Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 60-78.DOI: 10.13745/j.esf.sf.2020.3.12
Previous Articles Next Articles
Received:
2020-02-10
Revised:
2020-03-11
Online:
2020-03-25
Published:
2020-03-25
CLC Number:
NI Pei, CHI Zhe, PAN Junyi. An integrated investigation of ore-forming fluid evolution in porphyry and epithermal deposits and their implication on exploration[J]. Earth Science Frontiers, 2020, 27(2): 60-78.
[1] | SINCLAIR W D. Porphyry deposits[M]// Mineral deposits of Canada: a synbook of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods.[S.l.]: Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 223-243. |
[2] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[3] | ROEDDER E. Fluid inclusions as tools in mineral exploration[J]. Economic Geology, 1977, 72: 503-525. |
[4] | NASH J T. Fluid-inclusion petrology-data from porphyry copper deposits and applications to exploration[M]. Washington DC: US Government Printing Office, 1976. |
[5] | BODNAR R J, REYNOLDS T J, KUEHN C A. Fluid-inclusion systematics in epithermal system[J]. Reviews in Economic Geology, 1985, 2: 73-97. |
[6] | BODNAR R J, LECUMBERRI-SANCHEZ P, MONCADA D, et al. Fluid inclusions in hydrothermal ore deposits[M]// Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 119-142. |
[7] |
CLINE J S, BODNAR R J. Direct evolution of brine from a crystallizing silicic melt at the questa, new mexico, molybdenum deposit[J]. Economic Geology, 1994, 89(8): 1780-1802.
DOI URL |
[8] |
MANCANO D P, CAMPBELL A R. Microthermometry of enargite-hosted fluid inclusions from the lepanto, Philippines, high-sulfidation Cu-Au deposit[J]. Geochimica et Cosmochimica Acta, 1995, 59(19): 3909-3916.
DOI URL |
[9] |
WILLIAMS-JONES A E, HEINRICH C A. 100th Anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits[J]. Economic Geology, 2005, 100(7): 1287-1312.
DOI URL |
[10] |
HEINRICH C A. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1): 363-387.
DOI URL |
[11] |
AUDETAT A, PETTKE T, HEINRICH C A, et al. Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J]. Economic Geology, 2008, 103(5): 877-908.
DOI URL |
[12] |
HENLEY R W, ELLIS A J. Geothermal systems ancient and modern: a geochemical review[J]. Earth-Science Reviews, 1983, 19(1): 1-50.
DOI URL |
[13] |
HEALD P, FOLEY N K, HAYBA D O. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types[J]. Economic Geology, 1987, 82(1): 1-26.
DOI URL |
[14] | COOKE D R, SIMMONS S F. Characteristics and genesis of epithermal gold deposits[J]. Reviews in Economic Geology, 2000, 13(12): 221-244. |
[15] |
HEINRICH C A, DRIESNER T, STEFÁNSSON A, et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J]. Geology, 2004, 32(9): 761.
DOI URL |
[16] |
REDMOND P B, EINAUDI M T, INAN E E, et al. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, utah[J]. Geology, 2004, 32(3): 217.
DOI URL |
[17] |
LANDTWING M, PETTKE T, HALTER W, et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 229-243.
DOI URL |
[18] | LEACH T, CORBETT G. Fluid mixing as a mechanism for bonanza grade epithermal gold formation[J]. Terry Leach Symposium, Australian Institute of Geoscientists Bulletin, 2008, 48: 83-92. |
[19] | LECUMBERRI-SANCHEZ P, STEELE-MACINNIS M, WEIS P, et al. Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons[J]. Geology, 2015: G37163.1. |
[20] |
AUDÉTAT A, LI W T. The genesis of climax-type porphyry Mo deposits: insights from fluid inclusions and melt inclusions[J]. Ore Geology Reviews, 2017, 88: 436-460.
DOI URL |
[21] |
MONCADA D, BAKER D, BODNAR R J. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato mining district, México[J]. Ore Geology Reviews, 2017, 89: 143-170.
DOI URL |
[22] | 倪培, 迟哲, 潘君屹, 等. 热液矿床的成矿流体与成矿机制: 以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 2018, 37(3): 369-394, 560. |
[23] |
AUDÉTAT A. Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions[J]. Science, 1998, 279(5359): 2091-2094.
