Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 191-201.DOI: 10.13745/j.esf.sf.2020.1.1
Previous Articles Next Articles
HONG Dongming1(), JIAN Xing1,*(
), HUANG Xin1, ZHANG Wei1, MA Jinge2
Received:
2018-05-28
Revised:
2019-01-02
Online:
2020-05-20
Published:
2020-05-20
Contact:
JIAN Xing
CLC Number:
HONG Dongming, JIAN Xing, HUANG Xin, ZHANG Wei, MA Jinge. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers, 2020, 27(3): 191-201.
Fig.1 Discrimination diagrams of mother rock based on major elements of garnet.(A)Mg-(Fe+Mn)-Ca(after [21]); (B)Mn-Mg-Ca (after [22-23]); (C)Mg-(Fe+Mn)-Ca (after [24]);(D) Mg-Fe-Ca (after [25]); and (E) Mg-Fe-Mn (after [25]). Major elemental compositions of garnet adapted from [30].
图解 | 在不同判别图解中利用石榴石主量元素判定母岩来源的正确比例/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
榴辉岩 | 角闪岩 | 麻粒岩 | 橄榄岩 | 金伯利岩 | 辉石岩 | 花岗岩 | 绿片岩 | 角闪岩相变泥质岩 | 麻粒岩相变泥质岩 | ||
Wright | 23 | 57 | 70 | 51 | |||||||
Teraoka | 87 | 62 | 87 | 85 | 22 | 74 | |||||
Morton | 92 | 86 | 99 | 99 | 99 | 72 | 73 | 52 | 68 | ||
Aubrecht | 45 | 93 | 83 | 96 | 96 | 96 | 96 | 100 | 96 | 72 |
Table 1 The proportion of garnet major elemental data from different mother rocks falling within the expected range. Adapted from [21-22,24-25].
图解 | 在不同判别图解中利用石榴石主量元素判定母岩来源的正确比例/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
榴辉岩 | 角闪岩 | 麻粒岩 | 橄榄岩 | 金伯利岩 | 辉石岩 | 花岗岩 | 绿片岩 | 角闪岩相变泥质岩 | 麻粒岩相变泥质岩 | ||
Wright | 23 | 57 | 70 | 51 | |||||||
Teraoka | 87 | 62 | 87 | 85 | 22 | 74 | |||||
Morton | 92 | 86 | 99 | 99 | 99 | 72 | 73 | 52 | 68 | ||
Aubrecht | 45 | 93 | 83 | 96 | 96 | 96 | 96 | 100 | 96 | 72 |
岩石 | w(ΣLREE)/10-6 | w(ΣHREE,除Y)/10-6 | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN |
---|---|---|---|---|---|---|
淡色花岗岩 | 0.34~3.28 | 200.8~1 836.8 | 0.002~0.034 | 0~0.047 | 0.008~0.176 | 0.047~0.175 |
A型花岗岩 | 3.4~40.78 | 2 029.5~9 951.1 | 0.008~0.03 | 0~0.001 | 0.027~0.302 | 0.087~0.181 |
过铝质花岗岩 | 12.75~116.63 | 557~5 917.5 | 0.002~0.487 | 0.160~0.772 | 0.071~0.397 | 0.121~0.365 |
中粒黑云母花岗岩 | 2.53~545.9 | 701.3~7 913.7 | 0.001~0.004 | 0.002~0.322 | 0.019~0.176 | 0.117~0.673 |
细粒二云母花岗岩 | 2.85~101.34 | 1 462.6~9 172.6 | 0.001~0.002 | 0.012~0.378 | 0.017~0.189 | 0.123~0.682 |
S型花岗岩 | 1.3~7 | 211.2~771.7 | 0.133~0.251 | 0.033~0.105 | 0.044~0.245 | 0.151~0.346 |
麻粒岩相变泥质岩 | 0.426~41.730 | 3.089~676.760 | 0.006~1.440 | 0~0.440 | 0.102~11.266 | 0.015~0.948 |
角闪岩相变泥质岩 | 0.120~7.933 | 21.226~1 661.220 | 0.102~1.151 | 0~0.419 | 0.012~4.503 | 0.038~0.348 |
Table 2 REE characteristic parameters of garnet in different types of granite
岩石 | w(ΣLREE)/10-6 | w(ΣHREE,除Y)/10-6 | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN |
---|---|---|---|---|---|---|
淡色花岗岩 | 0.34~3.28 | 200.8~1 836.8 | 0.002~0.034 | 0~0.047 | 0.008~0.176 | 0.047~0.175 |
