Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 200-206.DOI: 10.13745/j.esf.sf.2022.1.42
Previous Articles Next Articles
ZHANG Xiaogang1(), ZHANG Fang1, LI Shupeng1,2, WEI Yunxiao2, HOU Deyi1, LI Guanghe1,*(
)
Received:
2021-12-21
Revised:
2022-01-27
Online:
2022-05-25
Published:
2022-04-28
Contact:
LI Guanghe
CLC Number:
ZHANG Xiaogang, ZHANG Fang, LI Shupeng, WEI Yunxiao, HOU Deyi, LI Guanghe. Application and energy efficiency analysis of in-situ thermal remediation technology for contaminated sites[J]. Earth Science Frontiers, 2022, 29(3): 200-206.
深度/m | 地层岩性 | 平均土壤饱和度/% |
---|---|---|
3.5 | 粉土 | 93.1 |
5.5 | 黏土 | 94.4 |
7.5 | 粉质黏土 | 93.8 |
Table 1 Stratigraphic lithology and average soil saturation at different depths
深度/m | 地层岩性 | 平均土壤饱和度/% |
---|---|---|
3.5 | 粉土 | 93.1 |
5.5 | 黏土 | 94.4 |
7.5 | 粉质黏土 | 93.8 |
[1] | 康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势[J]. 化工进展, 2017, 36(7): 2621-2631. |
[2] | USEPA. Superfund remedy report, 16th Edition[R]. Washington: US Environmental Protection Agency, 2020: 1-85. |
[3] | 土壤与地下水修复行业2019年发展报告[R]. 北京: 中国环境保护产业协会, 2020: 211-246. |
[4] | 朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34. |
[5] | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. |
[6] | 侯德义, 李广贺. 污染土壤绿色可持续修复的内涵与发展方向分析[J]. 环境保护, 2016, 44(20): 16-19. |
[7] | RAMEY H J Jr. Current review of oil recovery by steam injection[C]//7th World Petroleum Congress. Mexico, 1967: 471-476. |
[8] |
HORST J, MUNHOLLAND J, HEGELE P, et al. In situ thermal remediation for source areas: technology advances and a review of the market from 1988-2020[J]. Groundwater Monitoring and Remediation, 2021, 41(1): 17-31.
DOI URL |
[9] | USEPA. In situ thermal treatment of chlorinated solvents: fundamentals and field[R]. Washington: US Environmental Protection Agency, 2004. |
[10] | HILBERTS B, EIKELBOOM D H, VERHEUL J H A M, et al. In situ techniques[C]// First international TNO conference on contaminated soil. Utrecht: Springer, 1986: 679-698. |
[11] | UDELL K S, SITAR N, HUNT J R, et al.Process for in situ decontamination of subsurface soil and groundwater: US5018576 A[P]. 1991-07-31. |
[12] | 中华人民共和国生态环境部.HJ 1165-2021污染土壤修复工程技术规范原位热脱附[S]. 北京: 中国环境出版集团, 2021. |
[13] | DAVARZANI H, ZHANBOLAT S, COLOMBANO S, et al. Modelling of heat and mass transfer during in-situ microwave thermal treatment of polluted soils[C]//13th international conference on diffusion in solids and liquids. Vienne Austria: Archive ouverte HAL,2017:hal-01517391. |
[14] | 黄剑波, 万金忠, 龙涛. 原位热脱附技术的发展以及实际案例应用[C]// 2020中国环境科学学会科学技术年会论文集(第三卷). 北京: 中国环境科学学会, 2020: 3585-3589. |
[15] | CHANG H O. Hazardous and Radioactive Waste Treatment Technologies Handbook[M]. Boca Raton: CRC Press, 2001. |
[16] | GAVASKAR A, BHARGAVA M, CONDIT W. Final report-cost and performance review of electrical resistance heating (ERH) for source treatment[R]. California: Naval Facilities Engineering Service Center, 2007: 1-132. |
[17] |
AZIZAN N A, KAMARUDDIN S A, CHELLIAPAN S. Steam-enhanced extraction experiments, simulations and field studies for dense non-aqueous phase liquid removal: a review[J]. MATEC Web of Conferences, 2016, 47: 05012.
DOI URL |
[18] | USACE. Design: In situ thermal remediation-engineering and design[M]. Washington: Department of The Army, US Army Corps of Engineers, 2009. |
[19] | KINGSTON J T, DAHLEN P R, JOHNSON P C, et al. Critical evaluation of state-of-the-art in situ thermal treatment technologies for DNAPL source zone[R]. Virginia: US Environmental Security Technology Certification Program, 2010: 1-34. |
[20] | FARES A, KINDT B T, LAPUMA P, et al. Desorption kinetics of trichloroethylene from powdered soils[J]. Environmental Science and Technology, 1995, 29(6):1564-1568. |
[21] | DAVIS E L. Ground water issue: how heat can enhance in-situ soil and aquifer remediation: important chemical properties and guidance on choosing the appropriate technique[R]. Washington: US Environmental Protection Agency, Center for Environmental Research Information, 1997: 1-18. |
[22] | HERON G, BAKER R S, BIERSCHENK J M, et al. Heat it all the way-mechanisms and results achieved using in-situ thermal remediation[C]// Proceedings of the fifth international conference on remediation of chlorinated and recalcitrant compounds. Singapore: World Scientific Publishing Co. Pte. Ltd., 2006: 1-8. |
[23] | REID R C, POLING B E, PRAUSNITZ J M. The Properties of Gases and Liquids, Vol. 5[M]. New York: McGraw-Hill, 1987. |
[24] |
HERON G, CHRISTENSEN T H, ENFIELD C G. Henry’s law constant for trichloroethylene between 10 and 95℃[J]. Environmental Science and Technology, 1998, 32(10): 1433-1437.