DOI URL |
[24] |
KLEMM L M, PETTKE T, HEINRICH C A, et al. Hydrothermal evolution of the El teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids[J]. Economic Geology, 2007, 102(6): 1021-1045.
DOI URL |
[25] |
KLEMM L M, PETTKE T, HEINRICH C A. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA[J]. Mineralium Deposita, 2008, 43(5): 533-552.
DOI URL |
[26] |
PUDACK C, HALTER W E, HEINRICH C A, et al. Evolution of magmatic vapor to gold-rich epithermal liquid: the porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina[J]. Economic Geology, 2009, 104(4): 449-477.
DOI URL |
[27] |
CATCHPOLE H, KOUZMANOV K, FONTBOTÉ L, et al. Fluid evolution in zoned cordilleran polymetallic veins: insights from microthermometry and LA-ICP-MS of fluid inclusions[J]. Chemical Geology, 2011, 281(3/4): 293-304.
DOI URL |
[28] |
SEO J H, GUILLONG M, HEINRICH C A. Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon[J]. Economic Geology, 2012, 107(2): 333-356.
DOI URL |
[29] |
HEDENQUIST J W, ARRIBAS A, REYNOLDS T J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93(4): 373-404.
DOI URL |
[30] |
ULRICH T, GUNTHER D, HEINRICH C A. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de La Alumbrera, Argentina[J]. Economic Geology, 2002, 97(8): 1889-1920.
DOI URL |
[31] |
RUSK B, REED M. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana[J]. Geology, 2002, 30(8): 727.
DOI URL |
[32] |
PAN J Y, NI P, CHI Z, et al. Spatial distribution and variation of ore body, alteration and ore-forming fluid of the giant Zijinshan epithermal Cu-Au deposit, SE China: implication for mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2018, 18(4): 279-293.
DOI URL |
[33] |
KESLER S E, JONES L M, WALKER R L. Intrusive rocks associated with porphyry copper mineralization in island arc areas[J]. Economic Geology, 1975, 70(3): 515-526.
DOI URL |
[34] |
RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533.
DOI URL |
[35] |
RICHARDS J P. Postsubduction porphyry cu-au and epithermal Au deposits: products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250.
DOI URL |
[36] |
HOU Z Q, YANG Z M, QU X M, et al. The Miocene gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/2/3): 25-51.
DOI URL |
[37] |
LOWELL J D, GUILBERT J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970, 65(4): 373-408.
DOI URL |
[38] |
RUSK B G, REED M H, DILLES J H, et al. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT[J]. Chemical Geology, 2004, 210(1/2/3/4): 173-199.
DOI URL |
[39] | BURNHAM C W. Magmas and hydrothermal fluids[J]. Geochemistry of Hydrothermal Ore Deposits, 1979, 71-136. |
[40] |
AUDÉTAT A, PETTKE T. The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete Plutons in Northern New Mexico (USA)[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 97-121.
DOI URL |
[41] |
BODNAR R J, BURNHAM C W, STERNER S M. Synthetic fluid inclusions in natural quartz. iii. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 ℃ and 1500 bars[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1861-1873.
DOI URL |
[42] |
SIGNORELLI S, CARROLL M R. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts[J]. Geochimica et Cosmochimica Acta, 2000, 64(16): 2851-2862.
DOI URL |
[43] | HEINRICH C A, CANDELA P A. Fluids and ore formation in the earth’s crust[M]// Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 1-28. |
[44] |
NI P, WANG G G, YU W, et al. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie orogen, Central China[J]. Ore Geology Reviews, 2015, 65: 1078-1094.
DOI URL |
[45] |
LI, NI P, WANG G G, et al. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China[J]. Ore Geology Reviews, 2017, 81: 898-911.
DOI URL |
[46] |
CHEN Y J, WANG Y. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: implications for the nature of the porphyry systems of post-collisional tectonic settings[J]. International Geology Review, 2011, 53(5/6): 635-655.
DOI URL |
[47] |
LI N, ULRICH T, CHEN Y J, et al. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China[J]. Ore Geology Reviews, 2012, 48: 442-459.
DOI URL |
[48] | LU H. High temperature, salinity and high concentrated ore metal magmatic fluids: an example from Grasberg Cu-Au porphyry deposit[J]. Acta Petrologica Sinica, 2000, 16(4): 465-472. |
[49] |
NI P, WANG G G, CAI Y T, et al. Genesis of the late jurassic Shizitou Mo deposit, South China: evidences from fluid inclusion, H-O isotope and Re-Os geochronology[J]. Ore Geology Reviews, 2017, 81: 871-883.