A型花岗岩 | 3.4~40.78 | 2 029.5~9 951.1 | 0.008~0.03 | 0~0.001 | 0.027~0.302 | 0.087~0.181 |
过铝质花岗岩 | 12.75~116.63 | 557~5 917.5 | 0.002~0.487 | 0.160~0.772 | 0.071~0.397 | 0.121~0.365 |
中粒黑云母花岗岩 | 2.53~545.9 | 701.3~7 913.7 | 0.001~0.004 | 0.002~0.322 | 0.019~0.176 | 0.117~0.673 |
细粒二云母花岗岩 | 2.85~101.34 | 1 462.6~9 172.6 | 0.001~0.002 | 0.012~0.378 | 0.017~0.189 | 0.123~0.682 |
S型花岗岩 | 1.3~7 | 211.2~771.7 | 0.133~0.251 | 0.033~0.105 | 0.044~0.245 | 0.151~0.346 |
麻粒岩相变泥质岩 | 0.426~41.730 | 3.089~676.760 | 0.006~1.440 | 0~0.440 | 0.102~11.266 | 0.015~0.948 |
角闪岩相变泥质岩 | 0.120~7.933 | 21.226~1 661.220 | 0.102~1.151 | 0~0.419 | 0.012~4.503 | 0.038~0.348 |
岩石 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Ce/Ce* | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN | PrN/HoN |
---|---|---|---|---|---|---|---|---|
榴辉岩 | 0.332~27.69 | 2.41~78.09 | 0.048~1.019 | 0.683~2.784 | 0~0.587 | 0.120~2.823 | 0.220~1.899 | 0.002~0.835 |
橄榄岩 | 0.11~38.28 | 0.35~24.37 | 0.455~2.244 | 0.588~2.075 | 0~3.739 | 0.103~7.090 | 0.241~5.313 | 0.036~21.775 |
辉石岩 | 0.69~5.06 | 9.33~28.62 | 0.064~1.534 | 0.508~1.584 | 0.005~0.865 | 0.313~1.590 | 0.247~0.756 | 0.002~0.201 |
Table 3 REE characteristic values of garnets in eclogite (after [42-46]), peridotite (after [43,47-50]) and pyroxenite (after [18])
岩石 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Ce/Ce* | Eu/Eu* | LaN/SmN | GdN/YbN | SmN/GdN | PrN/HoN |
---|---|---|---|---|---|---|---|---|
榴辉岩 | 0.332~27.69 | 2.41~78.09 | 0.048~1.019 | 0.683~2.784 | 0~0.587 | 0.120~2.823 | 0.220~1.899 | 0.002~0.835 |
橄榄岩 | 0.11~38.28 | 0.35~24.37 | 0.455~2.244 | 0.588~2.075 | 0~3.739 | 0.103~7.090 | 0.241~5.313 | 0.036~21.775 |
辉石岩 | 0.69~5.06 | 9.33~28.62 | 0.064~1.534 | 0.508~1.584 | 0.005~0.865 | 0.313~1.590 | 0.247~0.756 | 0.002~0.201 |
模式 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Eu/Eu* | LaN/YbN |
---|---|---|---|---|
模式1 | 6.52~468.26 | 1.19~395.86 | 1.39~5.98 | 1.45~159.67 |
模式2 | 14.42~144.26 | 10.74~176.84 | 0.39~1.23 | 0.01~0.62 |
模式3 | 11.67~130.55 | 1.61~20.72 | 0.51~1.09 | 4.38~14.53 |
模式4 | 14.73~24.58 | 4.54~10.22 | 2.38~3.86 | 0.07~0.97 |
Table 4 The characteristic parameters of four REE patterns of garnet in skarn
模式 | w(ΣLREE)/10-6 | w(ΣHREE)/10-6 | Eu/Eu* | LaN/YbN |
---|---|---|---|---|
模式1 | 6.52~468.26 | 1.19~395.86 | 1.39~5.98 | 1.45~159.67 |
模式2 | 14.42~144.26 | 10.74~176.84 | 0.39~1.23 | 0.01~0.62 |
模式3 | 11.67~130.55 | 1.61~20.72 | 0.51~1.09 | 4.38~14.53 |
模式4 | 14.73~24.58 | 4.54~10.22 | 2.38~3.86 | 0.07~0.97 |
[1] | 王成善, 李祥辉, 胡修棉. 再论印度-亚洲大陆碰撞的启动时间[J]. 地质学报, 2003, 77(1):16-24. |
[2] | BASU A. A perspective on quantitative provenance analysis[J]. Quantitative Provenance Studies in Italy, 2003, 61:11-22. |
[3] |
WELTJE G J, EYNATTEN H V. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 2004, 171(1):1-11.
