. Modeling study of the impact of tropical seaway changes on East Asian climate[J]. Earth Science Frontiers, 2022, 29(5): 310-321.
试验名 | 边界条件 | 印尼海道 | 巴拿马海道 | 试验时长 | 气候场 |
---|---|---|---|---|---|
Plio2 | 上新世暖期 | 现代 | 关闭 | 1 600年 | 最后100年 |
IndoCAS100 | 上新世暖期 | 打开(深度100 m) | 打开(深度100 m) | 1 600年 | 最后100年 |
IndoCAS100_half | 上新世暖期 | 打开(宽度减少50%,深度100 m) | 打开(宽度减少50%,深度100 m) | 1 600年 | 最后100年 |
Indo100 | 上新世暖期 | 打开(深度100 m) | 关闭 | 1 600年 | 最后100年 |
CAS100 | 上新世暖期 | 现代 | 打开(深度100 m) | 1 600年 | 最后100年 |
Table 1 Setting configurations for each experiment
试验名 | 边界条件 | 印尼海道 | 巴拿马海道 | 试验时长 | 气候场 |
---|---|---|---|---|---|
Plio2 | 上新世暖期 | 现代 | 关闭 | 1 600年 | 最后100年 |
IndoCAS100 | 上新世暖期 | 打开(深度100 m) | 打开(深度100 m) | 1 600年 | 最后100年 |
IndoCAS100_half | 上新世暖期 | 打开(宽度减少50%,深度100 m) | 打开(宽度减少50%,深度100 m) | 1 600年 | 最后100年 |
Indo100 | 上新世暖期 | 打开(深度100 m) | 关闭 | 1 600年 | 最后100年 |
CAS100 | 上新世暖期 | 现代 | 打开(深度100 m) | 1 600年 | 最后100年 |
Fig.3 The relative contribution of Indo constriction (a) and CAS closure (b) on the SST anomaly led by two tropical seaways' closure/constriction (Fig.2a)
Fig.6 Composite plot for the SST anomaly, the ITCZ positions in the Pacific ocean and the major region where precipitation increases in East Asia (a) and longitude-altitude profiles of composed zonal and vertical wind at 31°N (b)
Fig.7 Seasonal SAT anomalies after the closure of tropical seaways (a: JJA, d: DJF) and the relative contribution of the Indo closure alone (b, e) and CAS closure alone (c, f) on the integrated seasonal anomaly
Fig.8 Precipitation anomalies after the closure of tropical seaways and the relative contributions of each closure alone in summer (a-c) and winter (d-f)
序号 | 剖面/钻孔 | 经纬度/(°) | 文献 | 指标 | 指示意义 |
---|---|---|---|---|---|
1 | ODP1146 | 19.27/116.16 | [ | Rb/Sr,CIA,平均粒度 | 4~3 Ma夏季降水加强,冬季风加强 |
2 | 长江三角洲LZK1 | 31.2/121.5 | [ | CIA | 4~3 Ma夏季降水加强 |
3 | 日本西南部 | 34.45/136.3 | [ | 化学风化数据 | 4~3 Ma夏季降水加强 |
4 | 西和 | 34.04/105.23 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 |
5 | 蓝田 | 34/109 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
6 | 西峰 | 35.53/107.58 | [ | 孢粉 | 4.5~3.7 Ma气候变干 |
西峰 | 35.53/107.58 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 | |
西峰 | 35.53/107.58 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 | |
7 | 灵台 | 35.04/107.39 | [ | 古土壤δ13C | 4 Ma后呈变干趋势 |
灵台 | 35.04/107.39 | [ | 黄土粒度 | 4.7~4.3 Ma冬季风加强 | |
8 | 朝那 | 35.6/107.12 | [ | 生物标志物 | 3.8 Ma后夏季风、冬季风均加强 |
9 | 宝德 | 39/111 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
10 | 酒西 | 39.47/97.32 | [ | 孢粉 | 3.6~3.3 Ma后呈变干趋势 |
11 | 鸭湖 | 37.4/94.3 | [ | 孢粉 | 3.6 Ma后呈变干趋势 |
12 | 白家嘴 | 35.53/107.27 | [ | 粉尘累积率 | 3.6 Ma后冬季风加强 |
13 | 佳县 | 38.16/110.5 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 |
14 | ODP885/886 | 44.7/-168.3 | [ | 粉尘累积率 | 3.6 Ma后内陆干旱化加剧,西风急流加强 |
Table 2 Reconstructed data and climatic implications located in East Asia applied in this study
序号 | 剖面/钻孔 | 经纬度/(°) | 文献 | 指标 | 指示意义 |
---|---|---|---|---|---|