DOI URL |
[50] |
DUAN Z H, MФLLER N, WEARE J H. Equation of state for the NaCl-H2O-CO2 system: prediction of phase equilibria and volumetric properties[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2869-2882.
DOI URL |
[51] |
NI P, PAN J Y, WANG G G, et al. A CO2-rich porphyry ore-forming fluid system constrained from a combined cathodoluminescence imaging and fluid inclusion studies of quartz veins from the Tongcun Mo deposit, South China[J]. Ore Geology Reviews, 2017, 81: 856-870.
DOI URL |
[52] |
LOWENSTERN J. Carbon dioxide in magmas and implications for hydrothermal systems[J]. Mineralium Deposita, 2001, 36(6): 490-502.
DOI URL |
[53] |
BODNAR R. Synthetic fluid inclusions: xii. the system H2O-NaCl. experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution[J]. Geochimica et Cosmochimica Acta, 1994, 58(3): 1053-1063.
DOI URL |
[54] |
BECKER S P, FALL A, BODNAR R J. Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O-NaCl solutions (>30 wt % NaCl): application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits[J]. Economic Geology, 2008, 103(3): 539-554.
DOI URL |
[55] |
ROEDDER E, BODNAR R J. Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 1980, 8(1): 263-301.
DOI URL |
[56] |
AUDÉTAT A, GÜNTHER D. Mobility and H2O loss from fluid inclusions in natural quartz crystals[J]. Contributions to Mineralogy and Petrology, 1999, 137(1/2): 1-14.
DOI URL |
[57] |
LECUMBERRI-SANCHEZ P, STEELE-MACINNIS M, BODNAR R J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance[J]. Geochimica et Cosmochimica Acta, 2012, 92: 14-22.
DOI URL |
[58] |
ROEDDER E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado[J]. Economic Geology, 1971, 66(1): 98-118.
DOI URL |
[59] |
DRUMMOND S E, OHMOTO H. Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Economic Geology, 1985, 80(1): 126-147.
DOI URL |
[60] | ROEDDER E, BODNAR R. Fluid inclusion studies of hydrothermal ore deposits[M]// BARNES H L. The geochemistry of hydrothermal ore deposits. 3rd ed. New York: John Wiley and Son, 1997: 657-697. |
[61] |
HEINRICH C A, GÜNTHER D, AUDÉTAT A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J]. Geology, 1999, 27(8): 755.
DOI URL |
[62] |
LANDTWING M R, FURRER C, REDMOND P B, et al. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion[J]. Economic Geology, 2010, 105(1): 91-118.
DOI URL |
[63] |
CAI Y T, NI P, WANG G G, et al. Fluid inclusion and H-O-S-Pb isotopic evidence for the Dongxiang manto-type copper deposit, South China[J]. Journal of Geochemical Exploration, 2016, 171: 71-82.
DOI URL |
[64] |
ZHU X T, NI P, WANG G G, et al. Fluid inclusion, H-O isotope and Pb-Pb age constraints on the genesis of the Yongping copper deposit, South China[J]. Journal of Geochemical Exploration, 2016, 171: 55-70.
DOI URL |
[65] |
CHEN H, NI P, WANG G G, et al. Petrogenesis of ore-related granodiorite porphyry in the Jiande copper deposit, SE China: implications for the tectonic setting and mineralization[J]. Resource Geology, 2017, 67(2): 117-138.
DOI URL |
[66] | 杨志明, 谢玉玲, 李光明, 等. 西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究[J]. 矿床地质, 2005, 24(6): 584-594. |
[67] | 张绮玲, 曲晓明, 徐文艺, 等. 西藏南木斑岩铜钼矿床的流体包裹体研究[J]. 岩石学报, 2003, 19(2): 251-259. |
[68] |
ULRICH T, MAVROGENES J. An experimental study of the solubility of molybdenum in H2O and KCl-H2O Solutions from 500 ℃ to 800 ℃, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 2008, 72(9): 2316-2330.
DOI URL |
[69] |
MAVROGENES J A, BERRY A J, NEWVILLE M, et al. Copper speciation in vapor-phase fluid inclusions from the mole granite, Australia[J]. American Mineralogist, 2002, 87(10): 1360-1364.