DOI URL |
[4] | MORTON A C. Heavy minerals in provenance studies[M]//ZUFFA G G. Provenance of arenites. Dordrecht: Reidel Publishing Company, 1985: 249-277. |
[5] |
MORTON A C, HALLSWORTH C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/2/3/4):3-29.
DOI URL |
[6] |
BHATIA M R. Plate tectonics and geochemical composition of sandstone[J]. Journal of Geology, 1983, 91(6):611-627.
DOI URL |
[7] | DICKINSON W R. Interpreting provenance relations from detrital modes of sandstones[M]//ZUFFA G G. Provenance of arenites. Dordrecht: Reidel Publishing Company, 1985: 333-361. |
[8] | MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284:21-40. |
[9] |
MORTON A C, HALLSWORTH C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4):241-256.
DOI URL |
[10] | HENRY D J, GUIDOTTI C V. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine[J]. American Mineralogist, 1985, 70(1/2):1-15. |
[11] |
FEDO C M, SIRCOMBE K N, RAINBIRD R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303.
DOI URL |
[12] |
CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4):228-242.
DOI URL |
[13] |
TRIEBOLD S, EYNATTEN H V, LUVIZOTTO G L, et al. Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany[J]. Chemical Geology, 2007, 244(3/4):421-436.
DOI URL |
[14] |
MEINHOLD G. Rutile and its applications in earth sciences[J]. Earth-Science Reviews, 2010, 102(1):1-28.
DOI URL |
[15] |
ZHANG Z M, LIOU J G, ZHAO X D, et al. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic belt, eastern China[J]. Journal of Metamorphic Geology, 2006, 24(8):727-741.
DOI URL |
[16] |
SONG S, SU L, NIU Y, et al. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China[J]. Lithos, 2007, 96(1/2):243-265.
DOI URL |
[17] |
XU L, XIAO Y, WU F, et al. Anatomy of garnets in a Jurassic granite from the south-eastern margin of the North China Craton: magma sources and tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 78(12):198-221.
DOI URL |
[18] | 罗彦, 高山, 袁洪林, 等. 大别-苏鲁榴辉岩和石榴辉石岩中矿物Ce异常: 对氧化环境下形成沉积物深俯冲作用的示踪[J]. 中国科学: 地球科学, 2004, 34(1):14-23. |
[19] |
LENAZ D, MAZZOLI C, VELICOGNA M, et al. Trace and rare earth elements chemistry of detrital garnets in the SE Alps and Outer Dinarides flysch basins: an important tool to better define the source areas of sandstones[J]. Marine and Petroleum Geology, 2018, 98:653-661.
DOI URL |
[20] |
BIZIMIS M, SEN G, SALTERS V J M, et al. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism[J]. Geochimica et Cosmochimica Acta, 2005, 69(10):2629-2646.
DOI URL |
[21] | WRIGHT W I. The composition and occurrence of garnets[J]. American Mineralogist, 1938, 23:436-449. |
[22] | TERAOKA Y, SUZUKI M, HAYASHI T, et al. Detrital garnets from Paleozoic and Mesozoic sandstones in the Onogawa area, East Kyushu, Southwest Japan[J]. Bulletin of the Faculty of School Education, 1997, 19:87-101. |
[23] | TERAOKA Y, SUZUKI M, KAWAKAMI K. Provenance of Cretaceous and Paleogene sediments in the Median Zone of Southwest Japan[J]. Bulletin of the Geological Survey of Japan, 1998, 49:395-411. |
[24] | MANGE M A, MORTON A C. Geochemistry of heavy minerals[M]//MANGE M A, WRIGHT D T. Heavy minerals in use. Developments in sedimentology. Amsterdam: Elsevier, 2007: 345-391. |
[25] |
AUBRECHT R, MÉRES Š, SÝKORA M, et al. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia)[J]. Geologica Carpathica, 2009, 60(6):463-483.
DOI URL |
[26] | 朱琳. 红色-黄色系列石榴石的宝石学特征研究[D]. 北京: 中国地质大学(北京) 2015. |
[27] |
MIYASHIRO A. Calcium-poor garnet in relation to metamorphism[J]. Geochimica et Cosmochimica Acta, 1953, 4(4):179-208.
DOI URL |
[28] |
SPEAR F S, CHENEY J T. A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O[J]. Contributions to Mineralogy and Petrology, 1989, 101(2):149-164.
DOI URL |
[29] |
DAHLQUIST J A, GALINDO C, PANKHURST R J, et al. Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids[J]. Lithos, 2007, 95(3):177-207.
