Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 283-300.DOI: 10.13745/j.esf.sf.2021.9.10
• A spacial section on The India-Eurasia Collision and Its Long-Range Effec • Previous Articles Next Articles
Raja SEN, Dibyashakti PANDA, Bhaskar KUNDU*()
Received:
2021-08-25
Accepted:
2021-09-04
Online:
2021-09-25
Published:
2021-09-16
Contact:
Bhaskar KUNDU
Raja SEN, Dibyashakti PANDA, Bhaskar KUNDU. Crustal deformation, long-term plate motion and earthquake occurrence process of the Shan Plateau region, Northern Sunda Arc: Constraints from geodetic measurements[J]. Earth Science Frontiers, 2021, 28(5): 283-300.
Fig.1 (a-d) Geodynamic models for Himalayan and south Tibetan deformation. The gray arrows represent motion of the Tibetan crust for different models. The black arrow in the oblique convergence model represents the overall India-Southern Tibet convergence. KF: Karakoram Fault; EHS: Eastern Himalayan Syntaxis; WHS: Western Himalayan Syntaxis (taken from Styron et al., 2011).
Fig.2 Regional seismotectonics of the Southeast Asia and Shan Plateau (Gu et al., 1983; Ekstrom et al., 2012). (a) Overall tectonics of the Southeast Asia with major fault systems. Black rectangle shows the location of the Shan Plateau region which has been enlarged in Fig.2b. (b) Represents the location of active fault systems and spatial distribution of earthquakes, along with available focal mechanism solutions across the Shan Plateau. Note that the earthquake focal mechanism along the Sagaing fault indicates dextral sense of motion, while within the Shan Plateau the deformation is predominantly sinistral faulting, along with dextral and normal faults (taken from Shi et al., 2018a). WDF: Wanding fault; MLF: Menglian fault; WHF: Wan Ha fault; MCF: Mae Chan fault; DYF: Dayingjiang fault; NTHF: Nantinghe fault; LCF: Lancang fault; MXF: Mengxing fault; MHF: Muang Houn fault; RLF: Ruili fault; LSF: Lashio fault; JHF: Jinghong fault; NMF: Nam Ma fault; DBPF: Dien Bien Phu fault; SGF: Sagaing fault; RRF: Red River fault; ATF: Altyn Tagh fault; KLF: Kunlun fault; XSF: Xianshuihe fault; IBR: Indo-Burma Range.
Source | Reference Frame | Latitude (°N) | Longitude (°E) | Rotation (°/Myr) | Number of sites |
---|---|---|---|---|---|
Sella et al. ( | ITRF1997 | 53.7±11.7 | -13.9±0.50 | 0.483±0.013 | 3 |
SOPAC Website | ITRF2000 | 53.1 | 2.2 | 0.519±0.019 | |
Prawirodiedjo and Bock, ( | ITRF2000 | 45.72±12.1 | -41.99±0.73 | 0.487±0.015 | 2 |
Bettinelli et al. ( | ITRF2000 | 51.4±1.6 | -10.9±5.60 | 0.483±0.01 | 5 |
Socquet et al. ( | ITRF2000 | 50.9±5.1 | -12.1±0.60 | 0.486±0.001 | 6 |
