Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 207-217.DOI: 10.13745/j.esf.sf.2025.3.24
Previous Articles Next Articles
CHEN Li(), WANG Shuhui(
), YUAN Weiqi, GU Wenzhi, YE Jie*(
), ZHOU Shungui
Received:
2025-02-10
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
CHEN Li, WANG Shuhui, YUAN Weiqi, GU Wenzhi, YE Jie, ZHOU Shungui. The photoelectric effect and microbial response mechanisms in the euphotic zone of the Minjiang River estuary[J]. Earth Science Frontiers, 2025, 32(3): 207-217.
[1] |
XIONG J, FISCHER W M, INOUE K, et al. Molecular evidence for the early evolution of photosynthesis[J]. Science, 2000, 289(5485): 1724-1730.
PMID |
[2] | SYBESMA C, FOWLER C F. Evidence for two light-driven reactions in the purple photosynthetic bacterium, Rhodospirillum rubrum[J]. Proceedings of the National Academy of Sciences, 1968, 61(4): 1343-1348. |
[3] | KRUSE O, RUPPRECHT J, MUSSGNUG J H, et al. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies[J]. Photochemical & Photobiological Sciences, 2005, 4(12): 957-970. |
[4] |
COTTRELL M T, MANNINO A, KIRCHMAN D L. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre[J]. Applied and Environmental Microbiology, 2006, 72(1): 557-564.
PMID |
[5] |
KOLBER Z S, GERALD F, LANG A S, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean[J]. Science, 2001, 292(5526): 2492-2495.
PMID |
[6] | SIERACKI M E, GILG I C, THIER E C, et al. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the Northwest Atlantic[J]. Limnology and Oceanography, 2006, 51(1): 38-46. |
[7] | HOHMANN-MARRIOTT M F, BLANKENSHIP R E. Evolution of photosynthesis[J]. Annual Review of Plant Biology, 2011, 62: 515-548. |
[8] |
CROCE R, VAN AMERONGEN H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7): 492-501.
DOI PMID |
[9] | DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362(1): 922-937. |
[10] | 鲁安怀, 王鑫, 李艳, 等. 矿物光电子与地球早期生命起源及演化初探[J]. 中国科学: 地球科学, 2014, 44(6): 1117-1123. |
[11] | KUMAR S, HERRMANN M, BLOHM A, et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer[J]. FEMS Microbiology Ecology, 2018, 94(10): fiy141. |
[12] | LAU M C Y, KIEFT T L, KULOYO O, et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): E7927 - E7936. |
[13] | LU A H, LI Y, JIN S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications, 2012, 3(3): 768. |
[14] |
SAKIMOTO K K, WONG A B, YANG P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.
DOI PMID |
[15] | 鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层”[J]. 岩石学报, 2019, 35(1): 119-128. |
[16] | 胡文烨. 西北太平洋悬浮颗粒物的分布、组成及环境演变的初步研究[D]. 厦门: 国家海洋局第三海洋研究所, 2016. |
[17] |
鲁安怀, 李艳, 丁竑瑞, 等. 天然矿物光电效应: 矿物非经典光合作用[J]. 地学前缘, 2020, 27(5): 179-194.
DOI |
[18] | ALBERT A, WOOD H C S. Pteridine syntheses. II.isoxanthopterin[J]. Journal of Applied Chemistry, 1953, 3(11): 521-523. |
[19] | LANDYMORE A F, ANTIA N J. White-light promoted degradation of leucopterin and related pteridines dissolved in seawater, with evidence for involvement of complexation from major divalent cations of seawater[J]. Marine Chemistry, 1978, 6(4): 309-325. |
[20] | SUN C, YU Q L, ZHAO Z Q, et al. Establishment of an electroactive microorganism community in anaerobic digestion with photosynthetic bacteria agents for promoting methane production[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(46): 16521-16529. |
[21] | CHEN S S, CHEN J, ZHANG L L, et al. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria[J]. The ISME Journal, 2023, 17(5): 712-719. |
[22] | YAMAMOTO M, KAWADA Y, TAKAKI Y, et al. Electrochemical survey of electroactive microbial populations in deep-sea hydrothermal fields[J]. Progress in Earth and Planetary Science, 2024, 11(1): 1-15. |
[23] |
ROWE A R, YOSHIMURA M, LAROWE D E, et al. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring[J]. Environmental Microbiology, 2017, 19(6): 2272-2285.