1 | ODP1146 | 19.27/116.16 | [ | Rb/Sr,CIA,平均粒度 | 4~3 Ma夏季降水加强,冬季风加强 |
2 | 长江三角洲LZK1 | 31.2/121.5 | [ | CIA | 4~3 Ma夏季降水加强 |
3 | 日本西南部 | 34.45/136.3 | [ | 化学风化数据 | 4~3 Ma夏季降水加强 |
4 | 西和 | 34.04/105.23 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 |
5 | 蓝田 | 34/109 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
6 | 西峰 | 35.53/107.58 | [ | 孢粉 | 4.5~3.7 Ma气候变干 |
西峰 | 35.53/107.58 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 | |
西峰 | 35.53/107.58 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 | |
7 | 灵台 | 35.04/107.39 | [ | 古土壤δ13C | 4 Ma后呈变干趋势 |
灵台 | 35.04/107.39 | [ | 黄土粒度 | 4.7~4.3 Ma冬季风加强 | |
8 | 朝那 | 35.6/107.12 | [ | 生物标志物 | 3.8 Ma后夏季风、冬季风均加强 |
9 | 宝德 | 39/111 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
10 | 酒西 | 39.47/97.32 | [ | 孢粉 | 3.6~3.3 Ma后呈变干趋势 |
11 | 鸭湖 | 37.4/94.3 | [ | 孢粉 | 3.6 Ma后呈变干趋势 |
12 | 白家嘴 | 35.53/107.27 | [ | 粉尘累积率 | 3.6 Ma后冬季风加强 |
13 | 佳县 | 38.16/110.5 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 |
14 | ODP885/886 | 44.7/-168.3 | [ | 粉尘累积率 | 3.6 Ma后内陆干旱化加剧,西风急流加强 |
[1] | MOLNAR P. Closing of the Central American Seaway and the Ice Age: a critical review[J]. Paleoceanography, 2008, 23(2): PA2201. |
[2] |
O'DEA A, LESSIOS H A, COATES A G, et al. Formation of the Isthmus of Panama[J]. Science Advances, 2016, 2(8): e1600883.
DOI URL |
[3] |
MONTES C, CARDONA A, JARAMILLO C, et al. Middle Miocene closure of the Central American Seaway[J]. Science, 2015, 348(6231): 226-229.
DOI URL |
[4] |
CANE M A, MOLNAR P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J]. Nature, 2001, 411(6834): 157-162.
DOI URL |
[5] |
KARAS C, NÜRNBERG D, GUPTA A K, et al. Mid-Pliocene climate change amplified by a switch in indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6): 434-438.
DOI URL |
[6] |
VERHOEVEN K, LOUWYE S, EIRÍKSSON J, et al. A new age model for the Pliocene-Pleistocene Tjörnes section on Iceland: its implication for the timing of North Atlantic-Pacific palaeoceanographic pathways[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1/2): 33-52.
DOI URL |
[7] |
HORIKAWA K, MARTIN E E, BASAK C, et al. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean[J]. Nature Communications, 2015, 6: 7587.
DOI URL |
[8] |
KARAS C, NÜRNBERG D, BAHR A, et al. Pliocene oceanic seaways and global climate[J]. Scientific Reports, 2017, 7: 39842.
DOI URL |
[9] |
COATES A G, STALLARD R F. How old is the Isthmus of Panama?[J]. Bulletin of Marine Science, 2013, 89(4): 801-813.
DOI URL |
[10] | MARSHALL L G. Geochronology and land-mammal biochronology of the transamerican faunal interchange[M]// The Great American Biotic Interchange. Boston: Springer US, 1985. |
[11] |
HAUG G H, TIEDEMANN R, ZAHN R, et al. Role of Panama uplift on oceanic freshwater balance[J]. Geology, 2001, 29(3): 207.
DOI URL |
[12] |
TODD J A, JACKSON J B C, JOHNSON K G, et al. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene[J]. Proceedings Biological Sciences, 2002, 269(1491): 571-577.