Jade et al. ( | ITRF2000 | 51.7±0.5 | -15.1±1.5 | 0.469±0.01 | 26 |
Banerjee et al. ( | ITRF2000 | 52.9±0.21 | -0.297±3.76 | 0.499±0.008 | 12 |
Argus et al. ( | NNR-MORVEL | 50.37 | -3.29 | 0.544±0.010 | |
Ader et al. ( | ITRF2005 | 51.4±0.30 | -1.34±3.31 | 0.503±0.007 | 20 |
Mahesh et al. ( | ITRF2008 | 51.4±0.07 | 8.9±0.80 | 0.539±0.002 | 13 |
Kreemer et al. ( | GSRM2.1-NNR | 50.95 | -8.0 | 0.524 | 2 |
Steckler et al. ( | ITRF2008 | 51.42±0.06 | 2.10±0.38 | 0.5146±0.001 | 15 |
Jade et al. ( | ITRF2008 | 51.69±0.27 | 11.85±1.79 | 0.553±0.005 | 30 |
Present study | ITRF2014 | 51.33±0.18 | 9.45±1.99 | 0.541±0.006 | 24 |
Source | Reference Frame | Latitude (°N) | Longitude (°E) | Rotation (°/Myr) | Number of sites |
---|---|---|---|---|---|
Sella et al. ( | ITRF1997 | 53.7±11.7 | -13.9±0.50 | 0.483±0.013 | 3 |
SOPAC Website | ITRF2000 | 53.1 | 2.2 | 0.519±0.019 | |
Prawirodiedjo and Bock, ( | ITRF2000 | 45.72±12.1 | -41.99±0.73 | 0.487±0.015 | 2 |
Bettinelli et al. ( | ITRF2000 | 51.4±1.6 | -10.9±5.60 | 0.483±0.01 | 5 |
Socquet et al. ( | ITRF2000 | 50.9±5.1 | -12.1±0.60 | 0.486±0.001 | 6 |
Jade et al. ( | ITRF2000 | 51.7±0.5 | -15.1±1.5 | 0.469±0.01 | 26 |
Banerjee et al. ( | ITRF2000 | 52.9±0.21 | -0.297±3.76 | 0.499±0.008 | 12 |
Argus et al. ( | NNR-MORVEL | 50.37 | -3.29 | 0.544±0.010 | |
Ader et al. ( | ITRF2005 | 51.4±0.30 | -1.34±3.31 | 0.503±0.007 | 20 |
Mahesh et al. ( | ITRF2008 | 51.4±0.07 | 8.9±0.80 | 0.539±0.002 | 13 |
Kreemer et al. ( | GSRM2.1-NNR | 50.95 | -8.0 | 0.524 | 2 |
Steckler et al. ( | ITRF2008 | 51.42±0.06 | 2.10±0.38 | 0.5146±0.001 | 15 |
Jade et al. ( | ITRF2008 | 51.69±0.27 | 11.85±1.79 | 0.553±0.005 | 30 |
Present study | ITRF2014 | 51.33±0.18 | 9.45±1.99 | 0.541±0.006 | 24 |
Source | Reference Frame | Latitude (°N) | Longitude (°E) | Rotation (°/Myr) | Number of sites |
---|---|---|---|---|---|
Wilson et al. ( | ITRF1994 | 31.8 | -46.0 | 0.280 | 12 |
Simons et al. ( | ITRF1996 | 51.0 | -113.0 | 0.230 | 12 |
Michel et al. ( | ITRF1997 | 59.7±2.90 | -102.7±3.90 | 0.340±0.001 | 15 |
Michel et al. ( | ITRF1997 | -56.00 | 77.30 | -0.339±0.007 | 10 |
Sella et al. ( | ITRF1997 | 38.9±10.2 | -86.9±0.80 | 0.393±0.062 | 2 |
Bock et al. ( | ITRF2000 | 49.8±3.50 | -95.9±1.0 | 0.320±0.010 | 11 |
Kreemer et al. ( | GSRM1.2-NNR | 47.3±1.90 | -90.2±0.5 | 0.392±0.008 | 9 |
Vigny et al. ( | ITRF2000 | -59.0±4.0 | 81.0±3.0 | 0.303±0.01 | 14 |
Prawirodiedjo and Bock ( | ITRF2000 | 32.6±7.0 | -86.8±0.80 | 0.462±0.064 | 2 |
Simons et al. ( | ITRF2000 | 49.0±1.90 | -94.2±0.30 | 0.336±0.007 | 28 |