DOI URL |
[25] |
BAHADUR N P, SHIU W Y, BOOCOCK D G B, et al. Temperature dependence of octanol water partition coefficient for selected chlorobenzenes[J]. Journal of Chemical and Engineering Data, 1997, 42(4): 685-688.
DOI URL |
[26] | BAKER R S, KUHLMAN M. A description of the mechanisms of in-situ thermal destruction (ISTD) reactions[C]// The 2nd international conference on oxidation and reduction technologies for soil and groundwater. Toronto, 2002: 1-10. |
[27] | HULING S G, WEAVER J W. Ground water issue:dense nonaqueous phase liquids. EPA Office of Solid Waste and Emergency Response, Office of Research and Development[R]. Washington: Superfund Technology Support Center for Ground Water, Robert S. Kerr Environmental Research Laboratory, 1991: 1-21. |
[28] | 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000. |
[29] | 赵中华, 李晓东, 陈彤, 等. 多氯联苯污染土壤热脱附研究综述[J]. 生态毒理学报, 2016, 11(2): 61-68. |
[30] |
SHI Y, LUO Z H, WANG Y X, et al. New advances in in situ thermal desorption technology for contaminated soil[J]. Science China Technological Sciences, 2019, 62(11): 2075-2076.
DOI URL |
[31] | 傅海辉, 黄启飞, 朱晓华, 等. 温度和停留时间对十溴联苯醚在污染土壤中热脱附的影响[J]. 环境科学研究, 2012, 25(9): 981-986. |
[32] |
ARESTA M, DIBENEDETTO A, FRAGALE C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts[J]. Chemosphere, 2008, 70(6):1052-1058.
DOI URL |
[33] | 王瑛, 李扬, 黄启飞, 等. 温度和停留时间对DDT污染土壤热脱附效果的影响[J]. 环境工程, 2012, 30(1): 116-120. |
[34] | HERON G, LACHANCE J, BAKER R. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Groundwater Monitoring and Remediation, 2013, 33(4): 31-43. |
[35] |
HERON G, PARKER K, FOURNIER S, et al. World’s largest in situ thermal desorption project: challenges and solutions[J]. Groundwater Monitoring and Remediation, 2015, 35(3):89-100.
DOI URL |
[36] | 孙袭明. 有机污染土壤热脱附技术的影响因素研究及模拟系统开发[D]. 天津: 天津大学, 2018. |
[37] | 梁贤伟, 孙袭明, 吴晓霞. 原位热脱附土壤修复技术的关键影响因素研究[J]. 广州化工, 2020, 48(10): 79-82. |
[38] |
MERINO J, BUCALÁ V. Effect of temperature on the release of hexadecane from soil by thermal treatment[J]. Journal of Hazardous Materials, 2007, 143(1/2): 455-461.
DOI URL |
[39] | 刘昊, 张峰, 马烈. 有机污染场地原位热修复: 技术与应用[J]. 工程建设与设计, 2017(16): 93-98. |
[40] | 李闯. 燃气热修复土壤过程中多场耦合热质传递及应用研究[D]. 郑州: 华北水利水电大学, 2020. |
[41] |
XU J, WANG F, SUN C, et al. Gas thermal remediation of an organic contaminated site: field trial[J]. Environmental Science and Pollution Research International, 2019, 26(6): 6038-6047.
DOI URL |
[42] | 刘凯, 张瑞环, 王世杰. 污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱, 2017(12): 31-37. |
[43] | 王熠. 地源热泵土壤热物性不确定因素特征分析[D]. 武汉: 华中科技大学, 2012. |
[44] |
FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A. Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400.
DOI URL |
[45] | 段妍, 晋华, 郑强. 含水率对黏土及沙土导热系数的影响[J]. 人民黄河, 2016, 38(2): 114-116, 120. |
[46] | KENDALL S, WOLF J L. Six-phase heatingTM: the new power tool[J]. Remediation Journal, 1999, 9(4): 79-85. |
[47] | 孙宇瑞. 土壤含水率和盐分对土壤电导率的影响[J]. 中国农业大学学报, 2000, 5(4): 39-41. |
[48] | 韦云霄, 李书鹏, 张芳, 等. 原位热修复技术在污染场地土壤修复中的应用[R]. 北京: 北京建工环境修复股份有限公司, 2021. |
[1] | WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China [J]. Earth Science Frontiers, 2024, 31(2): 64-76. |
[2] | ZHAO Bin, YANG Yang, ZHANG Hao, JIN Yuanliang, HOU Deyi. Hierarchical technology system for the risk control of mercury contaminated sites [J]. Earth Science Frontiers, 2024, 31(2): 1-12. |
[3] | ZHU Hui, YE Shujun, WU Jichun, XU Haizhen. Characteristics of soil lithology and pollutants in typical contamination sites in China [J]. Earth Science Frontiers, 2021, 28(5): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||