DOI URL |
[13] | O'DEA A, JACKSON J. Environmental change drove macroevolution in cupuladriid bryozoans[J]. Proceedings Biological Sciences, 2009, 276(1673): 3629-3634. |
[14] |
JACKSON J B C, JUNG P, COATES A G, et al. Diversity and extinction of tropical American mollusks and emergence of the isthmus of Panama[J]. Science, 1993, 260(5114): 1624-1626.
DOI URL |
[15] |
ZHANG X, PRANGE M, STEPH S, et al. Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: insights from a multi-model study[J]. Earth and Planetary Science Letters, 2012, 317/318: 76-84.
DOI URL |
[16] |
KEIGWIN L. Isotopic paleoceanography of the caribbean and east Pacific: role of Panama uplift in late Neogene time[J]. Science, 1982, 217(4557): 350-353.
DOI URL |
[17] | KLOCKER A. Testing the influence of the Central American Seaway on orbitally forced Northern Hemisphere glaciation[J]. Geophysical Research Letters, 2005, 32(3): L03703. |
[18] |
LUNT D J, FOSTER G L, HAYWOOD A M, et al. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels[J]. Nature, 2008, 454(7208): 1102-1105.
DOI URL |
[19] |
TAN N, RAMSTEIN G, DUMAS C, et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate[J]. Earth and Planetary Science Letters, 2017, 472: 266-276.
DOI URL |
[20] |
NATHAN S A, LECKIE R M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (-13.2-5.8 Ma): role of sea-level change and implications for equatorial circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(3/4): 140-159.
DOI URL |
[21] | MARTIN E E, SCHER H. A Nd isotopic study of southern sourced waters and Indonesian Throughflow at intermediate depths in the Cenozoic Indian Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): Q09N02. |
[22] | 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3): 377-389. |
[23] |
SRINIVASAN M S, SINHA D K. Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and tropical Pacific deep sea cores[J]. Journal of Asian Earth Sciences, 1998, 16(1): 29-44.
DOI URL |
[24] |
HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
DOI URL |
[25] | 俞永强, 周祖翼, 张学洪. 印度尼西亚海道关闭对气候的影响: 一个数值模拟研究[J]. 科学通报, 2003, 48(S2): 60-64. |
[26] |
RODGERS K B, LATIF M, LEGUTKE S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow[J]. Geophysical Research Letters, 2000, 27(18): 2941-2944.
DOI URL |
[27] | GALLAGHER S J, WALLACE M W, LI C L, et al. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents[J]. Paleoceanography, 2009, 24(1): PA1206. |
[28] |
BRIERLEY C M, FEDOROV A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444: 116-130.
DOI URL |
[29] |
KREBS U, PARK W, SCHNEIDER B. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1/2): 111-117.
DOI URL |
[30] |
MOTOI T, CHAN W L. Colder subarctic pacific with larger sea ice caused by closure of the Central American Seaway and its influence on the East Asian monsoon: a climate model study[J]. Geological Society, London, Special Publications, 2010, 342(1): 265-277.
DOI URL |
[31] |
HAUG G H, TIEDEMANN R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686): 673-676.
DOI URL |
[32] |
SEPULCHRE P, ARSOUZE T, DONNADIEU Y, et al. Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes[J]. Paleoceanography, 2014, 29(3): 176-189.
DOI URL |
[33] | 张仲石, 李香钰, 燕青, 等. 上新世海道变化对中国气候的影响[J]. 第四纪研究, 2016, 36(3): 768-774. |
[34] |
GE J Y, DAI Y, ZHANG Z S, et al. Major changes in East Asian climate in the mid-Pliocene: triggered by the uplift of the Tibetan Plateau or global cooling?[J]. Journal of Asian Earth Sciences, 2013, 69: 48-59.
DOI URL |
[35] |
GUO Z T, PENG S Z, HAO Q Z, et al. Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China[J]. Global and Planetary Change, 2004, 41(3/4): 135-145.
DOI URL |
[36] |
AN Z S, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
DOI URL |
[37] |
BENTSEN M, BETHKE I, DEBERNARD J B, et al. The Norwegian Earth System Model, NorESM1-M-Part 1: description and basic evaluation of the physical climate[J]. Geoscientific Model Development, 2013, 6(3): 687-720.
DOI URL |
[38] |
ZHANG Z S, NISANCIOGLU K, BENTSEN M, et al. Pre-industrial and mid-Pliocene simulations with NorESM-L[J]. Geoscientific Model Development, 2012, 5(2): 523-533.
