Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 344-357.DOI: 10.13745/j.esf.sf.2024.6.26
Previous Articles Next Articles
TANG Zhitan1(), LIU Jingshou1,2,*(), YAN Xia3,4, FENG Yanqing3,4, JIANG Shu1, ZHANG Binxin2, ZHANG Guanjie1, FU Yiming2
Received:
2023-11-15
Revised:
2024-06-22
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
TANG Zhitan, LIU Jingshou, YAN Xia, FENG Yanqing, JIANG Shu, ZHANG Binxin, ZHANG Guanjie, FU Yiming. The control mechanism of deep coal rock microstructure on in situ stress[J]. Earth Science Frontiers, 2024, 31(5): 344-357.
Fig.4 Stress simulation based on logging curves. (a) Rock mechanical strength logging analysis based on array acoustic logging. (b) Current geostress frequency distribution map of coal seams in the research area. (c) Numerical simulation scheme for boundary stress.
Fig.5 Geomechanical model and stress distribution diagram for the study area. (a) Stress loading in the geomechanical model. (b) 3D stress distribution map of coal seam.
Fig.6 Mechanical property simulation based on logging curve. (a) Rock mechanics parameter logging interpretation based on array acoustic logging. (b) Histograms of coal seam Poisson’s ratios and Young’s modulus. (c) Numerical simulation scheme for rock mechanics experiments.
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=-2.031 9x+7.579 9 | 0.995 6 |
类型2 | y=-2.027x+3.973 2 | 0.995 9 |
类型3 | y=-0.837 7x+4.070 7 | 0.791 4 |
类型4 | y=-1.634 4x+1.240 7 | 0.994 6 |
类型5 | y=0.425x+1.573 | 0.994 5 |
Table 1 Formulas and R-squared values relating Poisson’s ratio and minimum horizontal stress of coal seam under different microstructure types
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=-2.031 9x+7.579 9 | 0.995 6 |
类型2 | y=-2.027x+3.973 2 | 0.995 9 |
类型3 | y=-0.837 7x+4.070 7 | 0.791 4 |
类型4 | y=-1.634 4x+1.240 7 | 0.994 6 |
类型5 | y=0.425x+1.573 | 0.994 5 |
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=5×10-11x+0.344 2 | 0.968 5 |
类型2 | y=1×10-10x-3.819 | 0.917 2 |
类型3 | y=-1×10-10x+2.784 2 | 0.972 3 |
类型4 | y=2×10-10x-6.073 7 | 0.955 7 |
类型5 | y=-2×10-10x+5.406 | 0.966 |
Table 2 Formulas and R-squared values relating Young’s modulu and minimum horizontal stress under different microstructure types
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=5×10-11x+0.344 2 | 0.968 5 |
类型2 | y=1×10-10x-3.819 | 0.917 2 |
类型3 | y=-1×10-10x+2.784 2 | 0.972 3 |
类型4 | y=2×10-10x-6.073 7 | 0.955 7 |
类型5 | y=-2×10-10x+5.406 | 0.966 |
杨氏模量 | 公式 | R2 |
---|---|---|
10 | y=0.758 9x2-4.193 7x+4.195 8 | 0.258 3 |
20 | y=0.796 1x2-4.718 6x+5.292 2 | 0.450 8 |
25 | y=0.646 1x2-2.932 8x+4.323 67 | 0.616 3 |
30 | y=0.427 8x2-2.932 8x+4.236 7 | 0.896 5 |
35 | y=0.161 1x2-1.574 1x+3.250 7 | 0.705 9 |
Table 3 Formulas and R-squared values relating microstructure type and minimum horizontal stress under different Young’s modulus
杨氏模量 | 公式 | R2 |
---|---|---|
10 | y=0.758 9x2-4.193 7x+4.195 8 | 0.258 3 |
20 | y=0.796 1x2-4.718 6x+5.292 2 | 0.450 8 |
25 | y=0.646 1x2-2.932 8x+4.323 67 | 0.616 3 |
30 | y=0.427 8x2-2.932 8x+4.236 7 | 0.896 5 |
35 | y=0.161 1x2-1.574 1x+3.250 7 | 0.705 9 |
泊松比 | 公式 | R2 |
---|---|---|
0.275 | y=0.390 9x2-3.272 8x+8.171 7 | 0.525 7 |
0.300 | y=0.763 5x2-5.060 3x+7.978 | 0.568 3 |
0.330 | y=0.874 3x2-5.081 7x+5.404 | 0.353 |
0.350 | y=0.966x2-5.111 4x+3.404 5 | 0.345 2 |