DeMets et al. ( | ITRF2000 | 48.5 | -93.9 | 0.326 | 18 |
Argus et al. ( | NNR-MORVEL | 50.1 | -95.0 | 0.337±0.020 | 2 |
Altamimi et al. ( | ITRF2008 | 44.2 | -87.3 | 0.388±0.308 | 2 |
Kreemer et al. ( | GSRM2.1-NNR | 51.1 | -91.7 | 0.350 | 11 |
Mustafar et al. ( | ITRF2008 | 48.1 | -88.5 | 0.341±0.015 | 14 |
Yong et al. ( | ITRF2008 | 43.6±4.6 | -86.6±2.3 | 0.357±0.030 | 10 |
Panda et al. ( | ITRF2014 | 50.0±2.1 | -89.8±0.1 | 0.328±0.007 | 28 |
Present Study | ITRF2014 | 45.51±1.25 | -89.44±0.67 | 0.345±0.006 | 58 |
Source | Reference Frame | Latitude (°N) | Longitude (°E) | Rotation (°/Myr) | Number of sites |
---|---|---|---|---|---|
Wilson et al. ( | ITRF1994 | 31.8 | -46.0 | 0.280 | 12 |
Simons et al. ( | ITRF1996 | 51.0 | -113.0 | 0.230 | 12 |
Michel et al. ( | ITRF1997 | 59.7±2.90 | -102.7±3.90 | 0.340±0.001 | 15 |
Michel et al. ( | ITRF1997 | -56.00 | 77.30 | -0.339±0.007 | 10 |
Sella et al. ( | ITRF1997 | 38.9±10.2 | -86.9±0.80 | 0.393±0.062 | 2 |
Bock et al. ( | ITRF2000 | 49.8±3.50 | -95.9±1.0 | 0.320±0.010 | 11 |
Kreemer et al. ( | GSRM1.2-NNR | 47.3±1.90 | -90.2±0.5 | 0.392±0.008 | 9 |
Vigny et al. ( | ITRF2000 | -59.0±4.0 | 81.0±3.0 | 0.303±0.01 | 14 |
Prawirodiedjo and Bock ( | ITRF2000 | 32.6±7.0 | -86.8±0.80 | 0.462±0.064 | 2 |
Simons et al. ( | ITRF2000 | 49.0±1.90 | -94.2±0.30 | 0.336±0.007 | 28 |
DeMets et al. ( | ITRF2000 | 48.5 | -93.9 | 0.326 | 18 |
Argus et al. ( | NNR-MORVEL | 50.1 | -95.0 | 0.337±0.020 | 2 |
Altamimi et al. ( | ITRF2008 | 44.2 | -87.3 | 0.388±0.308 | 2 |
Kreemer et al. ( | GSRM2.1-NNR | 51.1 | -91.7 | 0.350 | 11 |
Mustafar et al. ( | ITRF2008 | 48.1 | -88.5 | 0.341±0.015 | 14 |
Yong et al. ( | ITRF2008 | 43.6±4.6 | -86.6±2.3 | 0.357±0.030 | 10 |
Panda et al. ( | ITRF2014 | 50.0±2.1 | -89.8±0.1 | 0.328±0.007 | 28 |
Present Study | ITRF2014 | 45.51±1.25 | -89.44±0.67 | 0.345±0.006 | 58 |
Fig.3 Geometry of the source model in the Cartesian coordinate system (Okada, 1992). Elastic medium occupies the region of z ≤ 0 and x axis is taken to be parallel to the strike direction of the fault. Further, elementary dislocations are represented by U1, U2, and U3, so as to correspond to strike-slip, dip-slip, and tensile components of arbitrary dislocation. Each vector represents the movement of the hanging-wall side block relative to the foot-wall side block. But note that, e.g., although U2 in the figure shows reverse fault motion, this changes to normal fault-type movement if dip angle becomes sin(2θ) < 0. d and W represent the depth of locking and width of the fault zone, respectively.