DOI URL |
[70] |
LIU W H, MCPHAIL D C. Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions[J]. Chemical Geology, 2005, 221(1/2): 21-39.
DOI URL |
[71] |
WANG G G, NI P, ZHAO C, et al. A combined fluid inclusion and isotopic geochemistry study of the Zhilingtou Mo deposit, South China: implications for ore genesis and metallogenic setting[J]. Ore Geology Reviews, 2017, 81: 884-897.
DOI URL |
[72] | BODNAR R J. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineral, 1995, 23: 139-152. |
[73] |
POKROVSKI G S, ROUX J, HARRICHOURY J C. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems[J]. Geology, 2005, 33(8): 657-660.
DOI URL |
[74] |
LINDGREN W A. suggestion for the terminology of certain mineral deposits[J]. Economic Geology, 1922, 17(4): 292-294.
DOI URL |
[75] |
SIMMONS S F, BROWNE P R L. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments[J]. Economic Geology, 2000, 95(5): 971-999.
DOI URL |
[76] | SIMMONS S F, WHITE N C, JOHN D A. Geological characteristics of epithermal precious and base metal deposits[M]// One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 485-522. |
[77] | SILLITOE R H, HEDENQUIST J W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits[J]. Special Publication, Society of Economic Geology, 2003, 10: 315-343. |
[78] | LINDGREN W. Metasomatic precesses in fissure veins[J]. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1900, 30: 578. |
[79] |
DEEN J A, RYE R O, MUNOZ J L, et al. The magmatic hydrothermal system at Julcani, Peru: evidence from fluid inclusions and hydrogen and oxygen isotopes[J]. Economic Geology, 1994, 89(8): 1924-1938.
DOI URL |
[80] |
ARRIBAS A, HEDENQUIST J W, ITAYA T, et al. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 Ka in Northern Luzon, Philippines[J]. Geology, 1995, 23(4): 337.
DOI URL |
[81] | DEYELL C, BISSIG T, RYE R. Isotopic evidence for magmatic-dominated epithermal processes in the El Indio-Pascua Au-Cu-Ag Belt and relationship to geomorphologic setting[J]. Society of Economic Geologists Special Publication, 2004, 11: 55-73. |
[82] | SKINNER B. Hydrothermal mineral deposits: what we do and don’t know[M]// BARNES H L. The geochemistry of hydrothermal ore deposits. 3rd ed. New York: John Wiley and Son, 1997: 1-29. |
[83] |
ANDRÉ-MAYER A S, LEROY J, BAILLY L, et al. Boiling and vertical mineralization zoning: a case study from the apacheta low-sulfidation epithermal gold-silver deposit, Southern Peru[J]. Mineralium Deposita, 2002, 37(5): 452-464.
DOI URL |
[84] |
NI P, PAN J Y, HUANG B, et al. Geology, Ore-forming fluid and genesis of the Qiucun gold deposit: implication for mineral exploration at Dehua prospecting region, SE China[J]. Journal of Geochemical Exploration, 2018, 195: 3-15.
DOI URL |
[85] |
CHI Z, NI P, PAN J Y, et al. Geology, Mineral paragenesis and fluid inclusion studies of the Yueyang Ag-Au-Cu deposit, South China: implications for ore genesis and exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2018, 18(4): 303-318.
DOI URL |
[86] |
SCOTT A M, WATANABE Y. “Extreme boiling” model for variable salinity of the hokko low-sulfidation epithermal au prospect, Southwestern Hokkaido, Japan[J]. Mineralium Deposita, 1998, 33(6): 568-578.
DOI URL |
[87] | HEDENQUIST J W, ARRIBAS A, GONZALEZ-URIEN E. Exploration for epithermal gold deposits[M]// HAGEMANN S G, BROWN P E. Gold in 2000. Review Economic Geology, 2000: 245-277. |
[88] |
HEDENQUIST J W, HENLEY R W. The importance of CO2 on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore deposition[J]. Economic Geology, 1985, 80(5): 1379-1406.
DOI URL |
[89] |
SIMMONS S F, CHRISTENSON B W. Origins of calcite in a boiling geothermal system[J]. American Journal of Science, 1994, 294(3): 361-400.
