Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 439-448.DOI: 10.13745/j.esf.sf.2020.12.11
Previous Articles Next Articles
CAO Daiyong1(), LIU Zhifei2, WANG Anmin1, WANG Lu3, DING Zhengyun1, LI Yang1
Received:
2020-04-15
Revised:
2020-08-14
Online:
2022-01-25
Published:
2022-02-22
CLC Number:
CAO Daiyong, LIU Zhifei, WANG Anmin, WANG Lu, DING Zhengyun, LI Yang. Control of coal metamorphism by tectonic physicochemical conditions[J]. Earth Science Frontiers, 2022, 29(1): 439-448.
分异迁 移趋势 | 常量元素 | 微量元素 | 稀土元素 | |||||
---|---|---|---|---|---|---|---|---|
岩浆热 | 构造应力 | 岩浆热 | 构造应力 | 岩浆热 | 构造应力 | |||
向煤体中 | Al、K、Si、Ti | Al、K、Ti、Na、Ca | As、Se、Sb、Bi | Ba、Zr、Nb、Hf | 煤中稀土元素富集 | 煤中稀土元素迁出 | ||
向煤体外 | P、Fe、Mn、Na、Ca、Mg | Si、P、Fe、Mg | Ba | As、Se、Sb、Bi | 富集轻稀土 | 富集重稀土 |
Table 1 Element distribution characteristics and migration trend of highrank coal in North Huaiyang area. Adapted from [32].
分异迁 移趋势 | 常量元素 | 微量元素 | 稀土元素 | |||||
---|---|---|---|---|---|---|---|---|
岩浆热 | 构造应力 | 岩浆热 | 构造应力 | 岩浆热 | 构造应力 | |||
向煤体中 | Al、K、Si、Ti | Al、K、Ti、Na、Ca | As、Se、Sb、Bi | Ba、Zr、Nb、Hf | 煤中稀土元素富集 | 煤中稀土元素迁出 | ||
向煤体外 | P、Fe、Mn、Na、Ca、Mg | Si、P、Fe、Mg | Ba | As、Se、Sb、Bi | 富集轻稀土 | 富集重稀土 |
[1] | 吕古贤. 构造物理化学的研究进展[J]. 科学通报, 2003, 48(2):101-109. |
[2] | 吕古贤. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 2019, 25(5):962-980. |
[3] | 曹代勇, 李小明, 邓觉梅. 煤化作用与构造-热事件的耦合效应研究: 盆地动力学过程的地质记录[J]. 地学前缘, 2009, 16(4):52-60. |
[4] |
LE BAYON R, BREY G P, ERNST W G, et al. Experimental kinetic study of organic matter maturation: time and pressure effects on vitrinite reflectance at 400 ℃[J]. Organic Geochemistry, 2011, 42(4):340-355.
DOI URL |
[5] | 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州: 中国矿业大学出版社, 1994. |
[6] |
KWIECIŃSKA B, PETERSEN H I. Graphite, semi-graphite, natural coke, and natural char classification: ICCP system[J]. International Journal of Coal Geology, 2004, 57(2):99-116.
DOI URL |
[7] |
MARQUES M, SUÁREZ-RUIZ I, FLORES D, et al. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite[J]. International Journal of Coal Geology, 2009, 77(3/4):377-382.
DOI URL |
[8] | CAO D Y, ZHANG H, DONG Y J, et al. Nanoscale microscopic features and evolution sequence of coal-based graphite[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(9):6276-6283. |
[9] | 曹代勇, 魏迎春, 李阳, 等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报, 2021, 46(6):1833-1846. |
[10] | 曹代勇, 张鹤, 董业绩, 等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘, 2017, 24(5):317-327. |
[11] | 曹代勇, 王路, 刘志飞, 等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探, 2020, 48(1):1-11. |
[12] |
BUSECK P R, BEYSSAC O. From organic matter to graphite: graphitization[J]. Elements, 2014, 10(6):421-426.
DOI URL |
[13] | 李阔. 湖南新化煤系石墨结构有序化过程研究[D]. 北京: 中国矿业大学(北京), 2019. |
[14] | CAO D Y, WANG L, DING Z Y, et al. Characterization of the heterogeneous evolution of the nanostructure of coal-based graphite[J]. Journal of Nanoscience & Nanotechnology, 2021, 21(1):670-681. |
[15] |
HOWER J C. Observations on the role of the Bernice coal field (Sullivan County, Pennsylvania) anthracites in the development of coalification theories in the Appalachians[J]. International Journal of Coal Geology, 1997, 33(2):95-102.
DOI URL |
[16] | TEICHMÜLLER M, TEICHMÜLLER R. Geological causes of coalification[M]// GIVEN P H. Advances in Chemistry. Washington DC: American Chemical Society, 1966: 133-155. |
[17] |
BUSTIN R M, ROUZAUD J N, ROSS J V. Natural graphitization of anthracite: experimental considerations[J]. Carbon, 1995, 33(5):679-691.