DOI PMID |
[24] | CAMACHO A, MIRACLE M R, ROMERO-VIANA L, et al. Lake La Cruz, an iron-rich karstic meromictic lake in central spain[M]. New York: Springer International Publishing, 2017: 187-233. |
[25] | CROWE S A, JONES C A, KATSEV S, et al. Photoferrotrophs thrive in an Archean Ocean analogue[J]. Proceedings of the National Academy of Sciences, 2008, 105(41): 15938-15943. |
[26] | CHEN S S, JING X Y, YAN Y L, et al. Bioelectrochemical nitrogen fixation to extracellular ammonium by Pseudomonas stutzeri[J]. Applied and Environmental Microbiology, 2021, 87(5): e01998-20. |
[27] | JING X, LIU X, ZHANG Z, et al. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens[J]. Water Research, 2022, 208: 117860. |
[28] |
WONG P Y, CHENG K Y, KAKSONEN A H, et al. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system[J]. Water Research, 2014, 64: 73-81.
DOI PMID |
[29] | MOMZIKOFF A, SANTUS R, GIRAUD M. A study of the photosensitizing properties of seawater[J]. Marine Chemistry, 1983, 12(1): 1-14. |
[30] | TRUEBLOOD J V, ALVES M R, POWER D, et al. Shedding light on photosensitized reactions within marine-relevant organic thin films[J]. ACS Earth and Space Chemistry, 2019, 3(8): 1614-1623. |
[31] | DONG H L, HUANG L Q, ZHAO L D, et al. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): 209-229. |
[32] | 刘佳, 丁竑瑞, 葛潇, 等. 海洋透光层代表性铁氧化物半导体矿物: 针铁矿和纤铁矿光还原特性及其环境效应[J]. 矿物岩石地球化学通报, 2022, 41(6): 1273-1283. |
[33] | MAO J, AN X Q, GU Z N, et al. Visualizing the interfacial charge transfer between photoactive microcystis aeruginosa and hydrogenated TiO2[J]. Environmental Science & Technology, 2020, 54(16): 10323-10332. |
[34] | KRACHLER R, KRACHLER R F. Northern high-latitude organic soils as a vital source of river-borne dissolved iron to the ocean[J]. Environmental Science & Technology, 2021, 55(14): 9672-9690. |
[35] | CHESTER R. Marine Geochemistry[M]. London: Unwin Hyman, 1990. |
[36] | KRACHLER R, KRACHLER R F, VON DER KAMMER F, et al. Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean[J]. Science of The Total Environment, 2010, 408(11): 2402-2408. |
[37] | 张兰兰, 陈姗姗, 栾天罡. 天然光催化物质的光电特性与环境效应研究进展[J]. 环境化学, 41(12): 3893-3903. |
[38] | KOLBER Z S, PRÁŠIL O, FALKOWSKI P G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols[J]. Biochimica et Biophysica Acta - Bioenergetics, 1998, 1367(1): 88-106. |
[39] | LI Y Y, NAMAN C B, ALEXANDER K L, et al. The chemistry, biochemistry and pharmacology of marine natural products from Leptolyngbya: a chemically endowed genus of cyanobacteria[J]. Marine Drugs. 2020, 18(508): 1-29. |
[40] | HUANG S F, CHEN M, DIAO Y M, et al. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification[J]. Environmental Science & Technology, 2022, 56(7): 4632-4641. |
[41] | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
[42] | BATISTA A P S, TEIXEIRA A C S C, COOPER W J, et al. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine[J]. Water Research, 2016, 93(1): 20-29. |
[43] |
REN D, HUANG B, YANG B Q, et al. Mitigating 17α-ethynylestradiol water contamination through binding and photosensitization by dissolved humic substances[J]. Journal of Hazardous Materials, 2017, 327: 197-205.
DOI PMID |
[44] | ZHOU S F, LIAO Z Y, ZHANG B P, et al. Photochemical behavior of microbial extracellular polymeric substances in the aquatic environment[J]. Environmental Science & Technology, 2021, 55(22): 15090-15099. |
[45] |
COBLE P G. Marine optical biogeochemistry: the chemistry of ocean color[J]. Chemical Reviews, 2007, 107(2): 402-418.