0.365 | y=1.047 9x2-5.143 2x+1.7 | 0.371 7 |
Table 4 Formulas and R-squared values relating microstructure type and minimum horizontal stress under different Poisson’s ratios
泊松比 | 公式 | R2 |
---|---|---|
0.275 | y=0.390 9x2-3.272 8x+8.171 7 | 0.525 7 |
0.300 | y=0.763 5x2-5.060 3x+7.978 | 0.568 3 |
0.330 | y=0.874 3x2-5.081 7x+5.404 | 0.353 |
0.350 | y=0.966x2-5.111 4x+3.404 5 | 0.345 2 |
0.365 | y=1.047 9x2-5.143 2x+1.7 | 0.371 7 |
顶底板 | 公式 | R2 |
---|---|---|
顶砂底砂 | y=-0.469 1x2+1.710 7x+2.057 | 0.351 6 |
顶灰底砂 | y=-0.850 4x2+4.527 3x-4.158 6 | 0.344 |
顶灰底灰 | y=-0.862x2+5.645 2x-8.374 | 0.402 4 |
顶砂底灰 | y=-0.62x2+2.588x+0.086 | 0.356 4 |
Table 5 The formula and fitting degree of the microstructure type and the minimum horizontal stress of the coal seam under different combinations of roof and bottom plate
顶底板 | 公式 | R2 |
---|---|---|
顶砂底砂 | y=-0.469 1x2+1.710 7x+2.057 | 0.351 6 |
顶灰底砂 | y=-0.850 4x2+4.527 3x-4.158 6 | 0.344 |
顶灰底灰 | y=-0.862x2+5.645 2x-8.374 | 0.402 4 |
顶砂底灰 | y=-0.62x2+2.588x+0.086 | 0.356 4 |
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=2.392x2-12.659x+1.966 | 0.878 4 |
类型2 | y=1.368x2-7.243 2x+10.965 | 0.860 1 |
类型3 | y=0.413 4x2-2.419 4x+1.431 | 0.985 2 |
类型4 | y=0.612 5x2-3.301 5x+7.672 5 | 0.968 9 |
类型5 | y=0.102 5x2-0.811 5x-1.852 5 | 0.249 1 |
Table 6 Formulas and R-squared values relating roof/floor combination and minimum horizontal stress under different microstructure types
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=2.392x2-12.659x+1.966 | 0.878 4 |
类型2 | y=1.368x2-7.243 2x+10.965 | 0.860 1 |
类型3 | y=0.413 4x2-2.419 4x+1.431 | 0.985 2 |
类型4 | y=0.612 5x2-3.301 5x+7.672 5 | 0.968 9 |
类型5 | y=0.102 5x2-0.811 5x-1.852 5 | 0.249 1 |
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=-0.005x2-0.007x-1.14 | 0.994 3 |
类型2 | y=0.084x+2.058 | 0.966 6 |
类型3 | y=-0.010 8x2-0.013 6x-0.870 4 | 0.994 7 |
类型4 | y=0.010 7x2-0.027 3x+3.862 | 0.975 6 |
类型5 | y=-0.027 1x2-0.037 1x-2.346 | 0.994 7 |
Table 7 The formula and fitting degree of the maximum horizontal stress of the boundary and the minimum horizontal stress of the coal seam under different microstructural types
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=-0.005x2-0.007x-1.14 | 0.994 3 |
类型2 | y=0.084x+2.058 | 0.966 6 |
类型3 | y=-0.010 8x2-0.013 6x-0.870 4 | 0.994 7 |
类型4 | y=0.010 7x2-0.027 3x+3.862 | 0.975 6 |
类型5 | y=-0.027 1x2-0.037 1x-2.346 | 0.994 7 |
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=-0.005 7x2-0.013 7x-1.108 | 0.952 1 |
类型2 | y=0.008 6x2+0.024 6x+2.14 | 0.947 |
类型3 | y=0.004 3x2-0.001 7x-1.114 | 0.958 1 |
类型4 | y=0.032 1x2+0.092 1x+3.15 | 0.947 |
类型5 | y=0.004 3x2+0.020 3x-2.958 | 0.939 3 |
Table 8 Formulas and R-squared values relating minimum horizontal stresses at boundary and coal seam under different microstructure types
微构造类型 | 公式 | R2 |
---|---|---|
类型1 | y=-0.005 7x2-0.013 7x-1.108 | 0.952 1 |
类型2 | y=0.008 6x2+0.024 6x+2.14 | 0.947 |
类型3 | y=0.004 3x2-0.001 7x-1.114 | 0.958 1 |
类型4 | y=0.032 1x2+0.092 1x+3.15 | 0.947 |
类型5 | y=0.004 3x2+0.020 3x-2.958 | 0.939 3 |
[1] | 郭旭升. 我国陆上未来油气勘探领域探讨与攻关方向[J]. 地球科学, 2022, 47(10): 3511-3523. |
[2] | 秦勇, 申建, 李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业, 2022, 42(6): 19-32. |
[3] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
DOI |
[4] |
申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(9): 1470-1476.