DOI URL |
[18] | 曹代勇, 李小明, 张守仁. 构造应力对煤化作用的影响: 应力降解机制与应力缩聚机制[J]. 中国科学: D辑, 2006, 36(1):59-68. |
[19] |
MASTALERZ M, WILKS K R, BUSTIN R M, et al. The effect of temperature, pressure and strain on carbonization in high-volatile bituminous and anthracitic coals[J]. Organic Geochemistry, 1993, 20(2):315-325.
DOI URL |
[20] | 周建勋, 王桂梁, 邵震杰. 煤高温高压变形实验及其构造地质意义[J]. 地球物理学进展, 1993, 8(4):54-60. |
[21] | 姜波, 秦勇, 金法礼. 高温高压下煤超微构造的变形特征[J]. 地质科学, 1998, 33(1):17-24. |
[22] | 侯泉林, 雒毅, 宋超, 等. 中煤级煤变形产气过程及其机理探讨[J]. 煤炭学报, 2014, 39(8):1675-1682. |
[23] | 张玉贵, 张子敏, 谢克昌. 煤演化过程中力化学作用与构造煤结构[J]. 河南理工大学学报(自然科学版), 2005, 24(2):95-99. |
[24] | 琚宜文, 林红, 李小诗, 等. 煤岩构造变形与动力变质作用[J]. 地学前缘, 2009, 16(1):158-166. |
[25] | 曹代勇, 宁树正, 郭爱军. 中国煤田构造格局与构造控煤作用[M]. 北京: 科学出版社, 2018. |
[26] | 琚宜文, 王桂梁, 姜波. 浅层次脆性变形域中煤层韧性剪切带微观分析[J]. 中国科学: D辑, 2003, 33(7):626-635. |
[27] | 琚宜文, 姜波, 侯泉林, 等. 煤岩结构纳米级变形与变质变形环境的关系[J]. 科学通报, 2005, 50(17):1884-1892. |
[28] | 刘俊来, 杨光, 马瑞. 高温高压实验变形煤流动的宏观与微观力学表现[J]. 科学通报, 2005, 50(增刊1):56-63. |
[29] |
GONZÁLEZ D, MONTES-MORÁN M A, GARCIA A B. Graphite materials prepared from an anthracite: a structural characterization[J]. Energy & Fuels, 2003, 17(5):1324-1329.
DOI URL |
[30] |
WANG L, CAO D Y, PENG Y W, et al. Strain-induced graphitization mechanism of coal-based graphite from Lutang, Hunan Province, China[J]. Minerals, 2019, 9(10):617.
DOI URL |
[31] | 李佩. 淮北祁东煤矿构造煤中微量元素迁移聚集的构造控制[D]. 徐州: 中国矿业大学, 2015. |
[32] | 曹代勇, 李小明, 占文锋, 等. 大别山北麓杨山煤系高煤级煤的变形变质作用研究[M]. 北京: 地质出版社, 2012. |
[33] | 程国玺, 姜波, 刘和平, 等. 构造煤变形过程中矿物及元素响应: 以朱仙庄矿8号煤为例[J]. 煤炭学报, 2017, 42(4):985-995. |
[34] | 莫如爵, 刘绍斌, 黄翠蓉, 等. 中国石墨矿床地质[M]. 北京: 中国建筑工业出版社, 1989. |
[35] |
ROSS J V, BUSTIN R M. The role of strain energy in creep graphitization of anthracite[J]. Nature, 1990, 343(6253):58-60.
DOI URL |
[36] |
BUSTIN R M, ROSS J V, ROUZAUD J N. Mechanisms of graphite formation from kerogen: experimental evidence[J]. International Journal of Coal Geology, 1995, 28(1):1-36.
DOI URL |
[37] |
BEYSSAC O, ROUZAUD J N, GOFFÉ B, et al. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study[J]. Contributions to Mineralogy and Petrology, 2002, 143(1):19-31.
DOI URL |
[38] | FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1951, 209(1097):196-218. |
[39] |
RODRIGUES S, SUÁREZ-RUIZ I, MARQUES M, et al. Catalytic role of mineral matter in structural transformation of anthracites during high temperature treatment[J]. International Journal of Coal Geology, 2012, 93:49-55.
DOI URL |
[40] |
GONZÁLEZ D, MONTES-MORÁN M A, YOUNG R J, et al. Effect of temperature on the graphitization process of a semianthracite[J]. Fuel Processing Technology, 2002, 79(3):245-250.
DOI URL |
[41] | 杨起. 中国煤变质作用[M]. 北京: 煤炭工业出版社, 1996. |
[42] | 颜玲亚, 高树学, 陈正国, 等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 2018, 45(3):421-440. |
[43] | 李阳, 王路, 曹代勇, 等. 江西崇义矿煤成石墨的发现及其地质意义[J]. 煤田地质与勘探, 2019, 47(5):79-85. |
[44] | 王路, 彭扬文, 曹代勇, 等. 湖南鲁塘煤系石墨矿区构造格局及控矿机制[J]. 煤田地质与勘探, 2020, 48(1):48-54. |
[45] | 陈泉霖, 程乔, 邓瑞锦, 等. 福建煤系石墨资源状况和开发前景[J]. 煤田地质与勘探, 2020, 48(1):12-17, 26. |
[46] | 丁正云, 曹代勇, 王路, 等. 福建漳平可坑矿区煤系石墨赋存规律研究[J]. 地质力学学报, 2019, 25(2):198-205. |
[47] | 王路, 曹代勇, 丁正云, 等. 闽西南地区煤成石墨的控制因素与成矿区带划分[J]. 煤炭学报, 2020, 45(8):2865-2871. |
[48] |
ROUZAUD J N, OBERLIN A. Structure, microtexture, and optical properties of anthracene and saccharose-based carbons[J]. Carbon, 1989, 27(4):517-529.