Fig.4 Distribution of GPS sites and tectonic setting of the Sundaland Block (marked in the inset and in Fig.2a). The region of gray dashed line identified as the stable Sundaland block (marked after Simons et al., 2007). Red dots over that region represent the 58 undeformed GPS sites considered for the Euler pole estimation of the Sunda plate. Blue circles towards the north of the Sundaland block represent the geodetic sites across the SGF, RRF, and the Shan Plateau domain. Gray circles represent all available geodetic stations. Green dashed lines (SGF 1, SGF 2, RRF 1 and RRF 2) shows the different profiles across the Sagaing and Red River faults along which the fault slip-rates have been estimated. A-B profile (marked by blue line) represents the profile across the Shan Plateau region. Orange line represents the major sinistral faults over the Shan Plateau. WAF: West Andaman fault; ASRTFS: Andaman Sumatra Ridge Transform fault system; SFS: Sumatra fault system.
Fig.5 Horizontal residual motion over the Southeast Asia with respect to India and Sunda reference frame, respectively. (a) Horizontal residual vectors over the Southeast Asia with respect to fixed Indian plate. (b) Horizontal residual vectors over the Southeast Asia with respect to fixed Sunda plate. Note that the residual motion within the stable Sundaland block is much less and the motion increases upon moving towards north direction, which indicates possible influence of Tibetan crustal flow.
Fig.6 (a, b) Represent residual velocities and Euler pole parameters of the Indian and Sundaland blocks (or Sunda plate), respectively. Red symbols represent the undeformed sites that are considered in the Euler pole estimation of both Indian plate and Sundaland block, while the blue symbols are the deformed sites that are left out. Note the internal deformation of the Indian plate (2-3 mm/yr) and Sunda plate are low (2.5 mm/yr).
Fig.7 Fault slip-rate with respect to the fixed Sunda plate, locking depth and error analysis across two profiles of the Sagaing fault (Northern: SGF 1 and Central: SGF 2, marked in Fig.4). In both SGF 1 and SGF 2 there is significant fault parallel motion of 18 mm/yr observed. In case of the northern profile (SGF 1), the velocity at two sites (i.e., BHAM and MYIT) have been corrected, in order to isolate the elastic effect and exclude the deformation that is not related to the Sagaing fault. However, in the fault normal component there is no as such significant pattern across both the profiles. Inset in both the fault profiles shows error analysis using weighted RMS error using grid search method with varying slip-rate and width of locked zone. Note that the locking width of the SGF 1 is very shallow, while it is high in case of SGF 2. The green diamond represents the region of least error.
Fig.8 Fault slip-rate with respect to fixed Sunda plate, locking depth and error analysis across two profiles of the Red River fault (RRF 1 and RRF 2, marked in Fig.4). In both RRF 1 and RRF 2 there is significant fault parallel motion of 4-5 mm/yr observed. However, in the fault normal component there is no as such significant pattern across both the profiles. Inset in both the fault profiles shows error analysis using weighted RMS error using grid search method with varying slip-rate and width of locked zone. Note that the locking width of RRF 1 is very high, while it is shallow in the case of RRF 2. The green diamond represents the region of least error.
Fig.9 Fault slip-rate across the Shan Plateau region along the A-B profile marked in Fig.4. Significant sinistral strike-slip motion of 12-13 mm/yr is observed across the Shan Plateau. However, there is no as such motion in the fault normal component. Note that the entire sinistral motion is accommodated along four major faults. Blue curve shows the dislocation profile for locked fault and green line represents the long-term motion across individual active fault segments. Inset shows the pattern of long-term motion accommodation in-between the two major crustal blocks (in this case Burma and Sunda plates, taken from Bourne et al., 1998). The cumulative long term motion of each block is same as the displacement across the master blocks.
Fig.10 Schematic representation of fault domains and kinematics around the Shan Plateau. (a) Thin red dashed line shows the boundary between dextral to sinistral motion and the domains characterized by block-like rotation with distributed shear along pre-existing fault (taken from Shi et al., 2018a). (b) Represents the regional bookshelf faulting pattern between the Burma plate and South China block. Following the concept of bookshelf faulting it appears that the motion accommodated in between the two blocks (i.e., Shan Plateau domain) are basically the difference in motion of the two master faults (in this case the Sagaing fault and Red River fault). Note that both models are able to explain the overall distributed deformation across the Shan Plateau.
