Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 43-59.DOI: 10.13745/j.esf.sf.2020.5.4
Previous Articles Next Articles
ZHUO Xizhun1(), ZHENG Xu1, CHEN Xiaoshuai1, XU Tianwu2, CUI Jianjun3
Received:
2019-12-05
Revised:
2020-05-19
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
ZHUO Xizhun, ZHENG Xu, CHEN Xiaoshuai, XU Tianwu, CUI Jianjun. Forming conditions and indicators for deep-water evaporite deposits in inland lake basins: A case study of the Dongpu Sag and modern salt lakes[J]. Earth Science Frontiers, 2021, 28(1): 43-59.
Fig.1 (a) Geometric characteristics of marine and continental deep basins (adapted from [1]). (b) Schematic distribution pattern of rock salt (created based on the modern inland salt lakes in the Qaidam Basin)
Fig.3 Vertical distribution and textural characteristics of sediments in central member 3, Shahejie Formation, Dongpu Sag(Profile location see Fig.2b)
湖泊名称 | 流域面积/ 湖区面积 | 平均水深/ 最大水深 | 表层盐度/ 恒温层盐度 | 析盐期的 湖平面变化 | 卤水分层 特征 | 卤水离子组成 (阴阳离子分别按 含量顺序) | 矿物组合 | 晶体结 构特征 |
---|---|---|---|---|---|---|---|---|
死海/ Dead Sea | 40 000/645 | 300/320 | ①236.1/236.4 ②238.8/236.5 | 持续下降 (每年约1 m) | 季节性 分层 | Na+,Mg2+,Ca2+, K+;Cl-、Br- | 石盐 | 自形的粗粒晶体 |
佛瑞湖/ Freefight Lake | 55.2/2.59 | 14.1/24.9 (1985年) | 111.7/179.1 | 湖平面四季波动; 湖平面显著下降 (1956—1989年) | 全年分层 (1984— 1987) | Na+,Mg2+,K+, Ca2+;S Cl-,OH- | 白钠镁矾、 芒硝、泻利 盐、石膏 | 自形的粗粒晶体 |
戴德湖/ Deadmoose Lake | 70.19/10.5 | 9.9/48.1 | 34/85 | 湖平面四季波动; 湖平面显著下降 (1944—1974年) | 全年分层 (1984— 1987) | Na+,Mg2+,K+, Ca2+;S Cl-,OH- | 芒硝、少量 石膏 | 自形的粗粒晶体 |
利特湖/Little Manitou Lake | 169/13.9 | 4.0/5.9 | 67/192 | 湖平面四季波动; 湖平面显著下降 (1944—1989年) | 间隔性 分层 | Mg2+,Na+,K+, Ca2+;S Cl-,OH- | 泻利盐、芒硝、 白钠镁矾、 石膏和石盐 | 自形的粗粒晶体 |
Table 1 Geomorphological, hydrochemical and sedimentalogic characteristics of deep- water salt deposition in lake basins. Adapted from [10-11,24-27].
湖泊名称 | 流域面积/ 湖区面积 | 平均水深/ 最大水深 | 表层盐度/ 恒温层盐度 | 析盐期的 湖平面变化 | 卤水分层 特征 | 卤水离子组成 (阴阳离子分别按 含量顺序) | 矿物组合 | 晶体结 构特征 |
---|---|---|---|---|---|---|---|---|
死海/ Dead Sea | 40 000/645 | 300/320 | ①236.1/236.4 ②238.8/236.5 | 持续下降 (每年约1 m) | 季节性 分层 | Na+,Mg2+,Ca2+, K+;Cl-、Br- | 石盐 | 自形的粗粒晶体 |
佛瑞湖/ Freefight Lake | 55.2/2.59 | 14.1/24.9 (1985年) | 111.7/179.1 | 湖平面四季波动; 湖平面显著下降 (1956—1989年) | 全年分层 (1984— 1987) | Na+,Mg2+,K+, Ca2+;S Cl-,OH- | 白钠镁矾、 芒硝、泻利 盐、石膏 | 自形的粗粒晶体 |
戴德湖/ Deadmoose Lake | 70.19/10.5 | 9.9/48.1 | 34/85 | 湖平面四季波动; 湖平面显著下降 (1944—1974年) | 全年分层 (1984— 1987) | Na+,Mg2+,K+, Ca2+;S Cl-,OH- | 芒硝、少量 石膏 | 自形的粗粒晶体 |
利特湖/Little Manitou Lake | 169/13.9 | 4.0/5.9 | 67/192 | 湖平面四季波动; 湖平面显著下降 (1944—1989年) | 间隔性 分层 | Mg2+,Na+,K+, Ca2+;S Cl-,OH- | 泻利盐、芒硝、 白钠镁矾、 石膏和石盐 | 自形的粗粒晶体 |
Fig.6 Characteristics of seasonal temperature and salinity of different layers in the Dead Sea (data adapted from [33]), Freefight Lake (data adapted from [24]) and Deadmoose Lake (data adapted from [26,37])