DOI URL |
[30] |
KRIPPNER A, MEINHOLD G, MORTON A C, et al. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks[J]. Sedimentary Geology, 2014, 306(6):36-52.
DOI URL |
[31] |
MORTON A C, HALLSWORTH C, CHALTON B. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance[J]. Marine and Petroleum Geology, 2004, 21(3):393-410.
DOI URL |
[32] |
JIAN X, GUAN P, ZHANG D W, et al. Provenance of Tertiary sandstone in the northern Qaidam Basin, northeastern Tibetan Plateau: integration of framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 2013, 290(1):109-125.
DOI URL |
[33] | 陈能松, 孙敏, 杨勇, 等. 变质石榴石的成分环带与变质过程[J]. 地学前缘, 2003, 10(3):315-320. |
[34] |
BEA F, MONTERO P. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy[J]. Geochimica et Cosmochimica Acta, 1999, 63(7/8):1133-1153.
DOI URL |
[35] |
HERMANN J, RUBATTO D. Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust[J]. Journal of Metamorphic Geology, 2003, 21(9):833-852.
DOI URL |
[36] |
BEA F, MONTERO P, GARUTI G, et al. Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets: a LA-ICP-MS study[J]. Geostandards and Geoanalytical Research, 1997, 21(2):253-270.
DOI URL |
[37] | 高利娥, 曾令森, 石卫刚, 等. 喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义[J]. 岩石学报, 2012, 28(9):2963-2980. |
[38] |
HÖNIG S, ČOPJAKOVÁ R, ŠKODA R, et al. Garnet as a major carrier of the Y and REE in the granitic rocks: an example from the layered anorogenic granite in the Brno Batholith, Czech Republic[J]. American Mineralogist, 2014, 99(10):1922-1941.
DOI URL |
[39] |
BRAY E A D. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis: southeastern Arabian Shield[J]. Contributions to Mineralogy and Petrology, 1988, 100(2):205-212.
DOI URL |
[40] |
YANG J H, PENG J T, HU R Z, et al. Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China[J]. Lithos, 2013, 177(1):79-90.
DOI URL |
[41] |
VILLAROS A, STEVENS G, BUICK I S. Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112(3):217-235.
DOI URL |
[42] | 李静. 大别山榴辉岩石榴石和绿辉石中稀土元素配分特征[D]. 北京: 中国地震局地震预测研究所, 2012. |
[43] | 张宏福, MENZIES M A, 路凤香, 等. 华北古生代地幔岩捕虏体中石榴石和巨晶石榴石的主、微量元素[J]. 中国科学: 地球科学, 2000, 30(2):128-134. |
[44] |
JERDE E A, TAYLOR L A, CROZAZ G, et al. Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths[J]. Contributions to Mineralogy and Petrology, 1993, 114(2):189-202.
DOI URL |
[45] |
SNYDER G A, TAYLOR L A, CROZAZ G, et al. The origins of Yakutian eclogite xenoliths[J]. Journal of Petrology, 1997, 38(1):85-113.
DOI URL |
[46] | 石超, 张泽明. 超高压变质过程中的元素地球化学行为: CCSD主孔榴辉岩的矿物化学研究[J]. 岩石学报, 2007, 23(12):3180-3200. |
[47] |
BURGESS S R, HARTE B. Tracing lithosphere evolution through the analysis of heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry[J]. Journal of Petrology, 2004, 45(3):609-633.
DOI URL |
[48] |
LIATI A, GEBAUER D. Crustal origin of zircon in a garnet peridotite: a study of U-Pb SHRIMP dating, mineral inclusions and REE geochemistry (Erzgebirge, Bohemian Massif)[J]. European Journal of Mineralogy, 2009, 21(4):737-750.
DOI URL |
[49] |
POKHILENKO N P, AGASHEV A M, LITASOV K D, et al. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism[J]. Russian Geology and Geophysics, 2015, 56(1/2):280-295.
DOI URL |
[50] |
AGASHEV A M, IONOV D A, POKHILENKO N P, et al. Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya[J]. Lithos, 2013, 160/161(1):201-215.
DOI URL |
[51] | 郑震, 杜杨松, 曹毅, 等. 安徽冬瓜山夕卡岩铜矿石榴石成分特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(2):235-242. |
[52] | 肖成东, 刘学武. 东蒙地区夕卡岩石榴石稀土元素地球化学及其成因[J]. 中国地质, 2002, 29(3):311-316. |
[53] | 王剑波. 安徽铜陵包村夕卡岩型金矿特征和成因[D]. 北京: 中国地质大学(北京), 2016. |
[54] |
GASPAR M, KNAACK C, MEINERT L D, et al. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica Et Cosmochimica Acta, 2008, 72(1):185-205.