DOI URL |
[49] |
BONIJOLY M, OBERLIN M, OBERLIN A. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology, 1982, 1(4):283-312.
DOI URL |
[50] | CAO D Y, LI X M, ZHANG S R. Influence of tectonic stress on coalification: stress degradation mechanism and stress polycondensation mechanism[J]. Science in China Series D: Earth Sciences, 2007, 50(1):43-54. |
[51] |
NODA T, KAMIYA K, INAGAKI M. Effect of pressure on graphitization of carbon. I. heat treatment of soft carbon under 1, 3 and 5 kbar[J]. Bulletin of the Chemical Society of Japan, 1968, 41(2):485-492.
DOI URL |
[52] | KAMIYA K, INAGAKI M, NODA T. Oriented heterogeneous graphitization of carbons under high pressure[J]. High Temperatures-High Pressures, 1973, 5(3):331-338. |
[53] |
ZOU L H, HUANG B Y, HUANG Y, et al. An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites[J]. Materials Chemistry and Physics, 2003, 82(3):654-662.
DOI URL |
[54] |
DIESSEL C F K, BROTHERS R N, BLACK P M. Coalification and graphitization in high-pressure schists in New Caledonia[J]. Contributions to Mineralogy and Petrology, 1978, 68(1):63-78.
DOI URL |
[55] | 郑辙. 煤基石墨微结构的高分辨电镜研究[J]. 矿物学报, 1991, 11(3):214-218, 291. |
[56] |
LI X M, CAO D Y, LIU D M. Structure of different types of coal metamorphism by HTEM[J]. Mining Science and Technology (China), 2010, 20(6):835-838.
DOI URL |
[57] | OBERLIN A. High-resolution TEM studies of carbonization and graphitization[M]// THROWER P A. Chemistry and physics of carbon. Boca Raton: CRC Press, 1989: 1-143. |
[58] |
HINRICHS R, BROWN M T, VASCONCELLOS M A Z, et al. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy[J]. International Journal of Coal Geology, 2014, 136:52-58.
DOI URL |
[59] | 陈蔚然. 关于石墨化度计算公式[J]. 炭素技术, 1983, 2(6):28-31, 25. |
[60] | 许聚良, 鄢文, 吴大军. XRD分峰拟合法测定炭材料的石墨化度和结晶度[J]. 武汉科技大学学报, 2009, 32(5):522-525. |
[61] | 李焕同, 王楠, 朱志蓉, 等. 高煤级煤-隐晶质石墨的Raman光谱表征及结构演化[J]. 煤田地质与勘探, 2020, 48(1):34-41. |
[62] |
CANÇADO L G, TAKAI K, ENOKI T, et al. Measuring the degree of stacking order in graphite by Raman spectroscopy[J]. Carbon, 2008, 46(2):272-275.
DOI URL |
[63] | 谢有赞, 晏元江. 关于天龙山土状石墨的化学组分与结构特征的研究[J]. 碳素, 1989(4):13-17, 12. |
[64] | 张守仁, 曹代勇, 陈佩佩, 等. 高煤阶煤的阶跃性演化机理研究[J]. 煤炭学报, 2002, 27(5):525-528. |
[65] |
OBERLIN A, TERRIERE G. Graphitization studies of anthracites by high resolution electron microscopy[J]. Carbon, 1975, 13(5):367-376.
DOI URL |
[66] |
ROSS J V, BUSTIN R M. The role of strain energy in creep graphitization of anthracite[J]. Nature, 1990, 343(6253):58-60.
DOI URL |
[67] |
WILKS K R, MASTALERZ M, ROSS J V, et al. The effect of experimental deformation on the graphitization of Pennsylvania anthracite[J]. International Journal of Coal Geology, 1993, 24(1/2/3/4):347-369.
DOI URL |
[68] | 纪沫, 胡玲, 刘俊来, 等. 主要造岩矿物动态重结晶作用及其变质条件[J]. 地学前缘, 2008, 15(3):226-233. |
[69] | 秦勇. 再论煤中大分子基本结构单元演化的拼叠作用[J]. 地学前缘, 1999, 6(增刊1):29-34. |
[70] | 曹代勇, 王路, 董业绩, 等. 煤成石墨演化过程中构造应力作用机制研究[C]// 2017中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 2017: 542-543. |
[1] | ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland [J]. Earth Science Frontiers, 2024, 31(6): 436-449. |
[2] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||