[1] | Ader T., Avouac J. P., Liu-Zeng J., Lyon-Caen H., Bollinger L., Galetzka J., Genrich J., Thomas M., Chanard K., Sapkota S. N., Rajaure S., 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 117(B4). |
[2] | Altamimi Z., Metivier L., Collilieux X., 2012. ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth, 117(B7). |
[3] | Argus D. F., Gordon R. G., DeMets C., 2011. Geologically current motion of 56 plates relative to the no-net rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). |
[4] | Aung P. S., Satirapod C., Andrei C. O., 2016. Sagaing Fault slip and deformation in Myanmar observed by continuous GPS measurements. Geodesy and Geodynamics, 7(1), 56-63. |
[5] | Banerjee P., Burgmann R., Nagarajan B., Apel E., 2008. Intraplate deformation of the Indian subcontinent. Geophysical Research Letters, 35(18). |
[6] | Bertrand G., Rangin C., Maury R. C., Htun H. M., Bellon H., Guillaud J. P., 1998. Les basaltes de Singu (Myanmar): Nouvelles contraintes sur le taux de decrochement recent de la faille de Sagaing. Comptes Rendus de I Academie des Sciences-Series IIA-Earth and Planetary Science, 327(7), 479-484. |
[7] | Bettinelli P., Avouac J. P., Flouzat M., Jouanne F., Bollinger L., Willis P., Chitrakar G. R., 2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, 80(8-11), 567-589. |
[8] | Bock Y. E. H. U. D. A., Prawirodirdjo L., Genrich J.F., Stevens C.W., McCaffrey R., Subarya C., Puntodewo S. S. O., Calais E., 2003. Crustal motion in Indonesia from global positioning system measurements. Journal of Geophysical Research: Solid Earth, 108(B8). |
[9] | Bourne S. J., England P. C., Parsons B., 1998. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 391(6668), 655-659. |
[10] | Clark M. K., Royden L. H., 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703-706. |
[11] | Copley A., McKenzie D., 2007. Models of crustal flow in the India-Asia collision zone. Geophysical Journal International, 169(2), 683-698. |
[12] | DeMets C., Gordon R. G., Argus D. F., 2010. Geologically current plate motions. Geophysical Journal International, 181(1), 1-80. |
[13] | Dumka R. K., Chopra S., Prajapati S., 2019. GPS derived crustal deformation analysis of Kachchh, zone of 2001 (M7. 7) earthquake, Western India. Quaternary International, 507, 295-301. |
[14] | Duong N. A., Sagiya T., Kimata F., To T. D., Hai V. Q., Cong D. C Binh, N.X. Xuyen, N. D. 2013. Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPS measurements. Earth, Planets and Space, 65(12), 1399-1410. |
[15] | Ekstrom G., Nettles M., Dziewonski A. M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1-9. |
[16] | Gahalaut V. K., Gahalaut K., Catherine J. K., Sreejith K. M., Agrawal R., Yadav R. K., Mohanalakshmi C., Naidu M. S., Rajeshwar Rao V., 2018. Geodetic constraints on tectonic and anthropogenic deformation and seismogenesis of Koyna-Warna region, India. Bulletin of the Seismological Society of America, 108(5B), 2933-2942. |
[17] | Gahalaut V. K., Kundu B., Laishram S. S., Catherine J., Kumar A., Singh M. D., Tiwari R. P., Chadha R. K., Samanta S. K., Ambikapathy A., Mahesh P., 2013. Aseismic plate boundary in the Indo-Burmese wedge, northwest Sunda Arc. Geology, 41(2), 235-238. |
[18] | Gan W., Zhang P., Shen Z. K., Niu Z., Wang M., Wan Y., Zhou D., Cheng J., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8). |
[19] | Goudarzi M. A., Cocard M., Santerre R., 2014. EPC: Matlab software to estimate Euler pole parameters. GPS Solutions, 18(1), 153-162. |
[20] | Gu G., Lin T., Shi Z., Wu H., 1983. Catalog of historic earthquakes in China (1970-1979 AD). Beijing: Science Press: in Chinese with English Explantory Remarks, 894. |