DOI URL |
[90] |
CANET C, FRANCO S I, PROL-LEDESMA R M, et al. A model of boiling for fluid inclusion studies: application to the Bolaños Ag-Au-Pb-Zn epithermal deposit, Western Mexico[J]. Journal of Geochemical Exploration, 2011, 110(2): 118-125.
DOI URL |
[91] | BERGER B R, EIMON P. Conceptual models of epithermal precious metal deposits[M]// Cameron volume on unconventional mineral deposits. New York: Society of Mining Engineers of AIME, 1983: 191-205. |
[92] |
COLE D R, DRUMMOND S E. The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious-metal ore deposits[J]. Journal of Geochemical Exploration, 1986, 25(1/2): 45-79.
DOI URL |
[93] |
BROWNE P R L, ELLIS A J. The Ohaki-Broadlands hydrothermal area, New Zealand: mineralogy and related geochemistry[J]. American Journal of Science, 1970, 269(2): 97-131.
DOI URL |
[94] |
BROWNE P L. Hydrothermal alteration in active geothermal fields[J]. Annual Review of Earth and Planetary Sciences, 1978, 6(1): 229-248.
DOI URL |
[95] |
GAMMONS C H, BARNES H L. The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 279-290.
DOI URL |
[96] | SEWARD T M, BARNES H L. Metal transport by hydrothermal ore fluids[M]// BARNES H L. The geochemistry of hydrothermal ore deposits. 3rd ed. New York: John Wiley and Son, 1997: 435-486. |
[97] |
AKINFIEV N N, ZOTOV A V. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0~600 ℃and pressures of 1~3 000 bar[J]. Geochemistry International, 2010, 48(7): 714-720.
DOI URL |
[98] | COOKE D R, MCPHAIL D C. Epithermal Au-Ag-Te mineralization, acupan, Baguio district, Philippines: numerical simulations of mineral deposition[J]. Economic Geology, 2001, 96(1): 109-131. |
[99] |
STEFÁNSSON A, SEWARD T M. Experimental determination of the stability and stoichiometry of sulphide complexes of silver(i) in hydrothermal solutions to 400 ℃[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1395-1413.
DOI URL |
[100] |
VIKRE P G. Fluid-mineral relations in the Comstock Lode[J]. Economic Geology, 1989, 84(6): 1574-1613.
DOI URL |
[101] |
SANDER M V, EINAUDI M T. Epithermal deposition of gold during transition from propylitic to potassic alteration at round mountain, Nevada: reply[J]. Economic Geology, 1991, 86(4): 894-897.
DOI URL |
[102] |
WANG G G, NI P, WANG R C, et al. Geological, Fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: implications for ore genesis and exploration[J]. Journal of Asian Earth Sciences, 2013, 74: 343-360.
DOI URL |
[103] |
PHILLIPSON S, ROMBERGER S. Volcanic stratigraphy, structural controls, and mineralization in the San Cristobal Ag-Zn-Pb deposit, Southern Bolivia[J]. Journal of South American Earth Sciences, 2004, 16(8): 667-683.
DOI URL |
[104] |
CHINCHILLA D, ORTEGA L, PIÑA R, et al. The Patricia Zn-Pb-Ag epithermal ore deposit: an uncommon type of mineralization in Northeastern Chile[J]. Ore Geology Reviews, 2016, 73: 104-126.
DOI URL |
[105] |
CAMUS F, SKEWES M A. The Faride epithermal silver-gold deposit, Antofagasta Region, Chile[J]. Economic Geology, 1991, 86(6): 1222-1237.
DOI URL |
[106] |
CAMPRUBI A, GONZALEZ-PARTIDA E, IRIONDO A, et al. Mineralogy, fluid characteristics, and depositional environment of the Paleocene epithermal Au-Ag deposits of the El Barqueno district, Jalisco, Mexico[J]. Economic Geology, 2006, 101(1): 235-247.
DOI URL |
[107] |
CAMPRUBÍ A, CHOMIAK B A, VILLANUEVA-ESTRADA R E, et al. Fluid sources for the La Guitarra epithermal deposit (Temascaltepec District, Mexico): volatile and helium isotope analyses in fluid inclusions[J]. Chemical Geology, 2006, 231(3): 252-284.