DOI URL |
[55] | BOYNTON W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2(2):63-114. |
[56] | PALME H, O'NEILL H S C. Cosmochemical estimates of mantle composition[J]. Treatise on Geochemistry, 2007, 2:1-38. |
[57] | SHIMIZU N. Chemical zoning of garnets in peridotites and diamonds[J]. Mineralogical Magazine, 1994, 58(2):831-832. |
[58] |
HOAL K E O, HOAL B G, ERLANK A J, et al. Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets[J]. Earth and Planetary Science Letters, 1994, 126(4):303-313.
DOI URL |
[59] |
ČOPJAKOVÁ R, SULOVSKÝ P, PATERSON B A. Major and trace elements in pyrope-almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif[J]. Lithos, 2005, 82(1/2):51-70.
DOI URL |
[1] | WU Qing, HUANG Fen, GUO Yongli, XIAO Qiong, SUN Ping’an, YANG Hui, BAI Bing. Geochemical characteristics of trace elements and their implications in the small karst basin, Southwest China [J]. Earth Science Frontiers, 2024, 31(5): 397-408. |
[2] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[3] | LI Fanglan, LIU Xuelong, ZHOU Yunman, ZHAO Chengfeng, LI Shoukui, WANG Jiyuan, LU Bode, LI Qingrui, ZHANG Weiwen, WANG Hai, CAO Zhenliang, ZHOU Jiehu. Geochronology and geochemical characteristics of the Douya iron-copper polymetallic deposit in the Baoshan block, western Yunnan [J]. Earth Science Frontiers, 2024, 31(3): 113-132. |
[4] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[5] | SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review [J]. Earth Science Frontiers, 2023, 30(5): 171-184. |
[6] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[7] | HE Mingqian, HUANG Wenhui, JIU Bo. Origin and evolution of gypsum dolomite as a favorable reservoir in the Ordos Basin, China [J]. Earth Science Frontiers, 2021, 28(4): 327-336. |
[8] | DU Yifan, ZHU Xiaomin, GAO Yuan, LI Linglong, YE Lei, LI Xiaodong, LIU Qianghu, LI Chenghai, ZHAO Tiedong, CHEN Yaqing. Sedimentary provenance of the first member of the Shahejie Formation,Lixian Slope,Raoyang Sag [J]. Earth Science Frontiers, 2021, 28(1): 115-130. |
[9] | OUYANG Yongpeng, ZHOU Xianrong, YAO Zaiyu, RAO Jianfeng, SONG Shiwei, WEI Jin, LU Yi. Study on the two-stage garnets and their indication of mineralization in the Zhuxi W(Cu) deposit, northeastern Jiangxi Province [J]. Earth Science Frontiers, 2020, 27(4): 219-231. |
[10] | ZHEN Shimin, PANG Zhenshan, ZHU Xiaoqiang, XUE Jianling, FANG Yongcai, JIA Hongxiang, SHI Guangyao, WANG Dazhao, ZHA Zhongjian, SONG Xiaohang. The characteristics of trace elements and S, Pb, He and Ar isotopes in the Liyuan gold deposit in Shanxi Province, and their significance [J]. Earth Science Frontiers, 2020, 27(2): 373-390. |
[11] | SHAO Longyi,CHANG Lingli,ZHANG Mengyuan,LI Jie,LI Yaowei,LI Wenjun,FENG Xiaolei. Trace element compositions in PM2.5 after the action for comprehensive control of air pollution in Beijing [J]. Earth Science Frontiers, 2019, 26(6): 298-308. |
[12] | MA Jian,Lü Xinbiao,DAN Rongfei,ZHU Dingyun,LU Fei,YUAN Bo,YIN Xin. Ore genesis of the Zuojiazhuang gold deposit in the West Qinling Orogen: constraints from pyrite trace elements and multi-isotope analyses [J]. Earth Science Frontiers, 2019, 26(5): 146-162. |
[13] | ZHU Laimin,ZHENG Jun,XIONG Xiao,JIANG Hang,LIU Kai,DING Lele,GUO Yanhui,LI Shenghao. Petrogeochemistry and mineralization potential of the Yuanzijie intrusion in the ZhashuiShanyang ore deposit cluster in southern Qinling [J]. Earth Science Frontiers, 2019, 26(5): 189-205. |
[14] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[15] | QU Huaxiang,HUANG Baoqi. Paleoclimate change reflected by element ratios of terrigenous sediments from deep-sea oxygen isotope MIS6 to MIS5 at MD12-3432 station in northern South China Sea [J]. Earth Science Frontiers, 2019, 26(3): 236-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||