[21] | Hao M., Wang Q., Shen Z., Cui D., Ji L., Li Y., Qin S., 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632, 281-292. |
[22] | Hessami K., Nilforoushan F., Talbot C. J., 2006. Active deformation within the Zagros Mountains deduced from GPS measurements. Journal of the Geological Society, 163(1), 143-148. |
[23] | Hussain E., Wright T. J., Walters R. J., Bekaert D. P., Lloyd R., Hooper A., 2018. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nature Communications, 9(1), 1-9. |
[24] | Jade S., Mukul M., Bhattacharyya A. K., Vijayan M. S. M., Jaganathan S., Kumar A., Tiwari R. P., Kumar A., Kalita S., Sahu S. C., Krishna A. P., Gupta S. S., Murthy M. V. R. L., Gaur V. K., 2007. Estimates of interseismic deformation in Northeast India from GPS measurements. Earth and Planetary Science Letters, 263(3-4), 221-234. |
[25] | Jade S., Shrungeshwara T. S., Kumar K., Choudhury P., Dumka R. K., Bhu H., 2017. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Scientific Reports, 7(1), 1-16. |
[26] | Jing Z., Zaisen J., Yanqiang W., Xiaoxia L., Wenxin W., 2012. Characteristics of block strain and fault movement in the Sichuan-Yunnan region before and after Wenchuan earthquake. Geodesy and Geodynamics, 3(2), 27-33. |
[27] | Kreemer C., Blewitt G., Klein E. C., 2014. A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849-3889. |
[28] | Kreemer C., Holt W. E., Haines A. J., 2003. An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International, 154(1), 8-34. |
[29] | Krishna M. R., Sanu T. D., 2000. Seismotectonics and rates of active crustal deformation in the Burmese arc and adjacent regions. Journal of Geodynamics, 30(4), 401-421. |
[30] | Kundu B., Yadav R. K., Bali B. S., Chowdhury S., Gahalaut V. K., 2014. Oblique convergence and slip partitioning in the NW Himalaya: Implications from GPS measurements. Tectonics, 33(10), 2013-2024. |
[31] | Lacassin R., Maluski H., Leloup P. H., Tapponnier P., Hinthong C., Siribhakdi K., Chuaviroj, S. Charoenravat A., 1997. Tertiary diachronic extrusion and deformation of western Indochina: structural and 40Ar/39Ar evidence from NW Thailand. Journal of Geophysical Research: Solid Earth, 102(B5), 10013-10037. |
[32] | Lacassin R., Replumaz A., Herve Leloup P., 1998. Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults. Geology, 26(8), 703-706. |
[33] | Lave J., Avouac J. P., Lacassin R., Tapponnier P., Montagner J. P., 1996. Seismic anisotropy beneath Tibet: evidence for eastward extrusion of the Tibetan lithosphere?. Earth and Planetary Science Letters, 140(1-4), 83-96. |
[34] | Leloup P. H., Lacassin R., Tapponnier P., Schärer U., Zhong D., Liu X., Zhang L, Ji, S. Trinh, P. T, 1995. The Ailao Shan-Red river shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics, 251(1-4), 3-84. |
[35] | Li D., Yin A., 2008. Orogen-parallel, active left-slip faults in the Eastern Himalaya: Implications for the growth mechanism of the Himalayan Arc. Earth and Planetary Science Letters, 274(1-2), 258-267. |
[36] | Liang S., Gan W., Shen C., Xiao G., Liu J., Chen W., Ding X., Zhou D., 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10), 5722-5732. |
[37] | Mahesh P., Catherine J. K., Gahalaut V. K., Kundu B., Ambikapathy A., Bansal A., Premkishore L., Narsaiah M., Ghavri S., Chadha R. K., Choudhary P., 2012. Rigid Indian plate: constraints from GPS measurements. Gondwana Research, 22(3-4), 1068-1072. |