DOI |
[5] | 侯泉林, 雒毅, 韩雨贞, 等. 煤的变形产气机理探讨[J]. 地质通报, 2014, 33(5): 715-722. |
[6] | 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178. |
[7] | 康永尚, 孙良忠, 张兵, 等. 中国煤储层渗透率主控因素和煤层气开发对策[J]. 地质论评, 2017, 63(5): 1401-1418. |
[8] | 冯立杰, 贾依帛, 岳俊举, 等. 煤层气开采关键地质影响因素[J]. 石油与天然气地质, 2017, 38(6): 1105-1112. |
[9] | 聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200. |
[10] | 闫霞, 徐凤银, 聂志宏, 等. 深部微构造特征及其对煤层气高产“甜点区”的控制: 以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报, 2021, 46(8): 2426-2439. |
[11] | 降文萍, 张培河, 李忠城, 等. 深部煤层气异常地质特征及开发技术探讨[J]. 煤炭工程, 2022, 54(6): 158-164. |
[12] | 孙少华, 李小明, 龚革联, 等. 鄂尔多斯盆地构造热事件研究[J]. 科学通报, 1997, 42(3): 306-309. |
[13] | 杨兴科, 杨永恒, 季丽丹, 等. 鄂尔多斯盆地东部热力作用的期次和特点[J]. 地质学报, 2006, 80(5): 705-711. |
[14] |
任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148.
DOI |
[15] | 刘敬寿, 丁文龙, 杨海盟, 等. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化: 基于数值模拟的定量分析[J]. 地球科学, 2023, 48(7): 2572-2588. |
[16] | 陈洪德, 李洁, 张成弓, 等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报, 2011, 27(8): 2213-2229. |
[17] | LI Y, YANG J H, PAN Z J, et al. Unconventional natural gas accumulations in stacked deposits: a discussion of upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China[J]. Acta Geologica Sinica (English Edition), 2019, 93(1): 111-129. |
[18] |
席胜利, 闫伟, 刘新社, 等. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 33-51, 132.
DOI |
[19] | 武瑾, 肖玉峰, 刘丹, 等. 海陆过渡相页岩气储层非均质性及其主控因素: 以鄂尔多斯盆地东缘大宁-吉县区块山西组为例[J]. 东北石油大学学报, 2022, 46(4): 12-23, 97, I0002. |
[20] | KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics of paralic shale gas and its exploration and development prospects in the east margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 1-12. |
[21] | WU J, WANG H Y, SHI Z S, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: a case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1315-1328. |
[22] | 李逸凡, 李洪奎, 陈国栋, 等. 论山东胶东金矿形成的挤压-伸展构造环境[J]. 大地构造与成矿学, 2019, 43(6): 1117-1132. |
[23] |
武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制: 以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1137-1149.
DOI |
[24] |
匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3): 435-446.
DOI |
[25] | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130. |
[26] | 徐珂, 戴俊生, 付晓龙, 等. 基于有限元法的层状岩体破裂规律探讨[J]. 地质力学学报, 2015, 21(3): 330-340. |
[27] |
魏迎春, 孟涛, 张劲, 等. 不同煤体结构煤储层与煤层气井产出煤粉特征的关系: 以鄂尔多斯盆地东缘柳林区块为例[J]. 石油学报, 2023, 44(6): 1000-1014.
DOI |
[28] |
李志鹏, 刘显太, 杨勇, 等. 渤南油田低渗透储集层岩性对地应力场的影响[J]. 石油勘探与开发, 2019, 46(4): 693-702.
DOI |
[29] | QIN X H, TAN C X, SUN J Z, et al. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 2012, 33(6): 1689-1695. |
[30] | XU S Y, WHITE R E. A physical model for shear-wave velocity prediction 1[J]. Geophysical Prospecting, 1996, 44(4): 687-717. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||