DOI PMID |
[46] | LAANE R W P M, KOOLE L. The relation between fluorescence and dissolved organic carbon in the Ems-Dollart estuary and the western Wadden Sea[J]. Netherlands Journal of Sea Research, 1982, 15(2): 217-227. |
[47] | BERGAMASCHI B A, KRABBENHOFT D P, AIKEN G R, et al. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary[J]. Environmental Science & Technology, 2012, 46(3): 1371-1378. |
[48] | LIU J, ZHU F C, YIN Q J, et al. Photocatalytic characteristic of semiconducting mineral anatase and microbial community in the marine euphotic zone of the Beibu Gulf, South China Sea[J]. Geomicrobiology Journal, 2024, 41(5): 530-542. |
[49] | 周曾, 刘瑶, 吴一鸣, 等. 河口海岸沉积层理特征与形成机制[J]. 水科学进展, 2024, 35(1): 167-182. |
[50] | 王鲁宁, 魏皓, 赵亮. 光衰减系数与悬浮颗粒物浓度的关系[J]. 中国海洋大学学报(自然科学版), 2014, 44(4): 8-14. |
[51] | HUANG L Y, LIU X, ZHANG Z S, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture[J]. The ISME Journal, 2022, 16(2): 370-377. |
[52] |
HANSON C A, FUHRMAN J A, HORNER-DEVINE M C, et al. Beyond biogeographic patterns: processes shaping the microbial landscape[J]. Nature Reviews Microbiology, 2012, 10(7): 497-506.
DOI PMID |
[53] | ZHAO K K, MA B, XU Y, et al. Light exposure mediates circadian rhythms of rhizosphere microbial communities[J]. The ISME Journal, 2021, 15(9): 2655-2664. |
[54] | POLZ M F, HUNT D E, PREHEIM S P, et al. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1475): 2009-2021. |
[55] | RAMOS J. Pseudomonas: volume 1 genomics, life style and molecular architecture[M]. New York: Springer. 2004. |
[56] | PIRBADIAN S, BARCHINGER S E, LEUNG K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12883-12888. |
[57] | LI H, CHENG J, XIA R X, et al. Electron syntrophy between mixed hydrogenogens and Geobacter metallireducens boosted dark hydrogen fermentation: clarifying roles of electroactive extracellular polymeric substances[J]. Bioresource Technology, 2024, 395: 130350. |
[58] |
BRYANT M P, WOLIN E A, WOLIN M J, et al. Methanobacillus omelianskii, a symbiotic association of two species of bacteria[J]. Archiv für Mikrobiologie, 1967, 59(1): 20-31.
DOI PMID |
[59] | LOZUPONE C A, KNIGHT R. Global patterns in bacterial diversity[J]. Proceedings of the National Academy of Sciences, 2007, 104(27): 11436-11440. |
[60] | FUHRMAN J A, STEELE J A, HEWSON I, et al. A latitudinal diversity gradient in planktonic marine bacteria[J]. Proceedings of the National Academy of Sciences, 2008, 105(22): 7774-7778. |
[61] | ANDERSSON A F, RIEMANN L, BERTILSSON S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities[J]. The ISME Journal, 2010, 4(2): 171-181. |
[62] |
GILBERT J A, FIELD D, SWIFT P, et al. The seasonal structure of microbial communities in the western English Channel[J]. Environmental Microbiology, 2009, 11(12): 3132-3139.
DOI PMID |
[63] | YE J, YU J, ZHANG Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environmental, 2019, 257: 117916. |
[64] | WANG C, YU J, REN G P, et al. Self-replicating biophotoelectrochemistry system for sustainable CO methanation[J]. Environmental Science & Technology, 2022, 56(7): 4587-4596. |
[65] | UREY H C. Life-forms in meteorites: Origin of life-like forms in carbonaceous chondrites introduction[J]. Nature, 1962, 193(4821): 1119-1123. |
[66] | ZHANG X V, ELLERY S P, FRIEND C M, et al. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2): 301-311. |
[67] |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
PMID |
[68] | WANG W L, MOORE J K, MARTINY A C, et al. Convergent estimates of marine nitrogen fixation[J]. Nature, 2019, 566(7743): 205-211. |
[69] | TAYLOR P G, TOWNSEND A R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea[J]. Nature, 2010, 464(7292): 1178-1181. |
[1] | LIU Zhitong, ZHOU Ni, QIAO Wenjing, YE Shujun. Effects of o-nitro-p-methylphenol and o-amino-p-methylphenol on the anaerobic biodegradation of 1,2,4-TCB [J]. Earth Science Frontiers, 2021, 28(5): 159-166. |
[2] | LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuw. Natural mineral photoelectric effect: mineral non-classical photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 300-. |
[3] | LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuwei, ZHU Ying, LI Yanzhang. Natural mineral photoelectric effect: non-classical mineral photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 179-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||