[38] | Mallick R., Lindsey E. O., Feng L., Hubbard J., Banerjee P., Hill E. M., 2019. Active convergence of the India-Burma-Sunda plates revealed by a new continuous GPS network. Journal of Geophysical Research: Solid Earth, 124(3), 3155-3171. |
[39] | Maurin T., Masson F., Rangin C., Min U. T., Collard P., 2010. First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault. Geology, 38(7), 591-594. |
[40] | Michel G. W., Becker M., Angermann D., Reigber C., Reinhart E., 2000. Crustal motion in E-and SE-Asia from GPS measurements. Earth, Planets and Space, 52(10), 713-720. |
[41] | Michel G.W., Yu Y.Q., Zhu S.Y., Reigber C., Becker M., Reinhart E., Simons W., Ambrosius B., Vigny C., Chamot-Rooke N., Le Pichon X., Morgan P., Matheussen S., 2001. Crustal motion and block behaviour in SE-Asia from GPS measurements. Earth and Planetary Science Letters, 187(3-4), 239-244. |
[42] | Murphy M. A., Saylor J. E., Ding L., 2009. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history. Earth and Planetary Science Letters, 282(1-4), 1-9. |
[43] | Mustafar M. A., Simons W. J., Tongkul F., Satirapod C., Omar K. M., Visser P. N., 2017. Quantifying deformation in North Borneo with GPS. Journal of Geodesy, 91(10), 1241-1259. |
[44] | Nocquet J. M., 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, 220-242. |
[45] | Okada Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040. |
[46] | Panda D., Kundu B., Santosh M., 2018a. Oblique convergence and strain partitioning in the outer deformation front of NE Himalaya. Scientific Reports, 8(1), 1-9. |
[47] | Panda D., Kundu B., Gahalaut V. K., Rangin C., 2018b. Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing Fault, Myanmar. Journal of Asian Earth Sciences, 166, 89-94. |
[48] | Panda D., Kundu B., Gahalaut V. K., Rangin C., 2020b. India-Sunda Plate Motion, Crustal Deformation, and Seismic Hazard in the Indo-Burmese Arc. Tectonics, 39(8), e2019TC006034. |
[49] | Panda D., Kundu B., Gahalaut V.K., 2020a. Earthquakes in the Himalaya. Encyclopedia of Solid Earth Geophysics, Encyclopedia of Earth Sciences Series. |
[50] | Panda D., Mondal A., Kundu B., 2019. Eastward “glacier-like flow” of the Tibetan crust constrained from power-law rheology. Journal of Asian Earth Sciences, 177, 129-133. |
[51] | Prawirodirdjo L., Bock Y., 2004. Instantaneous global plate motion model from 12 years of continuous GPS observations. Journal of Geophysical Research: Solid Earth, 109(B8). |
[52] | Rangin C., Maurin T., Masson F., 2013. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma. Journal of Asian Earth Sciences, 76, 185-194. |
[53] | Searle M. P., Yeh M. W., Lin T. H., Chung S. L., 2010. Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere, 6(4), 316-338. |
[54] | Sella G. F., Dixon T. H., Mao A., 2002. REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, 107(B4), ETG-11. |
[55] | Shen Z. K., Lu J., Wang M., Bürgmann R., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11). |
[56] | Shi X., Kirby E., Lu H., Robinson R., Furlong K. P., Wang E., 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet. Geophysical Research Letters, 41(16), 5829-5837. |
[57] | Shi X., Sieh K., Weldon R., Zhu C., Han Y., Yang J., Robinson S. W., 2018b. Slip rate and rare large prehistoric earthquakes of the Red River fault, southwestern China. Geochemistry, Geophysics, Geosystems, 19(7), 2014-2031. |
[58] | Shi X., Wang Y., Sieh K., Weldon R., Feng L., Chan C. H., Liu-Zeng J., 2018a. Fault slip and GPS velocities across the Shan Plateau define a curved southwestward crustal motion around the eastern Himalayan syntaxis. Journal of Geophysical Research: Solid Earth, 123(3), 2502-2518. |