湖泊名称 | 流域面积/ 湖区面积 | 最大水深/m | 盐度/ (kg·m-3) | 表层电导率/ (μS·cm-1) | 恒温层电导率/ (μS·cm-1) |
---|---|---|---|---|---|
纳木错湖 | 10 610/1 980 | 99 | 1.780 | 1 872 | 1 852 |
当惹雍错湖 | 8 185/835.3 | 214.48 | 未测 | 12 900 | 12 600 |
扎日南木错湖 | 15 452/996.9 | 71.55 | 未测 | 18 500 | 18 000 |
Table 2 Geomorphological and hydrochemical characteristics of saltwater lakes in the Qinghai-Tibet Plateau (adapted from [40,41,42])
湖泊名称 | 流域面积/ 湖区面积 | 最大水深/m | 盐度/ (kg·m-3) | 表层电导率/ (μS·cm-1) | 恒温层电导率/ (μS·cm-1) |
---|---|---|---|---|---|
纳木错湖 | 10 610/1 980 | 99 | 1.780 | 1 872 | 1 852 |
当惹雍错湖 | 8 185/835.3 | 214.48 | 未测 | 12 900 | 12 600 |
扎日南木错湖 | 15 452/996.9 | 71.55 | 未测 | 18 500 | 18 000 |
[1] | SCHMALZ R F. Deep-water evaporite deposition: a genetic model[J]. AAPG Bulletin, 1969, 53(4):798-823. |
[2] |
HSU K J. Origin of saline giants: a critical review after the discovery of the Mediterranean evaporite[J]. Earth-Science Reviews, 1972, 8(4):371-396.
DOI URL |
[3] | NEEV D, EMERY K O. The Dead sea: depositional processes and environments of evaporites[J]. Bulletin/Ministry of Development, Geological Survey, State of Israel, 1967, 41:147. |
[4] | 金强, 黄醒汉. 东濮凹陷早第三纪盐湖成因的探讨: 一种深水成因模式[J]. 华东石油学院学报, 1985, 9(1):1-13. |
[5] | 高红灿, 郑荣才, 肖应凯, 等. 渤海湾盆地东濮凹陷古近系沙河街组盐岩成因: 来自沉积学和地球化学的证据[J]. 石油学报, 2015, 36(1):19-32. |
[6] | 袁静, 赵澄林, 张善文. 东营凹陷沙四段盐湖的深水成因模式[J]. 沉积学报, 2000, 18(1):114-118. |
[7] | 王伟锋, 张美. 洪泽凹陷赵集次凹阜宁组四段盐岩深水再沉积成因探讨[J]. 沉积学报, 2015, 33(2):242-253. |
[8] | 苏惠, 许化政, 张金川, 等. 东濮凹陷沙三段盐岩成因[J]. 石油勘探与开发, 2006, 33(5):600-605. |
[9] | 彭君, 冯阵东, 国殿斌, 等. 再论东濮凹陷沙三段成盐模式[J]. 中国石油大学学报(自然科学版), 2016, 40(3):9-15. |
[10] | LAST W M. Deep-water evaporite mineral formation in lakes of western Canada[J]. Sedimentology and Geochemistry of Modern and Ancient Saline Lakes, SEPM Special Publications, 1994, 50:51-59. |
[11] | ARNON A, SELKER J S, LENSKY N G. Thermohaline stratification and double diffusion diapycnal fluxes in the hypersaline Dead Sea[J]. Limnology and Oceanography, 2016, 61(4):1-18. |
[12] | READING H G. Sedimentary environments: processes, facies and stratigraphy[J]. Encyclopedia of Geology, 1996, 688(5703):580-587. |
[13] | 袁见齐, 霍承禹, 蔡克勤. 高山深盆的成盐环境: 一种新的成盐模式的剖析[J]. 地质论评, 1983, 29(2):159-165. |
[14] |
MEILIJSON A, HILGEN F, SEPULVEDA J, et al. Chronology with a pinch of salt: integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity[J]. Earth-Science Reviews, 2019, 194:374-398.
DOI URL |
[15] |
FENG Y E, YANKELZON A, STEINBERG J, et al. Lithology characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean[J]. Marine Geology, 2016, 376:118-131.
DOI URL |
[16] |
HORIUCHI K, MINOURA K, HOSHINO K, et al. Palaeoenvironmental history of Lake Baikal during the last 23000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157(1):95-108.