DOI URL |
[39] | DAI G W, ZHANG Z S, OTTERÅ O H, et al. A modeling study of the tripole pattern of East China precipitation over the past 425 ka[J]. Journal of Geophysical Research Atmospheres, 2021, 126(7): e2020JD033513. |
[40] |
HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308.
DOI URL |
[41] |
DOWSETT H, DOLAN A, ROWLEY D, et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction[J]. Climate of the Past, 2016, 12(7): 1519-1538.
DOI URL |
[42] |
LI X Y, GUO C C, ZHANG Z S, et al. PlioMIP2 simulations with NorESM-L and NorESM1-F[J]. Climate of the Past, 2020, 16(1): 183-197.
DOI URL |
[43] |
LUNT D J, HAYWOOD A M, SCHMIDT G A, et al. On the causes of mid-Pliocene warmth and polar amplification[J]. Earth and Planetary Science Letters, 2012, 321/322: 128-138.
DOI URL |
[44] |
KASPI Y, SCHNEIDER T. Winter cold of eastern continental boundaries induced by warm ocean waters[J]. Nature, 2011, 471(7340): 621-624.
DOI URL |
[45] |
REA D K, SNOECKX H, JOSEPH L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224.
DOI URL |
[46] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003. |
[47] |
CLOTTEN C, STEIN R, FAHL K, et al. On the causes of Arctic sea ice in the warm Early Pliocene[J]. Scientific Reports, 2019, 9: 989.
DOI URL |
[48] |
JANSEN E, SJØHOLM J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310): 600-603.
DOI URL |
[49] |
WAN S M, CLIFT P D, LI A C, et al. Geochemical records in the South China Sea: implications for East Asian summer monsoon evolution over the last 20 Ma[J]. Geological Society, London, Special Publications, 2010, 342(1): 245-263.
DOI URL |
[50] | 谢建磊. 长江三角洲地区上新世以来主要气候转型事件的沉积响应研究[D]. 武汉: 中国地质大学(武汉), 2017. |
[51] |
HATANO N, YOSHIDA K, ADACHI Y, et al. Intense chemical weathering in southwest Japan during the Pliocene warm period[J]. Journal of Asian Earth Sciences, 2019, 184: 103971.
DOI URL |
[52] |
SUAREZ M B, PASSEY B H, KAAKINEN A. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene[J]. Geology, 2011, 39(12): 1151-1154.
DOI URL |
[53] |
WANG L, LÜ H Y, WU N Q, et al. Palynological evidence for Late Miocene-Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 118-128.
DOI URL |
[54] |
DING Z L, YANG S L, SUN J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 99-109.
DOI URL |
[55] |
SUN Y B, LU H Y, AN Z S. Grain size of loess, palaeosol and Red Clay deposits on the Chinese Loess Plateau: significance for understanding pedogenic alteration and palaeomonsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 129-138.
DOI URL |
[56] |
BAI Y, FANG X M, NIE J S, et al. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(1/2): 161-169.
DOI URL |
[57] |
MA Y Z, FANG X M, LI J J, et al. The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China[J]. Science in China Series D: Earth Sciences, 2005, 48(5): 676.
DOI URL |
[58] |
WU F L, FANG X M, HERRMANN M, et al. Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records[J]. Global and Planetary Change, 2011, 76(1/2): 16-21.
DOI URL |
[59] |
QIANG X K, LI Z X, POWELL C M, et al. Magnetostratigraphic record of the late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet[J]. Earth and Planetary Science Letters, 2001, 187(1/2): 83-93.
DOI URL |
[1] | LI Pei, ZHANG Chunxia, LUO Hao, LIU Zhicheng, GAO Zhanwu. The Late Miocene to Pliocene paleoenvironmental evolution process in Zhaotong Basin on the southeastern margin of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(4): 326-339. |
[2] | YANG Jiayi, JIANG Fuqing, YAN Yu, ZHENG Hao, CHANG Fengming. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene [J]. Earth Science Frontiers, 2022, 29(4): 73-83. |
[3] | QIN Feng, YANG Jian, LI Jin-Feng, LIU Hai-Meng, WANG Yu-Fei. Preliminary studies of the Pliocene climate and elevation of Zhangcun, Shanxi, China. [J]. Earth Science Frontiers, 2010, 17(5): 345-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||