[59] | Simons W. J. F., Socquet A., Vigny C., Ambrosius B. A. C., Haji Abu S., Promthong C., Subarya C., Sarsito D. A., Matheussen S., Morgan P., Spakman W., 2007. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth, 112(B6). |
[60] | Socquet A., Vigny C., Chamot-Rooke N., Simons W., Rangin C., Ambrosius B., 2006. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. Journal of Geophysical Research: Solid Earth, 111(B5). |
[61] | Steckler M. S., Mondal D. R., Akhter S. H., Seeber L., Feng L., Gale J., Hill E. M., Howe M., 2016. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615-618. |
[62] | Steketee J. A., 1958. Some geophysical applications of the elasticity theory of dislocations. Canadian Journal of Physics, 36(9), 1168-1198. |
[63] | Styron R. H., Taylor M. H., Murphy M. A., 2011. Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya. Geosphere, 7(2), 582-596. |
[64] | Tapponnier P., Peltzer G. L. D. A. Y., Le Dain A. Y., Armijo R., Cobbold P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616. |
[65] | Tapponnier P., Peltzer G., Armijo R., 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113-157. |
[66] | Tapponnier P., Xu Z. Q., Roger F., Meyer B., Arnaud N., Wittlinger G., Yang J. S., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671-1677. |
[67] | Taylor M., Yin A., 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5(3), 199-214. |
[68] | Tran D. T., Nguyen T. Y., Du’o’ng C. C., Vy Q. H., Zuchiewicz W., Nguyen V. N., 2013. Recent crustal movements of northern Vietnam from GPS data. Journal of Geodynamics, 69, 5-10. |
[69] | Trinh P. T., Van Liem N., Van Huong N., Vinh H. Q., Van Thom B., Thao B. T., Tan, M.T. Hoang N., 2012. Late Quaternary tectonics and seismotectonics along the Red River fault zone, North Vietnam. Earth-Science Reviews, 114(3-4), 224-235. |
[70] | Vigny C., Socquet A., Rangin C., Chamot-Rooke N., Pubellier M., Bouin M. N., Bertrand, G. Becker M., 2003. Present-day crustal deformation around Sagaing fault, Myanmar. Journal of Geophysical Research: Solid Earth, 108(B11). |
[71] | Wang Y., Sieh K., Tun S. T., Lai K. Y., Myint T., 2014. Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119(4), 3767-3822. |
[72] | Wang Y., Wang E., Shen Z., Wang M., Gan W., Qiao X., Meng, G. Li P., 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 51(9), 1267. |
[73] | Wilson P., Rais J., Reigber C., Reinhart E., Ambrosius B. A. C., Le Pichon X., Kasser M., Suharto P., Majid D.A., Yaakub D.P.A.H.O.B.H., Almeda R., Boonphakdee C., 1998. Study provides data on active plate tectonics in Southeast Asia region. Eos, Transactions American Geophysical Union, 79(45), 545-549. |
[74] | Yong C. Z., Denys P. H., Pearson C. F., 2017. Present-day kinematics of the Sundaland plate. Journal of Applied Geodesy, 11(3), 169-177. |
[75] | Zheng G., Wang H., Wright T. J., Lou Y., Zhang R., Zhang W., Shi C., Huang, J. Wei N., 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122(11), 9290-9312. |
[76] | Zuchiewicz W., Quoc Cu o ng, N., Zasadni J., Yem N. T., 2013. Late Cenozoic tectonics of the Red River Fault Zone, Vietnam, in the light of geomorphic studies. Journal of Geodynamics, 69, 11-30. |
[1] | WANG Jie, WU Haibo, LU Xiaofei, LI Xianrui. Geological features of opening-closing tectonics at different spatiotemporal scales [J]. Earth Science Frontiers, 2020, 27(1): 260-269. |
[2] |
.
Rotation of crustal blocks as an explanation of Oligo-Miocene extension in Southeastern Tibet—evidenced by the Diancangshan and nearby metamorphic core complexes [J]. Earth Science Frontiers, 2007, 14(6): 40-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||