DOI URL |
[108] |
LI S N, NI P, BAO T, et al. Genesis of the Ancun epithermal gold deposit, Southeast China: evidence from fluid inclusion and stable isotope data[J]. Journal of Geochemical Exploration, 2018, 195: 157-177.
DOI URL |
[109] |
SEWARD T. The formation of lead(ii) chloride complexes to 300 ℃: a spectrophotometric study[J]. Geochimica et Cosmochimica Acta, 1984, 48(1): 121-134.
DOI URL |
[110] |
XIAO Z F, GAMMONS C H, WILLIAMS-JONES A E. Experimental study of copper(i) chloride complexing in hydrothermal solutions at 40 to 300 ℃ and saturated water vapor pressure[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2949-2964.
DOI URL |
[111] |
LUO Y X, MILLERO F J. Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 326-334.
DOI URL |
[112] |
COOKE D R, MCPHAIL D C, BLOOM M S. Epithermal gold mineralization, acupan, Baguio district, Philippines: geology, mineralization, alteration, and the thermochemical environment of ore deposition[J]. Economic Geology, 1996, 91(2): 243-272.
DOI URL |
[113] |
SMITH D M, ALBINSON T, SAWKINS F J. Geologic and fluid inclusion studies of the Tayoltita Silver-gold vein deposit, Durango, Mexico[J]. Economic Geology, 1982, 77(5): 1120-1145.
DOI URL |
[114] |
HEDENQUIST J W, LOWENSTERN J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519-527.
DOI URL |
[115] |
SIMMONS S F, BROWN K L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit[J]. Science, 2006, 314(5797): 288-291.
DOI URL |
[116] |
LI S N, NI P, BAO T, et al. Geology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, Southeast China: implications for ore genesis and mineral exploration[J]. Journal of Geochemical Exploration, 2018, 195: 16-30.
DOI URL |
[117] |
CHANG Z S, HEDENQUIST J W, WHITE N C, et al. Exploration tools for linked porphyry and epithermal deposits: example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology, 2011, 106(8): 1365-1398.
DOI URL |
[118] |
MÁRQUEZ-ZAVALÍA M F, HEINRICH C A. Fluid evolution in a volcanic-hosted epithermal carbonate-base metal-gold vein system: Alto de La Blenda, Farallón Negro, Argentina[J]. Mineralium Deposita, 2016, 51(7): 873-902.
DOI URL |
[119] |
RINNE M L, COOKE D R, HARRIS A C, et al. Geology and geochronology of the Golpu porphyry and Wafi epithermal deposit, Morobe Province, Papua New Guinea[J]. Economic Geology, 2018, 113(1): 271-294.
DOI URL |
[120] |
O’NEIL J R, SILBERMAN M L. Stable isotope relations in epithermal Au-Ag deposits[J]. Economic Geology, 1974, 69(6): 902-909.
DOI URL |
[121] | TAYLOR H, BARNES H. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits[M]// BARNES H L. The geochemistry of hydrothermal ore deposits. 3rd ed. New York: John Wiley and Son, 1997: 229-302. |
[122] |
GAMMONS C H, WILLIAMS-JONES A E. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic Geology, 1997, 92(1): 45-59.
DOI URL |
[123] |
MUNTEAN J L, EINAUDI M T. Porphyry-epithermal transition: Maricunga belt, Northern Chile[J]. Economic Geology, 2001, 96(4): 743-772.
DOI URL |
[124] | WILLIAMS-JONES A, MIGDISOV A, ARCHIBALD S, et al. Vapor-transport of ore metals[J]. Geochemical Society Special Publication, 2002, 7: 279-305. |
[125] | ARRIBAS JR A. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid[J]. Mineralogical Association of Canada Short Course, 1995, 23: 419-454. |
[126] |
LONGO A A, DILLES J H, GRUNDER A L, et al. Evolution of calc-alkaline volcanism and associated hydrothermal gold deposits at Yanacocha, Peru[J]. Economic Geology, 2010, 105(7): 1191-1241.
DOI URL |
[127] |
LUND K, ALEINIKOFF J N, KUNK M J, et al. SHRIMP U-Pb and 40Ar/39Ar age constraints for relating plutonism and mineralization in the boulder batholith region, Montana[J]. Economic Geology, 2002, 97(2): 241-267.
DOI URL |
[128] |
GUSTAFSON L B, HUNT J P. The porphyry copper deposit at El Salvador, Chile[J]. Economic Geology, 1975, 70(5): 857-912.