DOI URL |
[17] | EMERY K O. Relict sediments on continental shelves of world[J]. AAPG Bulletin, 1968, 52(3):445-464. |
[18] |
ROVERI M, FLECKER R, KRIJGSMAN W, et al. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences[J]. Marine Geology, 2014, 352:25-58.
DOI URL |
[19] | LOFI J, CAMERLENGHI A. Messinian salinity crisis: DREAM (Deep-sea Record of Mediterranean Messinian events) drilling projects[C]. EGU General Assembly, 2014, 16:1. |
[20] | GORINI C, MONTADERT L, RABINEAU M. New imaging of the salinity crisis: dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean[J]. Marine Geology, 2015, 66:278-294. |
[21] |
FENG Y E, STEINBERG J, RESHEF M. Intra-salt deformation: implications for the evolution of the Messinian evaporites in the Levant Basin, eastern Mediterranean[J]. Marine and Petroleum Geology, 2017, 88:251-267.
DOI URL |
[22] |
GARCÍA V J, CENDÓN D I, GIBERT L, et al. Geochemical indicators in western Mediterranean Messinian evaporites: implications for the salinity crisis[J]. Marine Geology, 2018, 403:197-214.
DOI URL |
[23] | 禚喜准, 张林炎, 陈骁帅, 等. 现代盐湖沉积与岩盐析出模拟的相似性及其对成盐模式的启示[J]. 沉积学报, 2018, 36(6):1119-1130. |
[24] | HAMMER U T, HAYNES R C. The saline lakes of Saskatchewan II. Locale, hydrography and other physical aspects[J]. International Review of Hydrobiology, 1978, 63(2):179-203. |
[25] |
LAST W M. Geolimnology of Freefight Lake: an unusual hypersaline lake in the northern Great Plains of western Canada[J]. Sedimentology, 1993, 40(3):431-448.
DOI URL |
[26] | SLEZAK L. Modern sedimentary environments and early sediment diagenesis of Freefight Lake in southwestern Saskatchewan[M]. Ottawa: National Library of Canada, 1989: 1-178. |
[27] |
LAST W M, SLEZAK L A. The salt lakes of western Canada: a paleolimnological overview[J]. Hydrobiologia, 1988, 158(1):301-316.
DOI URL |
[28] |
WILLIAMS W D, SHERWOOD J E. Definition and measurement of salinity in salt lakes[J]. International Journal of Salt Lake Research, 1994, 3(1):53-63.
DOI URL |
[29] | 田景春, 尹观, 覃建雄, 等. 中国东部早第三纪海侵与湖相白云岩成因之关系[J]. 中国海上油气地质, 1998, 12(4):250-256. |
[30] | 冯进来, 胡凯, 曹剑, 等. 陆源碎屑岩与碳酸盐混积岩及其油气地质意义[J]. 高校地质学报, 2011, 17(2):297-307. |
[31] | 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600. |
[32] | 张彭熹. 中国蒸发岩研究中几个值得重视的地质问题的讨论[J]. 沉积学报, 1992, 10(3):78-84. |
[33] |
GERTMAN I, HECHT A. The Dead Sea hydrography from 1992 to 2000[J]. Journal of Marine Systems, 2002, 35(3):169-181.
DOI URL |
[34] | BOOKMAN R, BARTOV Y, ENZEL Y, et al. Quaternary lake levels in the Dead Sea basin: two centuries of research[J]. Special Paper of the Geological Society of America, 2006, 401:155-170. |
[35] |
STILLER M, KAUSHANSKY P, CARMI I. Recent climatic changes recorded by the salinity of pore waters in the Dead Sea sediments[J]. Hydrobiologia, 1983, 103(1):75-79.
DOI URL |
[36] | BOEHRER B, SCHULTZE M. Stratification of lakes[J]. Reviews of Geophysics, 2008, 46(2):1-27. |
[37] |
PARKER R D, HAMMER U T. A study of the Chromatiaceae in a saline Meromictic Lake in Saskatchewan, Canada[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1983, 68(6):839-851.
DOI URL |
[38] | STRAKHOV N M. Principles of lithogenesis (volume 3)[M]. New York: Springer, 1970: 210-211. |
[39] |
LARSEN C P S, MACDONALD G M. Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies[J]. Quaternary Science Reviews, 1993, 12(9):781-792.
DOI URL |
[40] | 王君波, 彭萍, 马庆峰, 等. 西藏当惹雍错和扎日南木错现代湖泊基本特征[J]. 湖泊科学, 2010, 22(4):629-632. |
[41] | 王君波, 朱立平, DAUT G, 等. 西藏纳木错水深分布及现代湖沼学特征初步分析[J]. 湖泊科学, 2009, 21(1):128-134. |
[42] | 黄磊, 王君波, 朱立平, 等. 纳木错水温变化及热力学分层特征初步研究[J]. 湖泊科学, 2015, 27(4):711-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||