[1] |
冯学智, 都金康. 数字地球导论[M]. 北京: 商务印书馆, 2007: 1-288.
|
[2] |
CARR G R, ANDREW A S, DENTON G, et al. The ‘Glass Earth’: geochemical frontiers in exploration through cover[M]. Sydney: Australian Institute of Geoscientists, 1999: 33-40.
|
[3] |
吴冲龙, 刘刚, 田宜平, 等. 地质信息科学与技术概论[M]. 北京: 科学出版社, 2014: 1-521.
|
[4] |
邢杰, 赵国栋, 徐远重, 等. 元宇宙通证: 通向未来的护照[M]. 北京: 中国出版集团中译出版社, 2021: 1-125.
|
[5] |
MÜLLER R D, CANNON J, QIN X, et al. GPlates: building a virtual Earth through deep time[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2243-2261.
DOI
URL
|
[6] |
ZHONG S, MCNAMARA A, TAN E, et al. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10): Q10017.
|
[7] |
SALLES T. Badlands: a parallel basin and landscape dynamics model[J]. Softwarex, 2016(5): 195-202.
|
[8] |
郭沙, 赵勇, 谷瑞翔, 等. 数字经济的基础支撑: 数字孪生[M]. 北京: 中国财富出版社有限公司, 2021: 1-351.
|
[9] |
CAO X, FLAMENT N, BODUR O, et al. The evolution of basal mantle structure in response to supercontinent aggregation and dispersal[J]. Scientific Reports, 2021(11): 22967.
|
[10] |
LIU P, LIU Y, PENG Y, et al. Large influence of dust on the Precambrian climate[J]. Nature Communications, 2020, 11(1): 1-8.
DOI
|
[11] |
李三忠, 索艳慧, 刘博, 等. 微板块构造理论: 全球洋内与陆缘微地块研究的启示[J]. 地学前缘, 2018, 25(5): 324-355.
|
[12] |
李三忠, 曹现志, 王光增, 等. 太平洋板块中新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677.
|
[13] |
李三忠, 索艳慧, 王光增, 等. 海底 “三极” 与地表 “三极”: 动力学关联[J]. 海洋地质与第四纪地质, 2019, 39(5): 1-22.
|
[14] |
李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4): 605-643.
|
[15] |
李三忠, 索艳慧, 周洁, 等. 微板块与大板块: 基本原理与范式转换[J]. 地质学报, 2022, 96(10): 3541-3558.
|
[16] |
JACKSON J A. Glossary of geology[M]. Alexandria: American Geological Institute, 1997.
|
[17] |
GURNIS M, TURNER M, ZAHIROVIC S, et al. Plate tectonic reconstructions with continuously closing plates[J]. Computers & Geosciences, 2012, 38: 35-42.
DOI
URL
|
[18] |
MÜLLER R D, ZAHIROVIC S, WILLIAMS S E, et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic[J]. Tectonics, 2019, 38(6): 1884-1907.
DOI
URL
|
[19] |
GURNIS M, YANG T, CANNON J, et al. Global tectonic reconstructions with continuously deforming and evolving rigid plates[J]. Computers & Geosciences, 2018, 116: 32-41.
DOI
URL
|
[20] |
CAO X, ZAHIROVIC S, LI S, et al. A deforming plate tectonic model of the South China Block since the Jurassic[J]. Gondwana Research, 2022, 102: 3-16.
DOI
URL
|
[21] |
黄冬梅, 邹国良. 海洋大数据[M]. 上海: 上海科学技术出版社, 2016: 1-193.
|
[22] |
李安波, 周良辰, 闾国年. 地质信息系统[M]. 北京: 科学出版社, 2013: 1-244.
|
[23] |
李剑峰, 肖波, 肖莉, 等. 智能油田(上册、 下册)[M]. 北京: 中国石化出版社, 2020: 1-699.
|
[24] |
CANALS M, LASTRAS G, URGELES R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the costa project[J]. Marine Geology, 2004, 213(1/2/3/4): 9-72.
DOI
URL
|
[25] |
BODUR Ö F, FLAMENT N. Kimberlite magmatism fed by upwelling above mobile basal mantle structures[J]. Nature Geoscience, 2023, 16(6): 534-540.
DOI
|
[26] |
LIU Z, DAI L, LI S, et al. Earth's surface responses during geodynamic evolution: numerical insight from the southern East China Sea Continental Shelf Basin, West Pacific[J]. Gondwana Research, 2022, 102: 167-179.
DOI
URL
|
[27] |
LIU J, LI S, CAO X, et al. Back-arc tectonics and plate reconstruction of the Philippine Sea-South China Sea region since the Eocene[J]. Geophysical Research Letters, 2023, 50(5): e2022GL102154.
|
[28] |
戴自希, 王家枢. 矿产勘查百年[M]. 北京: 地震出版社, 2004.
|
[29] |
SCOTESE C R, WRIGHT N. PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. PALEOMAP project[DB/OL]. (2018-08-11)[2018-08-11]. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
|
[30] |
翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 1-214.
|
[31] |
MÜLLER R D, CANNON J, TETLEY M, et al. A tectonic-rules based mantle reference frame since 1 billion years ago: implications for supercontinent cycles and plate-mantle system evolution[J]. Solid Earth, 2022(13): 1127-1159.
|