DOI URL |
[129] | WATANABE Y, HEDENQUIST J W. Mineralogic and stable isotope zonation at the surface overthe El Salvador porphyry copper deposit, Chile[J]. Economic Geology, 2001, 96(8): 1775-1797. |
[130] |
HEINRICH C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study[J]. Mineralium Deposita, 2005, 39(8): 864-889.
DOI URL |
[131] |
HEDENQUIST J W, SIMMONS S F, GIGGENBACH W F, et al. White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition[J]. Geology, 1993, 21(8): 731.
DOI URL |
[132] |
TARAN YU A, HEDENQUIST J W, KORZHINSKY M A, et al. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1749-1761.
DOI URL |
[133] |
KING J, WILLIAMS-JONES A E, VAN HINSBERG V, et al. High-sulfidation epithermal pyrite-hosted Au (Ag-Cu) ore formation by condensed magmatic vapors on Sangihe Island, Indonesia[J]. Economic Geology, 2014, 109(6): 1705-1733.
DOI URL |
[134] |
ZAJACZ Z, HANLEY J J, HEINRICH C A, et al. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions: are all metal concentrations unmodified?[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 3013-3027.
DOI URL |
[135] |
LERCHBAUMER L, AUDÉTAT A. High Cu concentrations in vapor-type fluid inclusions: an artifact?[J]. Geochimica et Cosmochimica Acta, 2012, 88: 255-274.
DOI URL |
[136] |
SEO J H, HEINRICH C A. Selective copper diffusion into quartz-hosted vapor inclusions: evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation[J]. Geochimica et Cosmochimica Acta, 2013, 113: 60-69.
DOI URL |
[137] |
ZAJACZ Z, CANDELA P A, PICCOLI P M. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 2017, 207: 81-101.
DOI URL |
[138] |
HEDENQUIST J W, TARAN Y A. Modeling the formation of advanced argillic lithocaps: volcanic vapor condensation above porphyry intrusions[J]. Economic Geology, 2013, 108(7): 1523-1540.
DOI URL |
[139] | RANKIN A H. Fluid inclusion anomalies as exploration guides for granite-hosted Sn-W mineralization: prospects for the future?[J]. Acta Petrologica Sinica, 2007, 23(1): 3-14. |
[140] |
DIAMOND L W, MARSHALL D D. Evaluation of the fluid-inclusion crushing-stage as an aid in exploration for mesothermal gold-quartz deposits[J]. Journal of Geochemical Exploration, 1990, 38(3): 285-297.
DOI URL |
[141] |
EVERETT C E, WILKINSON J J, RYE D M. Fracture-controlled fluid flow in the lower palaeozoic basement rocks of ireland: implications for the genesis of irish-type Zn-Pb deposits[J]. Geological Society, London, Special Publications, 1999, 155(1): 247-276.
DOI URL |
[142] |
RUSK B G, REED M H, DILLES J H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana[J]. Economic Geology, 2008, 103(2): 307-334.
DOI URL |
[143] |
NASH J T, THEODORE T G. Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada[J]. Economic Geology, 1971, 66(3): 385-399.
DOI URL |
[144] |
MOORE W J, NASH J T. Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah[J]. Economic Geology, 1974, 69(5): 631-645.
DOI URL |
[145] | CAMPRUBI A, CANALS À, CARDELLACH E, et al. The La Guitarra Ag-Au low-sulfidation epithermal deposit, Temascaltepec district, Mexico: vein structure, mineralogy, and sulfide-sulfosalt chemistry[J]. Special Publication-Society of Economic Geologist, 2001, 8: 133-158. |
[146] | CAMPRUBIÍ A, ALBINSON T. Epithermal deposits in México: update of current knowledge, and an empirical reclassification[M]// Geology of México: celebrating the centenary of the geological society of México. Colorado: Geological Society of America, 2007, 422: 377-415. |
[147] |
NI P, LI S N, BAO T, et al. Mapping of fluid, alteration and soil geochemical anomaly as a guide to regional mineral exploration for the Dehua gold orefield of Fujian Province, SE China[J]. Geochemistry: Exploration, Environment, Analysis, 2019, 19(1): 74-90.
DOI URL |
[148] |
RICHARDSON C K, PINCKNEY D M. The chemical and thermal evolution of the fluids in the cave-in-rock fluorspar district, Illinois: mineralogy, paragenesis, and fluid inclusions[J]. Economic Geology, 1984, 79(8): 1833-1856.
DOI URL |
[149] |
PAN J Y, NI P, CHI Z, et al. Alunite 40Ar/39Ar and zircon U-Pb constraints on the magmatic-hydrothermal history of the Zijinshan high-sulfidation epithermal Cu-Au deposit and the adjacent Luoboling porphyry Cu-Mo deposit, South China: implications for their genetic association[J]. Economic Geology, 2019, 114(4): 667-695.
DOI URL |
[150] |
FOURNIER R O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J]. Economic Geology, 1999, 94(8): 1193-1211.
DOI URL |
[151] |
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338(6114): 1613-1616.
DOI URL |
[1] | LIU Xiuyan, CHEN Honghan, XIAO Xuewei, LI Peijun, WANG Baozhong. Characterization of the shale gas formation process based on fluid inclusion evidence: An example of the Lower Cambrian Niutitang shale formation, Xiushan section, southeastern Chongqing [J]. Earth Science Frontiers, 2023, 30(3): 165-180. |
[2] | ZHANG Weifeng, CHEN Huayong, DENG Xin, JIN Xinbiao, LIU Shuzhan, TAN Juanjuan. Discriminating characteristics of hydrothermal fluids using epidote mineral chemistry and strontium isotopes: A case study of the Duotoushan Fe-Cu deposit, eastern Tianshan [J]. Earth Science Frontiers, 2023, 30(2): 384-400. |
[3] | DONG Guochen, LI Shengrong, SHEN Junfeng, DONG Pengsheng, LI Huawei, YIN Guodong, TANG Jiahui. Genetic mineralogy of natural heavy placer minerals and its effectiveness in mineral prospecting [J]. Earth Science Frontiers, 2020, 27(5): 171-178. |
[4] | YANG Fucheng, LI Wenchang, ZHU Xiangping, JIANG Xiaojun, LIU Jun, LIAO Zhongli, LIU Hongfei, YANG Houbin, LI Yong. Geological characteristics and prospecting of the Bada Cu-Au deposit in Mangkang County, East Tibet [J]. Earth Science Frontiers, 2020, 27(4): 232-243. |
[5] | LIU Hong, ZHANG Linkui, HUANG Hanxiao, LI Guangming, OUYANG Yuan, YU Huai, LIANG Wei, ZHANG Hongming, CHEN Xiaoping. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: fluid inclusion and H-O isotope evidence [J]. Earth Science Frontiers, 2020, 27(4): 49-65. |
[6] | LIANG Pei, CHEN Huayong, ZHAO Liandang, Kendrick MARK, JIANG Hongjun, ZHANG Weifeng, WU Chao, XIE Yuling. Fluid evolution of iron oxide-Cu-Au (IOCG) deposits in the basin inversion setting, North Xinjiang: constraints from halogen and noble gas composition of fluid inclusions [J]. Earth Science Frontiers, 2020, 27(3): 239-253. |
[7] | GOU Zongyang,YU Haocheng,QIU Kunfeng,WU Mingqian,ZHOU Chunsheng, ZHU Rui,LI Jun,WEN Yitong. Oxygen fugacity of ore-bearing porphyries in the Taiyangshan porphyry copper-molybdenum deposit, West Qinling, China and its implications for porphyry-style Cu-Mo mineralization [J]. Earth Science Frontiers, 2019, 26(5): 243-254. |
[8] | SHU Sunping,LI Qiugen,LIU Shuwen,CHEN Yanjing. The origin and significance of the differences in petrogenesis and mineralization of porphyry gold, copper and molybdenum deposits [J]. Earth Science Frontiers, 2018, 25(5): 237-250. |
[9] | LIU Yun-Hua, LI Zhen, ZHOU Su, HAN Yi-Xiao. Geological characteristics, ore forming ages and geological significance of DonggouJinlongshan gold deposit, South Qinling belt. [J]. Earth Science Frontiers, 2016, 23(4): 81-93. |
[10] | XU Wen-Gang, FAN Hong-Rui-*, HU Fang-Fang, YANG Kui-Feng. Oreforming fluids of the oxidized and reduced porphyry deposits. [J]. Earth Science Frontiers, 2011, 18(5): 103-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||